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Abstract. Neural computation in Clifford algebras, which include fa-
miliar complex numbers and quaternions as special cases, has recently
become an active research field. As always, neurons are the atoms of com-
putation. The paper provides a general notion for the Hessian matrix of
Clifford neurons of an arbitrary algebra. This new result on the dynamics
of Clifford neurons then allows the computation of optimal learning rates.
A thorough discussion of error surfaces together with simulation results
for different neurons is also provided. The presented contents should give
rise to very efficient second–order training methods for Clifford Multi-
layer perceptrons in the future.

1 Introduction

Neural computation in Clifford algebras, which include familiar complex num-
bers and quaternions, has recently become an active research field [6,5,11]. Par-
ticularly, Clifford-valued Multi-layer perceptrons (CMLPs) have been studied.
To our knowledge, no second–order methods to train CMLPs are available yet.
This paper aims to provide therefore the needed facts on Hessians and optimal
learning rates by studying the dynamics on the level of Clifford neurons. After
an introduction to Clifford algebra, we review Clifford neurons as introduced
in [4]. Section 4 provides as a general and explicit notion for Hessian matrix of
these neurons, which enables easy and accurate computation of optimal learning
rates. This is demonstrated by simulation in section 5, after which the paper
concludes with a summary.

2 Basics of Clifford Algebra

An algebra is a real linear space that is equipped with a bilinear product. Clifford
algebras are of dimension 2n(n ∈ N0) and are generated by so-called quadratic
spaces, from which they inherit a metric structure. Every quadratic space has
an orthonormal basis. Here we are interested in spaces R

p+q (p, q ∈ N0) with
canonical basis O := (e1, ..., ep+q) that are endowed with a quadratic form Q,
such that for all i, j ∈ {1, . . . , p + q}

Q(ei) =
{

1, i ≤ p
−1, p + 1 ≤ i ≤ p + q,

(1)

Q(ei + ej) − Q(ei) − Q(ej) = 0 , (2)
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which, in turn, renders O to be orthonormal. These quadratic spaces, abbreviated
as R

p,q hereafter, give now rise to the following definition.

Definition 1 (Clifford Algebra [12]). The Clifford algebra Cp,q of R
p,q is the

2p+q dimensional associative algebra with unity 1R given by

(i) Cp,q is generated by its distinct subspaces R and R
p,q

(ii) xx = Q(x) for any x ∈ R
p,q .

Note the use of juxtaposition for the so–called geometric product of Cp,q. Since
nothing new is generated in case of p = q = 0, C0,0 is isomorphic to the real num-
bers R. The Clifford algebras C0,1 and C0,2 are isomorphic to complex numbers
and quaternions, respectively.

The set of all geometric products of elements of O

E := {ej1ej2 · · · ejr , 1 ≤ j1 < . . . < jr ≤ p + q} (3)

constitutes a basis of Cp,q, which follows directly from condition (ii) in Defini-
tion 1. This basis can be ordered by applying the canonical order of the power
set P of {1, . . . , p + q}, i.e. by using the index set

I := {{i1, . . . , is} ∈ P | 1 ≤ i1 < . . . < is ≤ p + q} (4)

and then define eI := ei1 . . . eis for all I ∈ I. Set e∅ := 1R. A general element x
of Cp,q

x =
∑

I

eI xI :=
∑
I∈I

eI xI , (xI ∈ R) (5)

is termed multivector. The name stems from the fact that for k ∈ {0, · · · , p + q}

Ck
p,q := {eI | I ∈ I, |I| = k} (6)

spans a linear subspace of Cp,q ( C0
p,q = R, C1

p,q = R
p,q and

∑
k Ck

p,q = Cp,q).
Projection onto subspaces is defined via the grade operator

〈·〉k : Cp,q → Ck
p,q, x �→

∑
I∈I ,
|I|=k

xIeI , (7)

with convention 〈·〉 := 〈·〉0 for the so-called scalar part. Projection onto the I-th
component (w.r.t. E) of a multivector, on the other hand, is written as [·]I .

Involutions on Cp,q are linear mappings that when applied twice yield the
identity again. Examples are inversion inv(x) :=

∑p+q
k=0(−1)k〈x〉k and rever-

sion rev(x) :=
∑p+q

k=0(−1)
k(k−1)

2 〈x〉k. The principal involution defined by ẽI =
rev(eI) e

[Iq ]
0 is of main importance for us, whereby [Iq] stands for the number of

negative signature vector factors in eI . Note that x̃y = ỹx̃. Any non–null vector
of Cp,q has an inverse (w.r.t. the geometric product) and is an element of the
Clifford group.
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Definition 2 (Clifford group [10]). The Clifford group associated with the
Clifford algebra Cp,q is defined by

Γp,q = {s ∈ Cp,q | ∀x ∈ R
p,q , s x inv(s)−1 ∈ R

p,q} . (8)

The action of Γp,q on R
p,q is an orthogonal automorphism [12] that extends

to multivectors due to the bilinearity of the geometric product. Since C0,1 is
commutative, the fact that complex multiplication can be viewed geometrically
as dilation–rotation [14] follows as special case from (8).

3 Clifford Neurons and the Linear Associator

Formally, a Clifford neuron can be easily introduced as follows. Consider the most
common real neuron (of perceptron–type with identity as activation function)
that computes a weighted sum of its inputs xi according to

y =
∑

i

wixi + θ . (9)

Using instead multivector weights wi ∈ Cp,q, a multivector threshold θ ∈ Cp,q

and replacing real multiplication by the geometric product readily turns (9) into
a Clifford neuron (for C0,0, of course, one gets the real neuron back again). Al-
though complex-valued and quaternionic–valued Multi-layer perceptrons
(MLPs) are known for a long time (see [9] and [2], respectively), not much
research has been carried out on the neuron level itself in the beginning. Only
recently, the following two types of Clifford neurons have been studied in greater
detail in the literature.

Definition 3 (Basic Clifford Neuron (BCN) [4]). A Basic Clifford Neuron,
BCNp,q, computes the following function from Cp,q to Cp,q

y = wx + θ. (10)

A BCN has only one multivector input and therefore also only multivector
weight. Contrary to a real neuron (9) it makes sense to study the one input
only case, since this will be in general a multidimensional entity. The general
update rule using gradient descent for a BCN with simplified, for notation pur-
poses, error function

E = ‖error‖2 := ‖d − y‖2 , (11)

where d stands for desired output, reads

Δw = −∂ E

∂ w
= 2error x̃ . (12)

Equation (12) generalizes the various specific update rules given in [4] by using
the principal involution of Section 2. The second type of Clifford neuron proposed
in [4] mimics the action of the Clifford group.
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Definition 4 (Spinor Clifford Neuron (SCN) [4]). For p, q ∈ N0, p + q >1
a Spinor Clifford Neuron, SCNp,q, computes the following function from Cp,q to Cp,q

y = w xφ(w) + θ , (13)

where φ denotes a particular involution (e.g. inversion, reversion,...).

Like a BCN, a SCN has also only one independent weight though a two–sided
multiplication takes place. For a SCN with (adapted) error function (11) gradient
descent therefore results in a two-stage update procedure. First compute the
update of the ”right weight” in (13) as

wR := (̃w x) error (14)

which then yields Δw = φ(wR). Again, this is a powerful generalization of the
few specific rules known from the literature.

BCNs are the atoms of Clifford MLPs while SCNs are the atoms of Spinor
MLPs. Clifford MLPs have already found numerous applications (see e.g. [6,1]
and the references therein). Recent applications of Spinor MLPs can be found
in [11,5]. All these works, however, rely on a simple modified Back–propagation
algorithm. To our knowledge, there are no known general second–order based
training algorithms for Clifford MLPs and Spinor MLPs yet. Given the increas-
ing interest in such architectures a high demand for second order methods can be
stated. This paper aims to establish the foundations of such forthcoming algo-
rithms by providing general and explicit expressions for describing the dynamics
of Clifford neurons in terms of their Hessian matrices.

Hessians (of the error functions) of Clifford neurons are not a complete terra
incognita though. Both BCNs and SCNs can be viewed, to some extent, as par-
ticular Linear Associators (LAs) (see e.g. [3,13] for an introduction to this most
simple feed–forward neural network). In the case of BCNs this readily follows
from the well–known theorem that every associative algebra of finite dimension
is isomorphic to some matrix algebra. For SCNs, however, this additionally, re-
lies on the fact (mentioned in Section 2) that the action of the Clifford group is
always an orthogonal automorphism.

Dynamics of the Linear Associator are well understood and [8] is perhaps the
first complete survey on the topic. Note that for a LA gradient descent, with
an appropriate learning rate η, converges to the global minimum for any convex
error function like the sum-of-squares error (SSE). The Hessian HLA of a LA
with error function of SSE-type (of which (11) is a simplified version) is always
a symmetric matrix. For batch–learning (see e.g. the textbook [13]) the optimal
learning rate ηopt is known to be 1

λmax
where λmax is the largest eigenvalue of

HLA. Also, HLA is known to be the auto–correlation matrix of the inputs.
In principle it would be possible to compute Hessians of BCNs from the above

facts. There are however several drawbacks that limit this procedure to only
low–dimensional algebras and render it impossible for all other cases. First of
all, note that in order to proceed in this way one has to know and apply the
appropriate matrix isomorphism for every single algebra. There is no general
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solution and the isomorphisms can get rather complicated. Also, by applying
an isomorphism numerical problems may occur for the eigenvalue computation.
Even if one succeeds, no explicit structural insights are easily obtained from this
procedure since everything is expressed in terms of a particular input. For SCNs
the situation will be even more complicated, and, by missing the big picture
again, no conclusions of truly general value are obtained.

The next section therefore now offers a new general and explicit solution for
computing Hessian matrices of Clifford neurons without the above drawbacks.
This is done by invoking the principal involution.

4 Hessian Matrices of Clifford Neurons

Hessian matrices w.r.t. the parameters of a neural architecture allow to compute
optimal learning rates. Decoupling of parameters and using an individual optimal
learning rate for every single one yields fastest possible convergence [7]. For the
two types of Clifford neurons introduced in the previous section it is very natural
to decouple the multivector weight w from the multivector threshold θ. The
threshold θ of a BCN or SCN is a generic parameter in the sense, that it does
not depend on the signature (p, q) of the underlying Clifford algebra. In fact,
it can be handled in exactly the same way as the threshold vector of a LA of
dimension p + q. In what follows we therefore only study Hessians w.r.t. the
multivector weight w. To simplify notations, inputs to the neurons are written
as x without indexing over the training set.

Theorem 1 (Hessian of a BCN). The elements of the Hessian matrix of a
BCN are given by

∂IJE = ∂JIE =
∂E

∂wJ∂wI
= 2〈ẽIeJxx̃〉 (15)

where ·̃ denotes principal involution.

Proof. Rewriting the error function as

E = ‖d − (wx + θ)‖2 =
∑

I

(dI − ([wx]I + θI))
2 eI ẽI︸︷︷︸

1

= 〈(d − wx − θ)(d − wx − θ)̃ 〉

=
〈
wx(̃wx)

〉
− 〈wx(d − θ)̃ 〉 −

〈
(d − θ)(̃wx)

〉
= 〈wxx̃w̃〉 − 2 〈(d − θ)x̃w̃〉 (16)

yields

∂E

∂wI
= 〈eIxx̃w̃〉︸ ︷︷ ︸

〈(x�x�w)��eI〉

+ 〈wxx̃ẽI〉 − 2 〈(d − θ)x̃ẽI〉

= 2 〈wxx̃ẽI〉 − 2 〈(d − θ)x̃ẽI〉
= −2 〈(d − wx − θ)x̃ẽI〉
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and finally

∂E

∂wJ∂wI
= 2 〈eJxx̃ẽI〉

= 2〈ẽIeJxx̃〉 . (17)

For every I, J , (17) ”picks out” the scalar component of the product resulting
from multiplying ẽIeJ with the multivector xx̃. Consequently, one gets easily
the following result for the neurons BCN0,q.

Corollary 1. The Hessian of BCN0,q is a scalar matrix aE, where E denotes
the identity matrix.

Of course, every diagonal entry of the Hessian of a BCNp,q equals the scalar a
above. The next corollary gives a complete overview for BCNs of dimension four.

Corollary 2. Let {xs = cs
0e0 + cs

1e1 + cs
2e2 + cs

12e12}s=1...S denote the input
set to a BCNp,q, p + q = 2. Set a :=

∑S
s=1(c

s
0c

s
0 + cs

1c
s
1 + cs

2c
s
2 + cs

12c
s
12), b :=

2
∑S

s=1(c
s
0c

s
1+cs

2c
s
12), c := 2

∑S
s=1(c

s
0c

s
2−cs

1c
s
12), d := 2

∑S
s=1(c

s
0c

s
12−cs

1c
s
2). Then

the Hessian w.r.t. the SSE-function of the BCN0,2, the BCN1,1, and the BCN2,0
is given by

HBCN0,2 =

⎛
⎜⎜⎝

a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

⎞
⎟⎟⎠ , (18)

HBCN1,1 =

⎛
⎜⎜⎝

a b 0 d
b a d 0
0 d a −b
d 0 −b a

⎞
⎟⎟⎠ , and (19)

HBCN2,0 =

⎛
⎜⎜⎝

a b c 0
b a 0 c
c 0 a −b
0 c −b a

⎞
⎟⎟⎠ , (20)

respectively.

Unfortunately, the Hessian of a SCN does have a more comlicated form and does
not depend alone on the received input.

Theorem 2 (Hessian of a SCN). The elements of the Hessian matrix of a
SCN are given by

∂E

∂wJ∂wI
= 2 〈(eJxw + wxeJ ) (eIxw + wxeI) 〉̃

−2 〈(d − wxw) (eIxeJ + eJxeI) 〉̃ (21)

where (·) stands for the involution of the SCN.
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Proof. From

E = ‖d − wxw‖2 =
∑

I

(dI − (wxw)I)
2
eI ẽI

= 〈(d − wxw)(d − wxw)̃ 〉

=
〈
dd̃ + wxw(wxw)̃

〉
− 2 〈d(wxw)̃ 〉 (22)

follows

∂E

∂wI
= 〈(eIxw + wxeI) (wxw)̃ 〉

+ 〈(wxw)(eIxw + wxeI) 〉̃
−2 〈d(eIxw + wxeI )̃ 〉

= −2 〈(d − wxw)(eIxw + wxeI )̃ 〉 (23)

and by computing ∂wJ

∂E
∂wI

follows the assumption.

Hence, if w is of small absolute value the approximation HSCNp,q ≈ 2 · HBCNp,q

holds. Due to space limitations, this concludes or study of Hessians of Clifford
neurons.

5 Simulations on Optimal Learning Rates

From Theorem 1 direct structural insights on the dynamics of BCNs can be
obtained. According to Corollary 1, the error function of a BCN0,q is always
isotropic, its Hessian is a scalar matrix aE, and therefore η = 1

a is its optimal
learning rate. This section now reports simulation results for all four–dimensional
BCNs (theoretically covered by Corollary 2) in order to give some illustrations
and to get further insights on the dynamics of these neurons. For the quater-
nionic BCN0,2 100 points have been generated from a uniform distribution of
[0, 1]4. Each element of the that way obtained input training set was left multi-
plied in C0,2 by 1e0 + 2e1 + 3e2 + 4e12 in order to get the output training set.
Using the optimal learning rate η = ηopt (computed as 1/λmax from (19) and
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Fig. 1. Left panel shows learning curves of the BCN0,2 for different learning rates η.
Right panel shows comparison of the optimal learning curves for the BCN2,0 and the
LA. Both architectures are trained with their respective optimal learning rate.
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Fig. 2. Plot of error function for the BCN1,1. Projections on the six 2D planes that
coincide with the coordinate axes of weight space.
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Fig. 3. Plot of error function for the BCN2,0. Projections on the six 2D planes that
coincide with the coordinate axes of weight space.

(20), respectively ) batch-learning converged indeed in one epoch to the global
solution. This can be seen from the left panel of figure 1, which also shows
obtained learnig curves for η = 2ηopt (slowest convergence) and η = 2ηopt +0.001
(beginning of divergence). Right panel of figure 1 shows optimal learning curve
of the BCN 0,2 versus optimal learning curve of the LA for illustration.

Similar simulations have been carried out for the remaining two BCNs of
dimension four. In both cases input set of the BCN0,2 has been used again. For
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Fig. 4. Left panel shows learning curves of the BCN1,1 for different learning rates η.
Right panel shows comparison of the optimal learning curves for the BCN2,0 and the
LA. Both architectures are trained with their respective optimal learning rate.
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Fig. 5. Left panel shows learning curves of the BCN2,0 for different learning rates η.
Right panel shows comparison of the optimal learning curves for the BCN2,0 and the
LA. Both architectures are trained with their respective optimal learning rate.

obtaining the output set, it was left multilpied in C1,1 and C0,2 by 1e0+2e1+3e2+
4e12, respectively. Error surfaces obtained for these data are plotted in figure 2
and figure 3, respectively. Both surfaces do have a partial isotropy since isotropic
projections do exist. Moreover, the following can be proven from (19),(20) for
the projection planes EwI ,wJ (BCNp,q) : Ew1,w4(BCN1,1) = Ew2,w3(BCN1,1) =
Ew1,w3(BCN2,0) = Ew2,w4(BCN2,0) and Ew1,w3(BCN1,1) = Ew2,w4(BCN1,1) =
Ew1,w4(BCN2,0) = Ew2,w3(BCN2,0). Note how this nicely resembles the fact that
C1,1 and C0,2 are isomorphic algebras. For both neurons a further decoupling of
weights might be of interest due to the existence of isotropic planes. Finally,
plots of learnig curves are provided by figure 4 and figure 5. Inclusion of an
LA in all simulations was done to show that and how Clifford neurons do differ
significantly from an LA.

6 Summary

The dynamics of Clifford neurons have been studied in this paper. General and
explicit expressions of the Hessian of a BCN and of a SCN have been derived.
From the general BCN result structural insights on the dynamics of specific
BNCs can be easily obtained. The Hessian of a BCN0,q has been identified to be
a scalar matrix aE, which readily gives 1/a as optimal learning rate for such a
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neuron. Simulations have been carried out to show the stability and accuracy of
computation of optimal learning rates from the derived Hessians. We hope that
the presented material will give rise to fast second–order training methods for
Clifford and Spinor MLPs in the future.
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