
Quaternioni Spinor MLPSven Buhholz, Gerald SommerUniversity of Kiel, Department of Computer SienePreusserstr. 1-9, 24105 Kiel, Germanyfsbh,gsg�ks.informatik.uni-kiel.deAbstrat. This paper introdues a novel quaternion{valued MLP{type network alled the Quaternioni Spinor MLP (QSMLP). In ontrastto another reently proposed Quaternioni MLP it uses spinors in itspropagation funtion. This allows very eÆiently the proessing of 3Dvetor data, whih is demonstrated by experiments. The QSMLP isproven to be a universal approximator and a learning algorithm for it isderived.1. IntrodutionThere are a ouple of neural arhitetures proposed in the literature to proessmultidimensional data. In partiular a lot of researh was done in the omplexdomain [1℄. However, any further extension requires non{basi algebrai stru-tures as e.g. Cli�ord Algebras [2℄. A domain of speial interest was also alwaysthat of 3D vetor spae, as it arises naturally in important appliations asrobotis and ontrol theory. Yet, diret arhitetures as proposed in [6℄ fail foralgebraial reasons [1℄, [2℄. More eÆient and robust is the use of quaternions,whih have beome very ommon in these appliations [3℄. Reently, in [1℄ aQuaternioni MLP (QMLP) was developed. However, this QMLP performsnot in a natural way on 3D vetor data. In this paper we propose instead theQuaternioni Spinor MLP (QSMLP), whih has suh properties in addition.The paper starts with an introdution to quaternions. The third setion isdesribing the QSMLP in terms of arhiteture, approximation properties andlearning algorithm. In setion 4 experimental results are reported that supportour laims on the performane of QSMLP vs. QMLP.2. QuaternionsQuaternions are generalized omplex numbers of the formq = q0 + q1 i + q2 j + q3 k (1)with q0; q1; q2; q3 2 IR and imaginary units f i; j; kg. The imaginary units of aquaternion behave similar to the imaginary unit of omplex numbersi2 = j2 = k2 = �1 : (2)



They an be seen as spatial orthogonal vetors, sine the following relationshold j k = � k j = i k i = � i k = j i j = � j i = k : (3)Thereof, a quaternion onsists of a salar part q0 and a vetor part denoted by~q := q1 i + q2 j + q3 k. The 4{tuple notation of a quaternion is given byq = (q0; q1; q2; q3) = (q0; ~q) : (4)Furthermore, let [q℄i (i 2 f0; : : : ; 3g) denote the i-th projetion. Together withthe postulation that (1;~0) should be its identity, multipliation of quaternions
 is already fully determined by (2) and (3)q 
 p = (q0 p0 � ~q � ~p; q0 ~p+ p0 ~q + ~q � ~p) : (5)Through this, quaternions beome a real assoiative (but not ommutative)division algebra IH := (IR4;+;
). As in the ase of omplex numbers, thenorm of a quaternion is de�ned via onjugation. The onjugate of a quaternionis q� := (q0;�~q). The norm of a quaternion is then given by jqj := pq�q.3. The Quaternioni Spinor MLPAfter these preliminaries we follow the way outlined in the introdution.3.1. QSMLP ArhitetureLet us start with reviewing briey the arhiteture of the MLP and the QMLPto be able to show how the QSMLP di�ers from them. Of ourse all namedneural networks have in ommon, that they onsist of layers of neurons withweighted feed{forward only onnetions between all the neurons of onseutivelayers. More preisely, the output of the j-th (non input) neuron in layer l ofan MLP is given by f(Xi w(l)ij � x(l�1)i + �(l)j ) ; (6)where w(l)ij is the weight onneting the i{th node in layer (l� 1) with the j{thnode in layer l, �j is the appropriate bias and x(l�1)i is the i-th input. Allthese entities are real numbers. The hoie of the ativation funtion f will bedisussed later on. The QMLP introdued in [1℄ uses quaternioni entities andreplaes the salar produt by the quaternioni produtf (Xi wij (l) 
 xi(l�1) + �j(l)) : (7)However, this de�nition makes the main bene�ts of quaternions, namely theoperating on 3D vetors and its appliations, not easy to use. The multiplia-tion of a 3D vetor ~v := (0; ~v) by a single quaternioni weight results not in a



vetor again. To overome this drawbak we suggest the QSMLP with neuronsof the form f(Xi rij (l) 
 xi(l�1) 
 r�ij (l) + �j (l)) : (8)For all r; jrj = 1 the mapping ~v 7! r 
 ~v 
 r� is a Eulidean 3D rotation[5℄. Thus, in the ase of proessing 3D vetor data the QSMLP performsa dilatation{rotation as weight assoiation. This is also true for the vetorpart of arbitrary quaternioni data. Hene, also then the QSMLP has theadvantage that its parameters are easier to interpret than those of the QMLP.All quaternions with unit norm form the so alled Spin-group, whih is a doubleover of SO(3). The elements of the Spin{group are named spinors, whih iswhere the name QSMLP omes from. We still have do de�ne the ativationfuntion that should be used. The ativation funtions of MLPs are oftensigmoidal ones, among the most popular is � : x 7! 1=(1+ exp(�x)). Based onit the funtion �(x) = �([x℄i) (i 2 f0; : : : ; 3g) (9)was proposed for the QMLP [1℄, whih we will adopt.3.2. QSMLPs are Universal ApproximatorsIn order to show the validity of the setion headline we have to prove thefollowing theorem.Theorem 1 Let X be a ompat subset of IHn . Then there exists a naturalnumber N suh that the spae8<: NXj=1 �j �(( nXi=1 ri 
 xi 
 ri�) + �j)9=; (10)is dense in the spae of all ontinuous funtions from X to IH.Proof In [4℄ the fundamental density theorem for MLPs with sigmoidal ati-vation funtions was proven. A set of quaternioni{valued funtions has theuniversal approximation property, i� it is a universal approximator for any ofthe (real{valued) omponent funtions. The density theorem for the QMLPould be proven in [1℄ by this argument, sine it allows redution to the real{valued ase in [4℄. Thus, we only have to show that at least any projetion[w
x℄i an be written as the �nite sum of spinor multipliations ri
xi
ri�.But, there always exists u 2 IH suh that for all i 2 f0; : : : ; 3g[w 
 x℄i = [w 
 x
w� + u
 x
 u�℄i : (11)Due to the limited available spae we have to omit detailed alulations. 2



3.3. QSMLP Learning AlgorithmFor the sake of simpliity let us onsider a QSMLP with only one hidden layer.Using similar notations as in setion 3 we de�ne at �rst- hidden node ativation and output valueSm(1) :=Xn rnm(1) 
 xn 
 rnm�(1) + �m(1) hm := �(Sm(1)) (12)- output node ativation and output valueSp(2) :=Xm rmp(2) 
 hm 
 rmp�(2) + �p(2) op := �(Sp(2)) : (13)We want to minimize by gradient desent the error funtionE = 12Xp (yp � op)2 ; (14)whereby yp stands for the p-th expeted output value. First, we have to om-pute the weights of the output layer aording torErmp(2) =Xi �E�[rmp(2)℄i : (15)The hain rule applied to eah term of (15) gives�E�[rmp(2)℄i =Xj �E�[Sp(2)℄j �[Sp(2)℄j�[rmp(2)℄i : (16)The partial derivatives of the error funtion E wrt. Sp(2) are given by�E�[Sp(2)℄j = �E�[yp℄j �[yp℄j�[Sp(2)℄j = ([yp℄j � [op℄j) _�([Sp(2)℄j) : (17)Furthermore, with (r0; ~r) := rmp(2) , (q0; ~q) := hm we obtain�[Sp(2)℄�rmp(2) = r(r20q0 + (~r � ~r)q0; r20~q + (~r � ~q)~r + 2r0(~r � ~q)� ~r � ~q � ~r) : (18)Thus, we get the following update rule for the weights of the output layer�rmp(2) = [ (yp � op)� _�(Sp(2))| {z }Æp(2) ℄
 �[Sp(2)℄�rmp(2) ; (19)



whereas� denotes salar multipliation omponent by omponent. The updaterule for the weights of the hidden layer is�rnm(1) = [ (Xp rmp�(2) 
 Æp(2))� _�(Sm(1))| {z }Æm(1) ℄
 �[S(1)m ℄�rnm(1) : (20)The derivative �[S(1)m ℄�rnm(1) is the same as in (18) with (r0; ~r) := rnm(1), (q0; ~q) :=xn. Finally, we have ��p(2) = Æp(2) and ��m(1) = Æm(1) :4. ExperimentsWe onsidered the task of short term predition of the haoti Lorenz attrator.The Lorenz attrator is generated by the system f _x = �(x� y); _y = xz + rx�y; _z = xy � bzg with parameter values � = 10; r = 83 ; b = 28 and starting state(x0; y0; z0) = (0; 1; 0). From the time interval (12s,17s) 1000 points (samplingrate �t = 0:005) were taken, from whih the �rst 250 formed the training setand the last 750 the test set. The predition step rate was set to 8. The setsare shown in Figure 1 below.
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Figure 1: Training set (left) and test set (right)Both a QMLP and QSMLP wit one hidden layer of 6 nodes were trained over10000 epohs. The 3D data was oded in the vetor part of one input andoutput node, respetively. Averaged over 10 trials the QMLP ahieved a MSE(training/test) of 0.005/0.023. Instead, the QSMLP ahieved 0.001/0.0013.Atually, the generalization of the QSMLP was even better than indiatednumerially. This an be seen from Figure 2 by omparing size and the rightloop. No better performane ould be ahieved with either one of the networksby using more hidden nodes. Thus, the QSMLP outperformed the QMLP onthis task due to its ability to model the intrinsi properties of the data.
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Figure 2: Generalization of the QMLP (left) and the QSMLP (right)5. ConlusionWe proposed a novel MLP{type neural network operating in the quaternionalgebra via spinors as propagation funtion, whih we have alled the Quater-nioni Spinor MLP (QSMLP). We believe that this proposed arhiteture ismore suitable for the proessing of 3D vetor data than both the MLP and theQMLP. In a �rst simulation a better performane as the Quaternioni MLP in[1℄ was ahieved already. Future work will go on in evaluating the QSMLP ontasks in the �eld of roboti vision. The property of the QSMLP to have weightsthat ode diretly rigid 3D motions might there show useful, for example toget ontrol parameters immediately.Aknowledgment This work was supported by the Deutshe Forshungsge-meinshaft under grant So-320-2-1.Referenes[1℄ P. Arena, L. Fortuna, G. Musato, and M. G. Xibilia. Neural Networks inMultidimensional Domains. Number 234 in LNCIS. Springer{Verlag, 1998.[2℄ S. Buhholz and G. Sommer. Introdution to Neural Computation in Clif-ford Algebra, hapter 13. G. Sommer (Ed.), Geometri Computing withCli�ord Algebra. Springer{Verlag, 2000 (to appear).[3℄ J. C. K. Chou. Quaternion Kinemati and Dynami Di�erential Equations.IEEE Trans. on Robotis and Automation, 8(1):53{64, 1992.[4℄ G. Cybenko. Approximation by superposition of a sigmoidal funtion.Mathematis of Control, Signals and Systems, 2:303{314, 1989.[5℄ H.-D. Ebbinghaus et al. Numbers. Springer{Verlag, 3rd edition, 1995.[6℄ T. Nitta. A Bak{Propagation Algorithm for Neural Networks Based on3D Vetor Produt. In Proeedings IJCNN'93, pages 589{592, 1993.


