
Quaternioni
 Spinor MLPSven Bu
hholz, Gerald SommerUniversity of Kiel, Department of Computer S
ien
ePreusserstr. 1-9, 24105 Kiel, Germanyfsbh,gsg�ks.informatik.uni-kiel.deAbstra
t. This paper introdu
es a novel quaternion{valued MLP{type network 
alled the Quaternioni
 Spinor MLP (QSMLP). In 
ontrastto another re
ently proposed Quaternioni
 MLP it uses spinors in itspropagation fun
tion. This allows very eÆ
iently the pro
essing of 3Dve
tor data, whi
h is demonstrated by experiments. The QSMLP isproven to be a universal approximator and a learning algorithm for it isderived.1. Introdu
tionThere are a 
ouple of neural ar
hite
tures proposed in the literature to pro
essmultidimensional data. In parti
ular a lot of resear
h was done in the 
omplexdomain [1℄. However, any further extension requires non{basi
 algebrai
 stru
-tures as e.g. Cli�ord Algebras [2℄. A domain of spe
ial interest was also alwaysthat of 3D ve
tor spa
e, as it arises naturally in important appli
ations asroboti
s and 
ontrol theory. Yet, dire
t ar
hite
tures as proposed in [6℄ fail foralgebrai
al reasons [1℄, [2℄. More eÆ
ient and robust is the use of quaternions,whi
h have be
ome very 
ommon in these appli
ations [3℄. Re
ently, in [1℄ aQuaternioni
 MLP (QMLP) was developed. However, this QMLP performsnot in a natural way on 3D ve
tor data. In this paper we propose instead theQuaternioni
 Spinor MLP (QSMLP), whi
h has su
h properties in addition.The paper starts with an introdu
tion to quaternions. The third se
tion isdes
ribing the QSMLP in terms of ar
hite
ture, approximation properties andlearning algorithm. In se
tion 4 experimental results are reported that supportour 
laims on the performan
e of QSMLP vs. QMLP.2. QuaternionsQuaternions are generalized 
omplex numbers of the formq = q0 + q1 i + q2 j + q3 k (1)with q0; q1; q2; q3 2 IR and imaginary units f i; j; kg. The imaginary units of aquaternion behave similar to the imaginary unit of 
omplex numbersi2 = j2 = k2 = �1 : (2)



They 
an be seen as spatial orthogonal ve
tors, sin
e the following relationshold j k = � k j = i k i = � i k = j i j = � j i = k : (3)Thereof, a quaternion 
onsists of a s
alar part q0 and a ve
tor part denoted by~q := q1 i + q2 j + q3 k. The 4{tuple notation of a quaternion is given byq = (q0; q1; q2; q3) = (q0; ~q) : (4)Furthermore, let [q℄i (i 2 f0; : : : ; 3g) denote the i-th proje
tion. Together withthe postulation that (1;~0) should be its identity, multipli
ation of quaternions
 is already fully determined by (2) and (3)q 
 p = (q0 p0 � ~q � ~p; q0 ~p+ p0 ~q + ~q � ~p) : (5)Through this, quaternions be
ome a real asso
iative (but not 
ommutative)division algebra IH := (IR4;+;
). As in the 
ase of 
omplex numbers, thenorm of a quaternion is de�ned via 
onjugation. The 
onjugate of a quaternionis q� := (q0;�~q). The norm of a quaternion is then given by jqj := pq�q.3. The Quaternioni
 Spinor MLPAfter these preliminaries we follow the way outlined in the introdu
tion.3.1. QSMLP Ar
hite
tureLet us start with reviewing brie
y the ar
hite
ture of the MLP and the QMLPto be able to show how the QSMLP di�ers from them. Of 
ourse all namedneural networks have in 
ommon, that they 
onsist of layers of neurons withweighted feed{forward only 
onne
tions between all the neurons of 
onse
utivelayers. More pre
isely, the output of the j-th (non input) neuron in layer l ofan MLP is given by f(Xi w(l)ij � x(l�1)i + �(l)j ) ; (6)where w(l)ij is the weight 
onne
ting the i{th node in layer (l� 1) with the j{thnode in layer l, �j is the appropriate bias and x(l�1)i is the i-th input. Allthese entities are real numbers. The 
hoi
e of the a
tivation fun
tion f will bedis
ussed later on. The QMLP introdu
ed in [1℄ uses quaternioni
 entities andrepla
es the s
alar produ
t by the quaternioni
 produ
tf (Xi wij (l) 
 xi(l�1) + �j(l)) : (7)However, this de�nition makes the main bene�ts of quaternions, namely theoperating on 3D ve
tors and its appli
ations, not easy to use. The multipli
a-tion of a 3D ve
tor ~v := (0; ~v) by a single quaternioni
 weight results not in a



ve
tor again. To over
ome this drawba
k we suggest the QSMLP with neuronsof the form f(Xi rij (l) 
 xi(l�1) 
 r�ij (l) + �j (l)) : (8)For all r; jrj = 1 the mapping ~v 7! r 
 ~v 
 r� is a Eu
lidean 3D rotation[5℄. Thus, in the 
ase of pro
essing 3D ve
tor data the QSMLP performsa dilatation{rotation as weight asso
iation. This is also true for the ve
torpart of arbitrary quaternioni
 data. Hen
e, also then the QSMLP has theadvantage that its parameters are easier to interpret than those of the QMLP.All quaternions with unit norm form the so 
alled Spin-group, whi
h is a double
over of SO(3). The elements of the Spin{group are named spinors, whi
h iswhere the name QSMLP 
omes from. We still have do de�ne the a
tivationfun
tion that should be used. The a
tivation fun
tions of MLPs are oftensigmoidal ones, among the most popular is � : x 7! 1=(1+ exp(�x)). Based onit the fun
tion �(x) = �([x℄i) (i 2 f0; : : : ; 3g) (9)was proposed for the QMLP [1℄, whi
h we will adopt.3.2. QSMLPs are Universal ApproximatorsIn order to show the validity of the se
tion headline we have to prove thefollowing theorem.Theorem 1 Let X be a 
ompa
t subset of IHn . Then there exists a naturalnumber N su
h that the spa
e8<: NXj=1 �j �(( nXi=1 ri 
 xi 
 ri�) + �j)9=; (10)is dense in the spa
e of all 
ontinuous fun
tions from X to IH.Proof In [4℄ the fundamental density theorem for MLPs with sigmoidal a
ti-vation fun
tions was proven. A set of quaternioni
{valued fun
tions has theuniversal approximation property, i� it is a universal approximator for any ofthe (real{valued) 
omponent fun
tions. The density theorem for the QMLP
ould be proven in [1℄ by this argument, sin
e it allows redu
tion to the real{valued 
ase in [4℄. Thus, we only have to show that at least any proje
tion[w
x℄i 
an be written as the �nite sum of spinor multipli
ations ri
xi
ri�.But, there always exists u 2 IH su
h that for all i 2 f0; : : : ; 3g[w 
 x℄i = [w 
 x
w� + u
 x
 u�℄i : (11)Due to the limited available spa
e we have to omit detailed 
al
ulations. 2



3.3. QSMLP Learning AlgorithmFor the sake of simpli
ity let us 
onsider a QSMLP with only one hidden layer.Using similar notations as in se
tion 3 we de�ne at �rst- hidden node a
tivation and output valueSm(1) :=Xn rnm(1) 
 xn 
 rnm�(1) + �m(1) hm := �(Sm(1)) (12)- output node a
tivation and output valueSp(2) :=Xm rmp(2) 
 hm 
 rmp�(2) + �p(2) op := �(Sp(2)) : (13)We want to minimize by gradient des
ent the error fun
tionE = 12Xp (yp � op)2 ; (14)whereby yp stands for the p-th expe
ted output value. First, we have to 
om-pute the weights of the output layer a

ording torErmp(2) =Xi �E�[rmp(2)℄i : (15)The 
hain rule applied to ea
h term of (15) gives�E�[rmp(2)℄i =Xj �E�[Sp(2)℄j �[Sp(2)℄j�[rmp(2)℄i : (16)The partial derivatives of the error fun
tion E wrt. Sp(2) are given by�E�[Sp(2)℄j = �E�[yp℄j �[yp℄j�[Sp(2)℄j = ([yp℄j � [op℄j) _�([Sp(2)℄j) : (17)Furthermore, with (r0; ~r) := rmp(2) , (q0; ~q) := hm we obtain�[Sp(2)℄�rmp(2) = r(r20q0 + (~r � ~r)q0; r20~q + (~r � ~q)~r + 2r0(~r � ~q)� ~r � ~q � ~r) : (18)Thus, we get the following update rule for the weights of the output layer�rmp(2) = [ (yp � op)� _�(Sp(2))| {z }Æp(2) ℄
 �[Sp(2)℄�rmp(2) ; (19)



whereas� denotes s
alar multipli
ation 
omponent by 
omponent. The updaterule for the weights of the hidden layer is�rnm(1) = [ (Xp rmp�(2) 
 Æp(2))� _�(Sm(1))| {z }Æm(1) ℄
 �[S(1)m ℄�rnm(1) : (20)The derivative �[S(1)m ℄�rnm(1) is the same as in (18) with (r0; ~r) := rnm(1), (q0; ~q) :=xn. Finally, we have ��p(2) = Æp(2) and ��m(1) = Æm(1) :4. ExperimentsWe 
onsidered the task of short term predi
tion of the 
haoti
 Lorenz attra
tor.The Lorenz attra
tor is generated by the system f _x = �(x� y); _y = xz + rx�y; _z = xy � bzg with parameter values � = 10; r = 83 ; b = 28 and starting state(x0; y0; z0) = (0; 1; 0). From the time interval (12s,17s) 1000 points (samplingrate �t = 0:005) were taken, from whi
h the �rst 250 formed the training setand the last 750 the test set. The predi
tion step rate was set to 8. The setsare shown in Figure 1 below.
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Figure 1: Training set (left) and test set (right)Both a QMLP and QSMLP wit one hidden layer of 6 nodes were trained over10000 epo
hs. The 3D data was 
oded in the ve
tor part of one input andoutput node, respe
tively. Averaged over 10 trials the QMLP a
hieved a MSE(training/test) of 0.005/0.023. Instead, the QSMLP a
hieved 0.001/0.0013.A
tually, the generalization of the QSMLP was even better than indi
atednumeri
ally. This 
an be seen from Figure 2 by 
omparing size and the rightloop. No better performan
e 
ould be a
hieved with either one of the networksby using more hidden nodes. Thus, the QSMLP outperformed the QMLP onthis task due to its ability to model the intrinsi
 properties of the data.
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Figure 2: Generalization of the QMLP (left) and the QSMLP (right)5. Con
lusionWe proposed a novel MLP{type neural network operating in the quaternionalgebra via spinors as propagation fun
tion, whi
h we have 
alled the Quater-nioni
 Spinor MLP (QSMLP). We believe that this proposed ar
hite
ture ismore suitable for the pro
essing of 3D ve
tor data than both the MLP and theQMLP. In a �rst simulation a better performan
e as the Quaternioni
 MLP in[1℄ was a
hieved already. Future work will go on in evaluating the QSMLP ontasks in the �eld of roboti
 vision. The property of the QSMLP to have weightsthat 
ode dire
tly rigid 3D motions might there show useful, for example toget 
ontrol parameters immediately.A
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