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Abstract—We study the optimization of neural networks with
Clifford geometric algebra versor and spinor nodes. For that
purpose important multivector calculus results are introduced.
Such nodes are generalizations of real, complex and quaternion
spinor nodes. In particular we consider nodes that can learnall
proper and improper Euclidean transformations with so-called
conformal versors. Thus a single node can correctly compute
full 3D screws and rotoinversions with off-origin axis and off-
origin points of inversion. The latter is a unique property of
our proposed versor neuron. Computing inversions by ordinary
real-valued networks is not easily possible due to its nonlinear
nature. Simulation on learning inversions illustrating these facts
are provided in the paper.

I. I NTRODUCTION

Clifford neurons is a handle for neurons in the Clifford
algebra domain. Clifford algebras subsume, for example, the
real numbers, the complex numbers and the quaternions of
Hamilton. In the 1960s David Hestenes started to study
Clifford algebras as a universal language for geometry for
which he coined the term ”Geometric algebra”.

Complex-valued neural networks are a very vital research
topic with a lot of interesting applications (see e.g. [1]).
Geometrically, complex multiplication can be seen as a trans-
formation of the Euclidean plane, namely dilation-rotation.
Hence complex-valued neural networks model a point of the
plane as a single entity on which geometrical operations are
carried out. A similar behavior for quaternionic-valued neural
networks (w.r.t. points and transformations of the Euclidean
space), however, requires a particular architecture basedon
so-calledspinor nodes [2]. For quaternions, this spinor archi-
tecture turned out to be very useful in applications [3].

Here we want to extend the known spinor nodes1 to nodes
that can compute more powerful transformations. In particular
we consider nodes that can learn all proper and improper
Euclidean transformations with so-called conformal versors.
Where we use the termversor for Lipschitz elements of
Clifford groups [8], [12], as explained below. This includes,
for example, inversions, which are not easy to compute by
ordinary real-valued networks because they are nonlinear
transformations. An interesting and new feature of our node

1Real and complex neurons can be viewed as spinor nodes too.

theory is a priori coordinate independence. We consider a vari-
ety of new multivector node models, their error functions and
(optimal) weight update rules: Clifford group versor neurons,
unitary conformal versor neurons, homogeneous conformal
versor neurons, and weight unitarity by Lagrange multipliers.
The a priori invariance gives deep geometric insight and allows
for easy systematic generalization to even higher dimensional
spaces. Based on these results it is also straightforward to
devise versor (and spinor) MLP back-propagation algorithms.

II. GEOMETRIC ALGEBRA

Definition 1 (Clifford geometric algebra). A Clifford geo-
metric algebraGp,q is defined by the associative geometric
product of elements of a quadratic vector spaceRp,q, their
linear combination and closure.Gp,q includes the field of
real numbersR and the vector spaceRp,q as subspaces. The
geometric product of two vectors is defined as

ab = a · b + a ∧ b, (1)

where a · b indicates the standard inner product and the
bivector a ∧ b indicates Grassmann’s antisymmetric outer
product.a∧b can be geometrically interpreted as the oriented
parallelogram area spanned by the vectorsa andb. Geomet-
ric algebras are graded, with grades (subspace dimensions)
ranging from zero (scalars) ton = p + q (pseudoscalars,n-
volumes).

The geometric algebraG3 = G3,0 of three-dimensional
Euclidean spaceR3 = R3,0 has an eight-dimensional basis
of scalars (grade 0), vectors (grade 1), bivectors (grade 2)
and trivectors (grade 3). Trivectors inG3 are also referred to
as oriented volumes or pseudoscalars. Using an orthonormal
basis{e1, e2, e3} for R3 we can write the basis ofG3 as

{1, e1, e2, e3, e2e3, e3e1, e1e2, i = e1e2e3}. (2)

In (2) i is the unit trivector, i.e. the oriented volume of a
unit cube. Let us point out, that the even subalgebraG+

3

of G3 is isomorphic to the quaternionsH of Hamilton. We
therefore call elements ofG+

3 rotors (shorthand for rotation
operators), because they can be used to implement rotationsof
vectors (and all other elements) ofG3 . The role of quaternion
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conjugation is naturally taken by reversion

(a1a2 . . .as)
∼ = as . . .a2a1, a1,a2, . . . ,as ∈ Rp,q, s ∈ N.

(3)
The inverse of a non-null vectora with respect to the

geometric product is defined as

a−1 =
a

a2
. (4)

A reflection at a hyperplane with normal vectora ∈ Rp,q

can be formulated as

x′ = −a−1xa. (5)

A rotation by the angleθ in the plane of a unit bivectori
can thus be given as the productR = ab of two vectorsa,
b from the i-plane (i.e. geometrically as a sequence of two
reflections) with angleθ/2.

Blades of gradek, 0 ≤ k ≤ n = p+q are the outer products
of k vectorsal (1 ≤ l ≤ k) and directly represent thek-
dimensional vector subspacesV spanned by the set of vectors
al (1 ≤ l ≤ k). This subspace representation is also called
outer product null space (OPNS) representation.

x ∈ V = span[al, 1 ≤ l ≤ k] ⇔ x∧a1 ∧a2 ∧ . . .∧ak = 0.
(6)

Extracting a certain grade part from the geometric product
of two bladesAk andBl has a deep geometric meaning.

One example is the gradel−k part of the geometric product
AkBl, that represents the orthogonal complement ofAk in Bl,
provided thatAk is contained inBl

Ak Bl = 〈AkBl〉l−k (7)

Because of its geometrical significance this grade part is called
contraction [9] ofAk on Bl.

Another important grade part of the geometric product of
Ak andBl is the maximum gradel + k part, also called the
outer product part

Ak ∧ Bl = 〈AkBl〉l+k. (8)

If Ak ∧ Bl is non-zero it represents the union of the disjoint
(except for the zero vector) subspaces represented byAk and
Bl.

The geometric algebrasGp+1,q+1 are of special interest
and are called conformal geometric algebras. One reason is
that all orthogonal transformation groupsO(p, q) of vector
spacesRp,q are cases of Clifford (or Lipschitz) groups (defined
below) of these spaces. Conformal transformation groups
C(p, q) preserve inner products (angles) of vectors inRp,q

up to a change of scale. Now the conformal groupC(p, q) is
isomorphic to the orthogonal groupO(p+1, q+1). The metric
affine group (consisting of orthogonal transformations and
translations) ofRp,q is a special subgroup (specified below)
of the orthogonal groupO(p + 1, q + 1), and can thus be
implemented as a Clifford group inGp+1,q+1.

Combining several reflections leads to an overall sign (par-
ity) for odd and even numbers of (reflection plane) vectors

a, b, etc. due to (5). This can be generally taken care of by
introducing the grade involution of multivectorsA ∈ Gp,q

Â =

n∑

k=0

(−1)k〈A〉k. (9)

Now we can define [12] the powerful notion of Clifford
(or Lipschitz) group which includes Pin(p, q), Spin(p, q), and
Spin+(p, q) groups as covering groups of orthogonalO(p, q),
special orthogonalSO(p, q) and SO+(p, q) groups, respec-
tively. A Clifford group is the subgroup inGp,q generated by
non-null vectorsx ∈ Rp,q in the following way

Γp,q = {m ∈ Gp,q | ∀x ∈ Rp,q, m̂−1xm ∈ Rp,q} (10)

For everym ∈ Γp,q we havemm̃ ∈ R.

A. Conformal geometric algebraG4,1

Given an orthonormal basis forR4,1

{e1, e2, e3, e+, e−} (11)

with
e2
1 = e2

2 = e2
3 = e2

+ = −e2
−

= 1, (12)

we introduce a change of basis for the two additional dimen-
sions{e+, e−} by

e0 =
1

2
(e+ + e−), e∞ = e− − e+. (13)

The vectorse0 ande∞ are isotropic vectors, i.e.

e2
0 = e2

∞
= 0, (14)

and have inner and outer products of

e0 · e∞ = −1, E = e∞ ∧ e0 = e+ ∧ e−. (15)

We further have the following useful relationships

e0E = −e0, Ee0 = e0, e∞E = e∞,

Ee∞ = −e∞, E2 = 1. (16)

III. G EOMETRIC OBJECTS IN CONFORMAL GEOMETRIC

ALGEBRA

A. Points, point pairs, circles and spheres

Apart from the group theoretic reasons explained above,
the conformal geometric algebraG4,1 provides us with a
model [8], [9], [10] of Euclidean geometry, which has a num-
ber of computational advantages. The basic geometric objects
in conformal geometric algebra are homogeneous conformal
points given by

P = p +
1

2
p2e∞ + e0, (17)

wherep ∈ R3, p =
√

p2. The+e0 term shows that we include
projective geometry. The second term+ 1

2
p2e∞ ensures, that

conformal points are isotropic vectors

P 2 = PP = P · P = 0. (18)
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A point pair is conformally represented (in OPNS) by

Pp = P1 ∧ P2. (19)

The conformal outer product null space spanned by three
conformal points is a Euclidean sphere in 2D, i.e. a circle

Circle = P1 ∧ P2 ∧ P3. (20)

The conformal outer product null space spanned by four
conformal points is a 3D Euclidean sphere

Sphere = P1 ∧ P2 ∧ P3 ∧ P4. (21)

B. Flat objects of flat points, lines, planes and the 5D space
R4,1

In the conformal representations of circles (20) and spheres
(21) the point at infinitye∞ is not excluded. Indeed if one
of the points is at infinity, we get conformal lines as flattened
circles passing through infinity

Line = P1 ∧ P2 ∧ e∞ = Pp ∧ e∞, (22)

and conformal planes as spheres passing through infinity

Plane = P1 ∧ P2 ∧ P3 ∧ e∞ = Circle ∧ e∞. (23)

The second form clearly shows the intimate relationship of
point pairs with lines (circles with planes). In a sense all
geometric properties of a line (plane) are already encoded in
the wedge product of two (three) conformal points of the line
(plane).

Consequently one can further introduce two more flattened
objects,

P ∧ e∞, (24)

a (flat) finite–infinite point pair, and

−isE = Sphere ∧ e∞, (25)

a 5D pseudoscalar proportional to the 5D unit pseudoscalar
I = iE representing the (flat) 5D conformal spaceR4,1, i.e.
the embedded (flat) 3D Euclidean spaceR3.

IV. I MPORTANT MULTIVECTOR CALCULUS

An important result of multivector differential calculus is
given in Proposition 43 of [4] (see also [5])

(A ∗ ∂X)X = ∂̇X(Ẋ ∗ A) = Psubspace(A), (26)

where X = F (X) is the identity function on some linear
subspace ofG(I) of dimensiond, and Psubspace(A) is the
projection2 into this d−dimensional subspace ofG(I). I is
the pseudoscalar of the geometric algebraG(I) = G(Rp,q).

We obtain therefore the following lemma [6].

Lemma 1. For any constant multivectorA ∈ G(I)

∂X〈X−1A〉 = −Psubspace(X
−1AX−1). (27)

2Please note that this projection is a natural result of differentiation, just
as differentiation of a curve leads to the concept of tangent(generalized to
tangent space in differential geometry).

The brackets〈. . .〉 in Lemma 1 mean the scalar part of the
enclosed multivector〈X−1A〉 = 〈X−1A〉0 = X−1∗A. Based
on Lemma 1 we get the following theorem [6].

Theorem 1. For any two constant multivectorsA, B ∈ G(I)
and A′ = XAX−1 we have

∂X〈XAX−1B〉 = ∂X〈A′B〉

= Psubspace(X
−1[A′B − BA′]). (28)

An alternative form of Theorem 1 is the following corollary.

Corollary 1. For any two constant multivectorsA, B ∈ G(I)
and A′ = XAX−1, B′′ = X−1BX we have

∂X〈A′B〉 = ∂X〈AB′′〉 = ∂X〈B′′A〉

= Psubspace([AB′′ − B′′A]X−1). (29)

V. CONFORMAL GEOMETRIC ALGEBRA(VERSOR)
NEURONS

As mentioned in the introduction, a quaternion spinor
neuron (QSN) is excellent for implementing rotations in 3D
space. Quaternions are a subalgebra of the larger geometric
algebraG(R4,1). This algebra contains the conformal model of
Euclidean geometry which allows to implement rotoinversions
(alias rotoreflections), screw motions, dilations, and transver-
sions in Euclidean space in a very analogous way to rotations
by general versor transformations [9], [14]. These trans-
formations include therefore reflections at arbitrary planes,
rotations around arbitrary axis, translations, central expansions
(or contractions), and inversions relative to any point or sphere.
Neural networks with these nodes will therefore be ideally
suited to learn these transformations with high accuracy and
efficiency.

Conformal versorsV describe in conformal Clifford group
[12] representations the above mentioned transformations
of arbitrary conformal geometric object multivectorsX ∈
G(R3+1,1) of section III

X ′ = (−1)vV −1XV, (30)

where the versor3 is a geometric product ofv invertiblevectors
∈ R3+1,1.

We now introduce a neuron that extends the QSN and is a
special instance of a Clifford neuron [7]. Hence the new type
of neuron is characterized by a two-sided multiplication of
a single multivector weight. Aconformal versor(transforma-
tion) neuron(CVN) with input multivectorsX ∈ G(R3+1,1),
weight versorsW ∈ G(R3+1,1), and multivector thresholds
Θ ∈ G(R3+1,1) computes

Y = (−1)wW−1XW + Θ, (31)

wherew represents the number of vector factors (parity) in
W . The usual norm–type error function is associated with the
CVN, compare eq. (39). Deriving a coordinate independent

3Please note that the overall sign of a conformal entity does not influence
the representation of the Euclidean geometric object in question, just like in
projective geometry.
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weight update rule for the CVN requires to formulate this error
function coordinate free as in (40). A necessary prerequisite
is the socalledprincipal involution. The principal involution
of the basis vectors (11) is defined as

e1 = e1, e2 = e2, e3 = e3, e+ = e+, e− = −e−, (32)

i.e. we always multiply with the sign of the quadratic form
in (11). By linearity the principal involution of any vector
X ∈ R3+1,1 is

X =X1e1 + X2e2 + X3e3 + X∞2e0 + X0

1

2
e∞. (33)

The principal involution of a versor is defined as the principal
involution of its vector factors followed by reversion of the
order of all vector factors

a1a2 . . . ak = ak . . . a2 a1,

a1, a2, . . . , ak ∈ R3+1,1, k ∈ N0. (34)

All multivectors are linear combinations of blades, and all
blades are versors. Linearity allows to extend the definition
of the principal involution to arbitrary conformal multivectors
[11]. The principal involution is an anti-involution

X = X, XY = Y X, ∀X, Y ∈ G(R3+1,1). (35)

The principal involution does not change the grade of a mul-
tivector expression, grade extraction and principal involution
commute therefore

〈X〉k = 〈X 〉k,

∀X ∈ G(R3+1,1), ∀k ∈ N0, 0 ≤ k ≤ 5. (36)

Scalars are invariant under the principal involution

α = α, ∀α ∈ R. (37)

We therefore get the useful identities

〈XY 〉 =〈Y X〉 = 〈Y X〉 = 〈Y X 〉 = 〈XY 〉 = 〈Y X〉,

∀X, Y ∈ G(R3+1,1). (38)

The use of the principal involution has the distinct advantage
that the scalar product of any multivectorX ∈ G(R3+1,1) with
its principal involutionX ∈ G(R3+1,1) is positive definite:

〈XX〉 = 〈XX〉 ≥ 0, 〈XX〉 = 0 ⇔ X = 0. (39)

We therefore can rewrite the conformal error function
(norm) of a CVN as

EC =
1

2
〈error error〉, error = D − Y, (40)

whereD ∈ G(R3+1,1) represents a target output multivector
for the CVN calculation.

Inserting (31) the conformal error function becomes

EC =
1

2
〈(D − Θ)(D − Θ)〉 − 〈(−1)wW−1XW (D − Θ)〉

+
1

2
〈W−1XWW−1XW 〉. (41)

Using Corollary 1 we get for the the weight multivector
derivative of the full conformal error function (41)

−∂W EC =PSW

(
[error(−1)wW−1XW

−(−1)wW−1XWerror]W−1
)
. (42)

The concise form of (42) is suitable for deriving optimal
weight update rules for neural networks with CVN nodes

△W = −η ∂W EC , 0 < η ∈ R. (43)

The simple modificationW → W ′ = W + △W does not
ensure that theW ′ is again a versor. In order to ensure this
in practice versor composition techniques like in [15] may be
necessary.

The optimal value of the constantη is related to the
Hesse matrix ofEC . For Clifford neurons with one–sided
multiplication the optimal value is [7], [13]

ηopt =
1

λmax

, (44)

whereλmax is the biggest eigenvalue of the Hesse matrix of
the neuron under consideration. For CVN neurons the Hesse
matrix may be invariantly computed as the matrix of all second
order multivector differentials [4], [5]

(A ∗ ∂W )(B ∗ ∂W )EC , (45)

where forA andB all basis blades of the weight subspace of
G(R4,1) need to be inserted.

VI. VARIANTS OF THE CONFORMAL VERSOR NEURON

The weight dependence of (42) is more complicated than
for the QSN [7]. One possibility for simplification would be
to work with unitary versors.

A. Unitary conformal versor neuron

Clifford group versorsV have the following property [12]

V Ṽ = Ṽ V ∈ R, (46)

whereṼ indicates thereverseof V , i.e. reversing the order of
all vector factors ofV . It is therefore possible tonormalize
these versors with a real factor, such that

V Ṽ = Ṽ V = ±1, (47)

which corresponds to restricting the versors to members of the
normalized subgroup of the Clifford group, called Pin group.

As shown explicitly in Table 16.1 of [9], all versors in
the conformal model of 3D Euclidean geometry describing
reflections at planes, spheres and points, rotations, translations,
scaling and transversions can easily be brought into this form
with

V Ṽ = Ṽ V = +1. (48)

We therefore consider theunitary conformal versor neuron
(UCN) calculation

Y = (−1)wW−1XW + Θ, WW̃ = W̃W = +1. (49)
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with error function (41) again, for which the weight multivec-
tor derivative ofE then reads

−∂W EU = PSW

(
(−1)wẽrror W̃ X̃ + (−1)werror W̃X

)
.

(50)

Compared to (42) the weight dependence of−∂W EU is
greatly simplified in (50). For rotors in the conformal model
(rotations, translations, scaling and transversions) theparity is
even and therefore(−1)w = 1.

The concise result of (50) makes it very suitable for devel-
oping optimal weight update rules for neural networks with
UCN nodes. In practice the unitarity of the weights can be
secured in iterative updates by norming the updated weight
W1 = W + △W with

W1 −→
W1√
|W1W̃1|

. (51)

B. Homogeneous conformal versor neuron

Another way to construct a conformal versor node, would
be to make both the node calculationY and the error function
calculationEH homogeneous in the versor weightsW in the
following way:

Y = (−1)wW̃XW + W̃WΘ, (52)

The error function can then be defined as

EH =
1

2
〈error error〉, error = W̃WD − Y. (53)

whereD ∈ G(R3+1,1) represents a target output multivector
for thehomogeneous conformal versor neuron(HCN) calcula-
tion, anderror the homogeneous conformal error multivector.

Multivector weight derivation of (53) results in

− ∂W EH = −2W̃
〈
error(D − Θ)

〉

+ PSW

(
(−1)wẽrror W̃ X̃ + (−1)werror W̃X

)
. (54)

C. Weight unitarity by Lagrange multiplier

It would also be possible not to assume unitary weights,
but to add the constraint via aLagrange multiplier[16] to the
conformal versor error function:

EU −→ EU +
1

2
λ(1 − (W̃W )2), (55)

with constantλ ∈ R. Then∂W E of (50) would change to

−∂W EU −→ −∂W EU + 2λW̃ (W̃W ). (56)

VII. T HE PROJECTIONPSW INTO THE WEIGHT SUBSPACE

Care must be taken for the projectionPSW into the weight
subspace, because for calculating this projection the subspace
under consideration needs to both have a blade basis and a
reciprocal blade basis [4], [5], [6]

PSW (A) =
∑

aJ〈aJA〉, (57)

where theaJ constitute the subspace blade basis and theaJ

the correspondingreciprocalblade basis of the same subspace.

0 50 100 150 200 250 300 350 400
0
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15

20

25

30

Epochs

M
S

E

with subspace projection
w/o subspace projection

Fig. 1. Learning curves for the CVN. See text for details.

In the conformal model it isvery importantto note that as a
result of (15)−e0 is reciprocal toe∞ and vice versa.

For example if only rotations around the origin are consid-
ered the 4D rotor weight subspace (isomorphic toH) has the
basis

{1, e12, e23, e31}. (58)

If only translations are considered the 7D translator weight
subspace is spanned [6] by

{1, e1e∞, e2e∞, e3e∞, e1e0, e2e0, e3e0}, (59)

wheree1e0, e2e0, e3e0 need to be included as the reciprocal
bivectors ofe1e∞, e2e∞, e3e∞.

If rotor and translator weights are required to be combined
as so-called motor weights we need the 12D weight subspace

{1, e12, e23, e31, e1e∞, e2e∞, e3e∞,

e1e0, e2e0, e3e0, e123e0, e123e∞}. (60)

VIII. S IMULATION RESULTS

The CVN allows to compute a variety of geometrical trans-
formation as outlined before. In the following we report results
for sphere inversions. This choice has been made because all
conformal transformations can be expressed by combination
of inversions. Our setup was as follows. The sphere (21) with
center[0 1 − 1]T and radius4 has been chosen as inversion
sphere. Ten points have been uniformly sampled from the unit
cube. Their conformal embedding (17) constituted the input
training set. The output training set then resulted by versor
multiplication (30) with the inversion sphere. A test set has not
been generated because the CVN is able to learn inversions
exactly. The CVN was trained by batch learning (with learning
rate η = 0.005) with and without subspace projection. The
results are shown in Fig. 1.

It can be seen there that subspace projection is not needed
for convergence. Of course, convergence is much faster with
subspace projection. In that case the MSE dropped below
10−10 after400 epochs, which means that indeed the inversion
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sphere has been perfectly learned. Without subspace projec-
tion, however, MSE after 400 epochs was only0.0290 with
a weight representing a sphere having radius3.89 and center
[0.0632 − 0.9099 − 0.96479]T .

For comparison, we also tested a linear network and a
real-valued multilayer perceptron (MLP) on the above task.
None of these networks can learn inversions exactly. Hence
we additionally sampled three points from the unit cube to
build up a test set. Sphere inversions are nonlinear mappings
and hence a linear network can only come up with the best
linear approximation. Trained on 3D points (w/o conformal
embedding) approximation provided by the linear network has
a MSE of 0.0024 (training) and of 0.1224 (test), respectively.
Trained on conformal embedded 5D points the errors are
0.0051 and 0.0629, respectively.

MLPs are universal approximators. This means that training
performance alone is not so interesting. The critical issueis
generalization ability. In fact, a MLP with one hidden layer
of only four sigmoidal nodes has been able to learn the 3D
training set with MSE below10−6. However, corresponding
MSE on test set is huge 0.0965 in this case. Best test
performance with MSE of 0.0198 has been achieved using 6
hidden nodes. Using more hidden nodes resulted in overfitting.
Using conformal embedded data renders the task more difficult
for the MLP. The best test performance with MSE of 0.0776
has been achieved with 9 hidden nodes. Hence the task was
not satisfactorily solvable using a MLP. Of course, the very
small training set is a clear disadvantage for the MLP. Note
that it is not possible in any case to derive the parameters of
the inversion sphere from the MLP weights.

IX. CONCLUSION

We have introduced the concept of conformal versor neu-
ron. These neurons have conformal geometric algebra versor
weights. The input variables of the conformal versor neurons
are geometric objects expressed by conformal multivectors
(points, point pairs, circles, spheres, flat points, lines,planes
and the 5D flat space). The versor weights correspond to
proper and improper Euclidean transformations, including
scaling and transversion, and the like.

A single node can therefore learn the transformation of a
whole object by adapting its multivector weight versor. This
has been demonstrated experimentally for inversions. A variety
of nodes can be designed. It is expected that they will give
rise to powerful networks with interesting applications.
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