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Abstract—We study the optimization of neural networks with  theory is a priori coordinate independence. We consideria va
Clifford geometric algebra versor and spinor nodes. For tha ety of new multivector node models, their error functions an
purpose important multivector calculus results are introduced. (optimal) weight update rules: Clifford group versor nenwsp

Such nodes are generalizations of real, complex and quateion nitarv conformal versor neurons. homodgeneous conformal
spinor nodes. In particular we consider nodes that can learrall ~ UN"ary Vers urons, 9 us

proper and improper Euclidean transformations with so-caled ~Versor neurons, and weight unitarity by Lagrange multiglie
conformal versors. Thus a single node can correctly compute The a priori invariance gives deep geometric insight anmis|

full 3D screws and rotoinversions with off-origin axis and df-  for easy systematic generalization to even higher dimeasio
origin points of inversion. The latter is a unique property of  gh5065 Based on these results it is also straightforward to

our proposed versor neuron. Computing inversions by ordinay . . . .
real-valued networks is not easily possible due to its noniear J€VIS€ versor (and spinor) MLP back-propagation algorithm

nature. Simulation on learning inversions illustrating these facts
are provided in the paper. Il. GEOMETRIC ALGEBRA

Definition 1 (Clifford geometric algebra)A Clifford geo-
. INTRODUCTION metric algebrag, , is defined by the associative geometric
Qproduct of elements of a quadratic vector spate?, their

algebra domain. Clifford algebras subsume, for example, ti€ar combination and closureg, , includes the field of
real numbers, the complex numbers and the qua‘ternionsr‘i’.ﬂ1I numbers]R and the vector spzi_cRp=‘1_as subspaces. The
Hamilton. In the 1960s David Hestenes started to Stu@)(;ometrlc product of two vectors is defined as

Clif_ford alge_bras as a universal Ial_"nguage for geometry for ab—a-b+aAb, 1)
which he coined the term "Geometric algebra”.

Complex-valued neural networks are a very vital researefhere a - b indicates the standard inner product and the
topic with a lot of interesting applications (see e.g. [1]ivector a A b indicates Grassmann’s antisymmetric outer
Geometrically, complex multiplication can be seen as astramproduct.aAb can be geometrically interpreted as the oriented
formation of the Euclidean plane, namely dilation-rotatio parallelogram area spanned by the vectarsind b. Geomet-
Hence complex-valued neural networks model a point of thig algebras are graded, with grades (subspace dimensions)
plane as a single entity on which geometrical operations aemging from zero (scalars) ta = p + ¢ (pseudoscalarsy-
carried out. A similar behavior for quaternionic-valuedired  volumes).
networks (w.r.t. points and transformations of the Eudide , . .
space), however, requires a particular architecture based The geometric algebrgi; = Gs,o Of three-dimensional

; 3 _ 13,0 P ; ;
so-calledspinor nodes [2]. For quaternions, this spinor archicuclidéan spac&” = R*" has an eight-dimensional basis
tecture turned out to be very useful in applications [3].  °f scalars (grade 0), vectors (grade 1), bivectors (grade 2)

Here we want to extend the known spinor nddesnodes and trivectors (grade 3). Trivectors @y are also referred to

that can compute more powerful transformations. In palicu as griented volumes ? pseudoscglars. Using an orthonormal
we consider nodes that can learn all proper and improp%ff’s's{el’e”e?'} for R” we can write the basis @f; as
Euclidean transformations with so-called conformal vesso
Where we use the termversor for Lipschitz elements of
Clifford groups [8], [12], as explained below. This inclgle In (2) i is the unit trivector, i.e. the oriented volume of a
for example, inversions, which are not easy to compute lit cube. Let us point out, that the even subalgeifa
ordinary real-valued networks because they are nonlinesrG; is isomorphic to the quaterniorid of Hamilton. We
transformations. An interesting and new feature of our nodeerefore call elements of; rotors (shorthand for rotation
operators), because they can be used to implement rotations
1Real and complex neurons can be viewed as spinor nodes too. vectors (and all other elements) @f . The role of quaternion

Clifford neurons is a handle for neurons in the Cliffor

{1,e1,e2,e3,e2e3,e3e1,€1€2,0 = €1€2€3}. 2
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conjugation is naturally taken by reversion

a, € RP? seN.
3
The inverse of a non-null vectoa with respect to the
geometric product is defined as

(ajay...a5)” =a,...aza;, aj,as,...,

_ a
al—

= @
A reflection at a hyperplane with normal vectarc RP-4
can be formulated as

"= _a 'xa.

(®)

A rotation by the anglé in the plane of a unit bivector
can thus be given as the produgt= ab of two vectorsa,

X

a, b, etc. due to (5). This can be generally taken care of by
introducing the grade involution of multivectors€ G, 4

A=) (DM A (9)
k=0

Now we can define [12] the powerful notion of Clifford
(or Lipschitz) group which includes Pin(g), Sping, ¢), and
Spin, (p,q) groups as covering groups of orthogot&b, ¢),
special orthogonabO(p,q) and SO+ (p,q) groups, respec-
tively. A Clifford group is the subgroup ig, , generated by
non-null vectorsx € RP¢ in the following way

b from the i-plane (i.e. geometrically as a sequence of two

reflections) with anglé/2.

Blades of gradé, 0 < k < n = p+q are the outer products

of k vectorsa; (1 < [ < k) and directly represent thg-

dimensional vector subspacksspanned by the set of vectors

a; (1 <1 < k). This subspace representation is also Ca"%\c/jith

outer product null space (OPNS) representation.

x € V=span[a;, 1 <I<k] & xAajAhasA...Na; =0.

(6)

Tpy={megG,, | VxR m~'xm € R}  (10)
For everym € I';, , we havemm < R.
A. Conformal geometric algebré, ;
Given an orthonormal basis fd*!
{e1,e2,e3,€4,e_} (11)
el=es=ej=el =-e’ =1, (12)

we introduce a change of basis for the two additional dimen-

Extracting a certain grade part from the geometric produ%ipns{e+’ e-} by

of two bladesA; and B; has a deep geometric meaning.

One example is the grade- k part of the geometric product

Ay By, that represents the orthogonal complement pin By,
provided thatA,, is contained inB;

A AB; = (ApBi)i—k (7

Because of its geometrical significance this grade partliscca
contraction [9] of A on B;.

Another important grade part of the geometric product
Ay, and B; is the maximum gradé+ k part, also called the
outer product part

Ar N By = (A Bp) 14k (8)

eO:%(ejg—i—e_)7 € =€_ —e,. (13)
The vectorsey ande., areisotropic vectors, i.e.
el=¢e? =0, (14)
and have inner and outer products of
e e = —1, E=exNey=eyNe_. (15)
%e further have the following useful relationships
el = —ep, Fey =¢€p, el = e,
Fey = —€o, E*=1. (16)

If A, A B is non-zero it represents the union of the disjoint !!l. GEOMETRIC OBJECTS IN CONFORMAL GEOMETRIC

(except for the zero vector) subspaces represented;bgnd
B.

The geometric algebrag, i ,+1 are of special interest
and are called conformal geometric algebras. One reason

that all orthogonal transformation group(p, q) of vector

spaceR?-? are cases of Clifford (or Lipschitz) groups (define%
below) of these spaces. Conformal transformation groups

C(p,q) preserve inner products (angles) of vectorsRif?
up to a change of scale. Now the conformal grau, ¢) is
isomorphic to the orthogonal grodp(p+1, ¢+1). The metric

affine group (consisting of orthogonal transformations and
translations) ofR?-? is a special subgroup (specified below)Nherep cR?

of the orthogonal groug)(p + 1,¢ + 1), and can thus be
implemented as a Clifford group i6ip+1,4-+1-

ALGEBRA
A. Points, point pairs, circles and spheres

Apart from the group theoretic reasons explained above,
h& conformal geometric algebré, ; provides us with a
model [8], [9], [10] of Euclidean geometry, which has a num-
er of computational advantages. The basic geometric bjec
conformal geometric algebra are homogeneous conformal
points given by

1
P =p+5p’es + e,
,p = \/pP2. The+eq term shows that we include
projective geometry. The second termip2e,, ensures, that
conformal points are isotropic vectors

(17)

Combining several reflections leads to an overall sign (par-

ity) for odd and even numbers of (reflection plane) vectors
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A point pair is conformally represented (in OPNS) by The bracketg...) in Lemma 1 mean the scalar part of the
enclosed multivectofX ~1A) = (X ~14)y = X ~!x A. Based
on Lemma 1 we get the following theorem [6].

The conformal outer product null space spanned by thr¢georem 1. For any two constant multivectors, B € G(I)
conformal points is a Euclidean sphere in 2D, i.e. a circle gng 4’ — XY AX ! we have

Pp:Pl/\PQ. (19)

Clircle = Py N\ Py \ Ps. (20) 8X<XAXle> :ax<A/B>

The conformal outer product null space spanned by four = Puubspace(X '[A'B — BA']). (28)
conformal points is a 3D Euclidean sphere An alternative form of Theorem 1 is the following corollary.

Sphere = PLAPy NP3 APy (21) " Corollary 1. For any two constant multivectors, B ¢ G(I)

B. Flat objects of flat points, lines, planes and the 5D spa@d A’ = XAX ™!, B” = X~'BX we have

4,1
R _ | Ox (A'B) = x (AB") = dx (B" A)

In the conforma_l r(_ap_resen_tatlons of circles (20) and_ sphere = Prupspace([AB” — B"A]X V). (29)
(21) the point at infinitye., is not excluded. Indeed if one
of the points is at infinity, we get conformal lines as flatténe V. CONFORMAL GEOMETRIC ALGEBRA(VERSOR)
circles passing through infinity NEURONS

Line = Py A Py A€o = Pp A e, (22) As mentioned in the introduction, a quaternion spinor
neuron (QSN) is excellent for implementing rotations in 3D

and conformal planes as spheres passing through infinity space. Quaternions are a subalgebra of the larger geometric
algebrag(R*1!). This algebra contains the conformal model of
Euclidean geometry which allows to implement rotoinvensio
The second form clearly shows the intimate relationship @#lias rotoreflections), screw motions, dilations, anahgxeer-
point pairs with lines (circles with planes). In a sense a$iions in Euclidean space in a very analogous way to rotations
geometric properties of a line (plane) are already encodedby general versor transformations [9], [14]. These trans-
the wedge product of two (three) conformal points of the lin€rmations include therefore reflections at arbitrary pin

Plane = Py N P, AN P3 N\ ey = Clircle N ex. (23)

(plane). rotations around arbitrary axis, translations, centrakbesions
Consequently one can further introduce two more flattenéer contractions), and inversions relative to any pointpirese.
objects, Neural networks with these nodes will therefore be ideally
P A eq, (24) suited to learn these transformations with high accurad; an
efficiency.
a (flat) finite—infinite point pair, and Conformal versord” describe in conformal Clifford group
—i,E = Sphere A e, (25) [12] representations the above mentioned transformations

of arbitrary conformal geometric object multivecto’s €
a 5D pseudoscalar proportional to the 5D unit pseudoscadaiR*+1:1) of section IlI
I = iE representing the (flat) 5D conformal spaké!, i.e.

I __ vyr—1
the embedded (flat) 3D Euclidean spaé X'=(-1)"V XV, (30)
IV. | MPORTANT MULTIVECTOR CALCULUS Vev?git.?e versdiis a geometric product of invertiblevectors
An important result of multivector differential calculus i e noW introduce a neuron that extends the QSN and is a
given in Proposition 43 of [4] (see also [5]) special instance of a Clifford neuron [7]. Hence the new type

(A 0x)X = Ox (X % A) = Paupspace(A), (26) of neuron is_characterized by a two-sided multiplication of
a single multivector weight. Aonformal versor(transforma-
where X = F(X) is the identity function on some lineartion) neuron(CVN) with input multivectorsX € G(R3*+1:1),
subspace ofG(I) of dimensiond, and Pypspace(A) is the weight versorsiv € G(R3TH1), and multivector thresholds
projectior? into this d—dimensional subspace &f(I). I is © e G(R3**!) computes
the pseudoscalar of the geometric alge@i(d) = G(RP:?).

_ w —1
We obtain therefore the following lemma [6]. Y= (=D)"WXW+6, (31)
Lemma 1. For any constant multivectod € G(I) wherew represents the number of vector factors (parity) in
W. The usual norm-type error function is associated with the
Ox (X' A) = — Pupspace(X TAX ). (27) CVN, compare eq. (39). Deriving a coordinate independent

2please note that this projection is a natural result of fféation, just 3please note that the overall sign of a conformal entity daesnfluence
as differentiation of a curve leads to the concept of tanggeneralized to the representation of the Euclidean geometric object irstiprg just like in
tangent space in differential geometry). projective geometry.
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weight update rule for the CVN requires to formulate thioerr  Using Corollary 1 we get for the the weight multivector
function coordinate free as in (40). A necessary preretguisterivative of the full conformal error function (41)
is the socalledprincipal involution The principal involution w1
of the basis vectors (11) is defined as —0w Ec =Psw ([error(—1)"W ™ XW
—(-)*W ' XWerror|W ). (42)
ey =e;, €3 =ey, €3 =eg, a:e-i-a e_=—e_, (32)
The concise form of (42) is suitable for deriving optimal

in (11). By linearity the principal involution of any vector

X € R3+11 s AW = —n Ow E¢, 0<nekR (43)

X —Xyie; + Xoes + Xses + Xou2e0+ Xoren.. (33) The simple modificatiodV” — W’ = W + AW does not
ensure that théV”’ is again a versor. In order to ensure this
The principal involution of a versor is defined as the priatip in practice versor composition techniques like in [15] may b
involution of its vector factors followed by reversion ofeth necessary.
order of all vector factors The optimal value of the constant is related to the
Hesse matrix ofE.. For Clifford neurons with one-sided
multiplication the optimal value is [7], [13]

1

pt = ——, 44
All multivectors are linear combinations of blades, and all lopt Amaz (44)

blades are versors. Linearity allows to extend the defmitiQ/vhere)\,,,m is the biggest eigenvalue of the Hesse matrix of
of the principal involution to arbitrary conformal multie®rs  the neuron under consideration. For CVN neurons the Hesse
[11]. The principal involution is an anti-involution matrix may be invariantly computed as the matrix of all seton

X - X, XY -7 X, VX,Y € GRMLY). (35) order multivector differentials [4], [5]

The principal involution does not change the grade of a mul- (A% 0w)(B * 0w ) Ec, (45)

tivector expression, grade extraction and principal iatioh  where forA and B all basis blades of the weight subspace of
commute therefore G(R*') need to be inserted.

ajaz...ar =ay...as ay,
34+1,1
al,ag,...,akERJr', kGN(). (34)

(X)), = (X )k, VI. VARIANTS OF THE CONFORMAL VERSOR NEURON

VX e GR¥HY), VEeNp,0<k<5  (36)  The weight dependence of (42) is more complicated than
Scalars are invariant under the principal involution for the QSN [7].' One possibility for simplification would be
to work with unitary versors.

a = q, Yo € R. (37) .
A. Unitary conformal versor neuron

We therefore get the useful identities Clifford group versors/ have the following property [12]

(XY) =(¥X) = (Y X) = (YX) = (X7) = (VX)

, VV =VV eR, (46)
VXY € GR3TH). (38)

whereV indicates theeverseof V, i.e. reversing the order of
The use of the principal involution has the distinct advgataall vector factors ofV/. It is therefore possible taormalize
that the scalar product of any multivectsre G(R3*1) with  these versors with a real factor, such that

its principal involutionX € G(R3*+1:1) is positive definite: ~ -
P P G( Jisp VV =VV =41, 47

XX)=(XX)>0 XX)=0& X =0. 39
< )= )20, < ) < (39) which corresponds to restricting the versors to membergeof t

We therefore can rewrite the conformal error functionormalized subgroup of the Clifford group, called Pin group

(norm) of a CVN as As shown explicitly in Table 16.1 of [9], all versors in
1 the conformal model of 3D Euclidean geometry describing
Ec = §<67“7“07“ error), error =D =Y,  (40) reflections at planes, spheres and points, rotations atéoTss,

. ) scaling and transversions can easily be brought into this fo
where D € G(R*"!:1) represents a target output multivectog it

for the CVN calculation. o
Inserting (31) the conformal error function becomes VV =VV =+L (48)

1 Ay . Ay We therefore consider thenitary conformal versor neuron
Ec=={((D—-0)(D—-0))—(-1)*W'XW(D -6 .
© 2<( ) )= (=1 ( % (UCN) calculation

1 _ — —_— —~
+ 5 (W XWIW=IXW). 41) Yy = (—)*wIXW+e,  WW=WW=+1. (49)
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with error function (41) again, for which the weight multore

tor derivative of £ then reads —wi/th Subbspace projection
o N N, - - -w/o subspace projection |

—OwEy = Psw ((—1)’“’67“7“07“ WX + (—1)Verror WX) ) 25-1 '

(50) 200 |1
Compared to (42) the weight dependence -efy £y is w
greatly simplified in (50). For rotors in the conformal model = 7 '
(rotations, translations, scaling and transversionsptdy is 10l )
even and therefore-1)¥ = 1. i

The concise result of (50) makes it very suitable for devel- shlt
oping optimal weight update rules for neural networks with k
UCN nodes. In practice the unitarity of the weights can be 0 L, - .
secured in iterative updates by norming the updated weight 0 %0 100150 Engghs 250 300 350 400
Wi =W + AW with
Wy Fig. 1. Learning curves for the CVN. See text for details.

W, — (51)

i)

In the conformal model it izery importantto note that as a
B. Homogeneous conformal versor neuron

result of (15)—ey is reciprocal toe,, and vice versa.
Another way to construct a conformal versor node, would For example if only rotations around the origin are consid-

be to make both the node calculatinand the error function ered the 4D rotor We|ght Subspace (isomorphidﬂﬂbhag the
calculationE'; homogeneous in the versor weighis in the pasis

following way:

—~ —~ 1,6 ,€93,€ . 58
Y =(-1)"WXW+ WWe, (52) {1,e12,e23,€31} (58)

If only translations are considered the 7D translator weigh

The error function can then be defined as subspace is spanned [6] by

1 —~
Ey = §<€7”707” erTor), error =WWD -Y. (53) (1,100, €260, €560, ©1€0, €260, €3¢0}, (59)
where D € G(R*1-") represents a target output mMUltivectofynere o), e, eseo Need to be included as the reciprocal
for thehomogeneous conformal versor neu(tCN) calcula- i actors ofeje... ere. €30
. . o0y o0y oo
tion, anderror the homogeneous conformal error multivector. If rotor and translator weights are required to be combined

Multivector weight derivation of (53) results in as so-called motor weights we need the 12D weight subspace
— OwEy = —2W <err0r(D — ®)>

{17 €12, €23,€31,€1€x, €28, €36,

+ Psw ((—1)“’6/7:7\“?)/7" WX+ (—1)“error W/X) . (54) e1ep, €2€0, €3€0, €123€0, €123€cc |- (60)
C. Weight unitarity by Lagrange multiplier VIII. SIMULATION RESULTS

It would also be possible not to assume unitary weights, The CVN allows to compute a variety of geometrical trans-
but to add the constraint vialaagrange multiplier[16] to the formation as outlined before. In the following we reportuks
conformal versor error function: for sphere inversions. This choice has been made because all

1 — conformal transformations can be expressed by combination

By — Eu + §>‘(1 - (Ww)?), (55)  of inversions. Our setup was as follows. The sphere (21) with

with constant\ € R. Thendy, E of (50) would change to center[0 1 — 1].T and radiust ha; been chosen as inversion
o sphere. Ten points have been uniformly sampled from the unit

—OwEy — —0w Ey + 2A\W (WW). (56) cube. Their conformal embedding (17) constituted the input

VII. THE PROJECTIONPsy INTO THE WEIGHT SUBSPACE traln_lng sgt. The oqtput tr_ammg_ set then resulted by werso
o i ) multiplication (30) with the inversion sphere. A test ses$ nat
Care must be taken for the projectiéiy, into the weight peen generated because the CVN is able to learn inversions

subspace, because for calculating this projection thepses oy 4ty The CVN was trained by batch learning (with leagnin
under consideration needs to both have a blade basis an,dc.ltg77 = 0.005) with and without subspace projection. The

reciprocal blade basis [4], [5], [6] results are shown in Fig. 1.

Pew (A) = ZGJ<GJA>a (57 It can be seen there that subspace projection is not needed
for convergence. Of course, convergence is much faster with
where thea; constitute the subspace blade basis andathe subspace projection. In that case the MSE dropped below

the correspondinteciprocalblade basis of the same subspaca0~1° after400 epochs, which means that indeed the inversion
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sphere has been perfectly learned. Without subspace projecA single node can therefore learn the transformation of a
tion, however, MSE after 400 epochs was 019290 with whole object by adapting its multivector weight versor. S hi
a weight representing a sphere having radis9 and center has been demonstrated experimentally for inversions. ietyar

[0.0632 — 0.9099 — 0.96479]T.

of nodes can be designed. It is expected that they will give

For comparison, we also tested a linear network andrige to powerful networks with interesting applications.

real-valued multilayer perceptron (MLP) on the above task.
None of these networks can learn inversions exactly. Hence
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embedding) approximation provided by the linear network ha
a MSE of 0.0024 (training) and of 0.1224 (test), respedctivel
Trained on conformal embedded 5D points the errors a }
0.0051 and 0.0629, respectively.

MLPs are universal approximators. This means that trainintl
performance alone is not so interesting. The critical iSsue
generalization ability. In fact, a MLP with one hidden layer(4
of only four sigmoidal nodes has been able to learn the 3D
training set with MSE belowl0~%. However, corresponding [
MSE on test set is huge 0.0965 in this case. Best teg
performance with MSE of 0.0198 has been achieved using [@]
hidden nodes. Using more hidden nodes resulted in ovegfittin
Using conformal embedded data renders the task more difficyg;
for the MLP. The best test performance with MSE of 0.0776
has been achieved with 9 hidden nodes. Hence the task w,
not satisfactorily solvable using a MLP. Of course, the very
small training set is a clear disadvantage for the MLP. Note
that it is not possible in any case to derive the parameters[%ﬂ]
the inversion sphere from the MLP weights. [11]

IX. CONCLUSION [12]

We have introduced the concept of conformal versor neys
ron. These neurons have conformal geometric algebra versor
weights. The input variables of the conformal versor nesron
are geometric objects expressed by conformal multivectqﬁ]
(points, point pairs, circles, spheres, flat points, lindanes
and the 5D flat space). The versor weights correspond to
proper and improper Euclidean transformations, includir[gs]

scaling and transversion, and the like.
[16]
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