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ABSTRACT
Statistical description of polarized signals is proposed in
terms of proper quaternionic random processes. Within this
framework, the intrinsic nature of such signals is captured
well. Simulation results show the ability of quaternionic ap-
proach (statistical model and processing) to perform better
separation of polarized signals than real–valued neural net-
works can do.

1. INTRODUCTION

In many applications such as seismology, electromagnetics,
optics, communications, etc., the recorded signals are polar-
ized. This property is due to the nature of the waves carrying
the signals (elastic or electromagnetics waves). As a con-
sequence, polarized signals describe the evolution of a vec-
tor with time, pointing into the direction of vibration of the
medium pertubated by the wave. This vector is confined into
a plane (the so-calledpolarization plane) and thus it is al-
ways possible (even for 3D signals) to describe a simply po-
larized signal in terms of two signals. Polarized signals are
recorded with vector-sensors and so they are vector-valued
signals.

A big challenge in polarized signal processing is to take
advantage of the additional information provided by polar-
ization without loosing this information in the processing. In
order to do so, we adopt here a quaternionic model for po-
larized signals. This model was already used in [1] and here
we add a statistical description to it. Using recent work on
quaternion random variables [2], we express polarized sig-
nals asproper quaternion random processes. That way the
intrinsic nature of polarized signal is captured well. Hence
our model can be used advantageously for signal processing
tasks. This is demonstrated for signal separation. For separa-
tion inside the quaternionic framework a quaternionic neural
network is used and its superior performance over a standard
real-valued network is demonstrated. Additionally, represen-
tation issues for optimal separation are discussed for the first
time.

2. QUATERNIONS

Quaternions, denotedH, are a 4D hypercomplex number sys-
tem and form a noncommutative division algebra. The Carte-
sian notation of a quaternionq is given as:

q = q0 +q1i+q2j+q3k (1)
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whereq0,1,2,3 ∈ R. Multiplication rules for imaginary units
are:

i2 = j2 = k2 = ijk= −1
ij = −ji= k

(2)

The real part of a quaternionℜ(q) = q0 is a scalar, while
its imaginary partℑ(q) = q1i+ q2j+ q3k is a vector. A
quaternion with a null real part is calledpure. The conjugate
of q is q= q0−q1i−q2j−q3k, with the property:pq= q p.

The norm ofq is |q|=
√

q2
0 +q2

1+q2
2+q2

3 and ifq 6= 0, then

its inverse isq−1 = q/|q|2. A quaternion is calledunit if its
norm equals 1. It is possible to write quaternions as complex
numbers with complexified coefficients:

q = q(1) +q(2)j (3)

whereq(1) = q0 + q1i and q(2) = q2 + q3i. This way of
writing quaternions is known as theCayley-Dicksonnota-
tion. The famous Euler formula generalizes to quaternions
so that any quaternionq∈ H can be written:

q = |q|(cosϕ + µ sinϕ) = |q|eµϕ (4)

whereµ = (q1i+ q2j+ q3k)/
√

q2
1 +q2

2+q2
3 is a pure unit

quaternion called theaxisof q andϕ is called theangle(or
argument) of q. There are three canonical involutions defined
onH:

qi = −iqi; qj = −jqj; qk = −kqk (5)

with the following properties (η ∈ {i,j,k}):

{

qη = qη ,
(qη)η = q,
(pq)η = pηqη

(6)

Note that a more general definition for involutions onH

can be stated as follows:qη = −ηqη , whereη2 = −1 and
ℜ(η) = 0. Here, we will make only use of the canonical
involutions given in (5).

3. PROPER QUATERNION VALUED RANDOM
VECTORS

The study of quaternion valued random vectorsq consists in
the study of the joint probability density function (pdf) ofthe
four components. In the Gaussian case, the first and second
order statistics (mean and variance) tell all the story. Here,
we introduce basic definitions and properties of quaternion



valued random vectors. As only Gaussian cases will be con-
sidered, we only present a second order study for quaternion
valued random vectors. Available material on quaternionic
random variables and vectors can be found in [2, 3]. Of main
interest for us here is the concept ofproperrandom variables
and vectors.

3.1 Definitions and representations

One useful way to consider a quaternion random vector is to
see it as a real valued random vector of size four times big-
ger. However, it is also possible to see it as a complex or
quaternion valued vector of higher dimension. Thus, for a
quaternion valued random vectorq ∈ HN there exists three
possible representations. Namely the real ˜q∈ R4N, complex
q̂∈ C4N and quaternion ˘q∈ H4N representations. Their ex-
pressions are:















q̃ =
[

qT
0 qT

1 qT
2 qT

3

]T

q̂ =
[

q(1)T q(1)† q(2)T q(2)†
]T

q̆ =
[

qT qT
i qT

j qT
k

]T

(7)

where † stands for conjugation-transposition. These repre-
sentations allow to study the statistical relationships between
the components of a quaternion random vector. Transition
matrices to switch between them can be found in [2].

3.2 First and second order statistics

Expectation forH-valued random vectors is naturally defined
as:

E[q] = E[q0]+E[q1]i+E[q2]j+E[q3]k (8)

This is the definition of themeanof q ∈ HN. Then, consid-
ering a centered random vectorq, its covariance matrix is
given by:

Λq = E[qq†] = E[qqT ] (9)

Using the vector representations introduced before, the co-
variance matrix ofq has also three representations:







Λq̃ = E[q̃q̃T ]
Λq̂ = E[q̂q̂†]
Λq̆ = E[q̆q̆†]

(10)

In the sequel, we will only make use of ˆq. Thus we give here
the explicit expression of its covariance matrix:

Λq̂ =
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(11)

where Kvw = E[vw†], Kv = Kvv, Cvw = E[vwT ]
and Cv = Cvv, and with v,w ∈ CN. In the literature
[4], Kv is known as the covariance ofv while Cv is its
pseudo-covariance. A complex random vector with van-
ishingpseudo-covarianceis calledproper (or alsocircular)
[4, 6]. We now introduce the generalization of this property
to the case ofH-valued random vectors.

3.3 Proper random vectors

As firstly described in [3] and generalized in [2] there exists
two levels of properness.

3.3.1 Cη -properness

A quaternion random vectorq ∈ HN is called proper iff:

q
d
= eηθq, ∀θ (12)

for one and only one pure unit quaternionη , and where
d
=

stands for “equality in distribution”. A special case of inter-
est for us in the sequel will beCi-proper random vectors for

whichq
d
= eiθq. As a consequence, the covariance matrix of

aCi-proper random vectors commutes withi: Λqi = iΛq.
This commutation induces a special structure in the covari-
ance matrix (see [2, 3] for details), which in its complex rep-
resentation reads

Λq̂ =











Kq(1) 0 0 C
q

(1)
q

(2)

0 K∗
q

(1) C∗
q

(1)
q

(2) 0

0 CT
q

(1)
q

(2) K
q

(2) 0

C
†
q

(1)
q

(2) 0 0 K∗
q

(2)











(13)

This suggests an equivalent definition forCi-properness.
Thus, a quaternion random vector isC

i-proper iff:
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(14)

One can see thatCi-properness for a quaternion random vec-
tor means that this vector can be seen as a pair of proper
(in the complex sense) complex random vectorsq(1) and
q(2) with a non-null cross-pseudo-covariancebut a vanish-
ing cross-covariance. Note that the other possible cases (i.e.
Cj andCk) lead to a different structure of the covariance ma-
trix (different positions for the zeros).

3.3.2 H-properness

A quaternion random vectorq ∈ HN is calledH-proper iff:

q
d
= eηθq, ∀θ (15)

for any pure unit quaternionη . Once again, considering
the classical basis for quaternions (i.e. {1,i,j,k}), H-
properness is equivalent to having the following equalities
verified:

{

Λqi = iΛq

Λqj = jΛq

(16)

These commutation rules induces a very special structure in
the covariance matrixΛq̂ = diag(Kq), whereKq = K

q
(1) =

K
q

(2) . This also suggests another equivalent definition for
H-properness:















C
q

(1) = 0

C
q

(2) = 0

K
q

(1)
q

(2) = 0

C
q

(1)
q

(2) = 0

(17)

Therefore aH-proper random vector can be seen as a pair
of proper (in the complex sense) complex random vectors
q(1) andq(2) which arejointly proper(in the complex sense),
i.e. their cross-covariance and cross-pseudo-covariance both
vanish. In theH-proper case, the two complex components
q(1) andq(2) are thusuncorrelated[4].



3.4 Proper random variables and polarized signals

We now consider polarized random signals with possibly
known polarization parametersρ andφ . Consider the output
of a two-component vector-sensor [5]. Such a sensor out-
puts two discrete signalss1(n) ands2(n) (with n = 1, . . . ,N)
that originate from vibrations in two orthogonal directions
of 3D space. For such signal, we propose to use the model
described in [1]. The output can be arranged in vectors
s1,2 = [s1,2(1) s1,2(2) . . . s1,2(N)]T . Thus the whole 2D vi-
bration recorded on the sensor can be written in a vectorq
such as:

q = z1 +jz2 (18)

wherez1 andz2 are the analytic signals ofs1 ands2, respec-
tively. Here,s1 ands2 are consideredi.i.d. and Gaussian
random processes. The real and imaginary parts ofz1 and
z2 have zero mean and same varianceσ2. It is well-known
that the analytic signal is proper (in the complex sense) [6],
which involves thatCz1 = Cz2 = 0. As a consequence, the
variance ofz1 andz2 equals 2σ2 (real and imaginary parts
having the same variance and being decorrelated).

Now, assuming that the recorded signal ispolarized, then
there exists a phase shift and an amplitude ratio (both sup-
posed constant along the time index here):

z1 = Pz2 = ρeiφz2 (19)

whereρ andφ are the polarization parameters [1]. With the
above assumptions, it is easy to verify that the covariance ma-
trix of the random vectorq made of the samples of a polar-
ized signals has the following structure (complex notation):

Λq̂ = 2σ2









I 0 0 ρe−iφI
0 I ρeiφI 0

0 ρe−iφI ρ2I 0
ρeiφI 0 0 ρ2I









(20)

Thus, the proposed modeling allows to consider a polarized
random signal (with deterministic polarization parameterρ
andφ ) as aCi-proper quaternion valued random vector.

Now, consider the case where the recorded signal is not
polarized. Thenz1 andz2 are uncorrelated, so the signal can
be seen as aH-proper quaternion random vector. Its covari-
ance will then be diagonal:Λq̂ = 2σ2I4N×4N.

4. NEURAL ARCHITECTURE

Neural networks have found many applications in signal pro-
cessing (seee.g.[7, 8] and references therein). The previous
section established a theoretical link between polarized sig-
nals and properH–valued random variables. A quaternion
valued neural network remains naturally inside our frame-
work. Advantages of our proposed model should there-
fore result in an outperformance of such networks over real-
valued networks, for example on a signal separation task.
First we review technical details of a quaternion valued
Multi-layer Perceptron [9]. Then the novel and relevant no-
tion of isomorphic class labels is discussed.

4.1 Multi-layer Perceptrons (MLPs)

The atoms of neural networks are simple computational
units that compute from inputx an output according toy =
g( f (w,x)). Therebyf is the so-called propagation function

andg the so-called activation function. The weightsw are
free parameters that are adjusted trough learning. For nonlin-
earg, grouping neurons together in layers∑i g(wi j x j +θ j) in
a feed–forward and fully–connected manner yields the well-
known Multi-layer Perceptron (MLP). MLPs are trained by
supervised learning,i.e. on examples with target outputs.
The most popular choice forg is the logistic functionσ(x) =
(1 + exp(−x))−1 with output in [0,1]. Adapting weights
is then done by minimizing an error function, say SSE, by
gradient descent (backpropagation [10]). A quaternion val-
ued MLP (H–MLP)is obtained one by just using quater-
nionic entities instead of real ones. As activation function
σ(q)H = σ(q0) + σ(q1)i + σ(q2)j + σ(q3)k is used [9].
Separation of two polarized signals is a classification task.
A H–MLP with one hidden layer of two neurons is there-
fore the smallest meaningful quaternion valued architecture
in this case. We shall see that this minimal quaternionic net-
work is also already sufficient. This is a direct consequence
of the invariance of distributions under (12) and (15), respec-
tively.

4.2 Isomorphic Class Labels

One issue of theH-MLP remains for discussion. That is how
to label the classes. This is one other consequence of the fun-
damental difference between real valued and quaternion val-
ued neural networks. For a standard MLP neither the order of
components of a input vector nor the order of components of
a output vector has a semantical meaning. Permutations do
not have any effect. Contrary, quaternions are tuples. Also,
optimal separation of polarized signals by aH-MLP relies on
the preserving of structural information, which needs tuples
of data beforehand. In a formal notion and in a wider context
this is discussed for the broader class of networks with values
in Clifford algebras in [11]. Here, there are four possibilities
for labeling the ”1” class:

CL1 : 1+0i+0j+0k (21)
CL2 : 0+1i+0j+0k (22)
CL3 : 0+0i+1j+0k (23)
CL4 : 0+0i+0j+1k (24)

The latter three, refered to as imaginary labels, are isomor-
phic. Letx = x0 +x1i+x2j+x3k be fixed. Furthermore, let
r0 + r1i+ r2j+ r3k = (a+bi+cj+dk) x. Then yields

(−b+ai−dj+ck) x = −r1 + r0i− r3j+ r2k (25)
(−c+di+aj−bk) x = −r2 + r3i+ r0j− r2k (26)
(−d−ci+bj+ak) x = −r3− r2i+ r1j+ r0k. (27)

Hence applying the appropriate isomorphism to every net-
work parameter allows to construct an equivalent network
having another imaginary class label than the original given
one.

5. SIMULATIONS

This section reports results for separation ofCη -proper vs
H-proper signals comparing the previously introduced two
types of networks. Note that this task is more compli-
cated than separation ofCη -proper vsCµ -proper signals
(section 3.3). Simulations have been performed for syn-
thetic data generated from the three four–dimensional dis-
tributions listed in table 1. From each of them 1000 points



have been sampled. In each case the first 200 sample points
have been used for training and the remaining 800 points for
testing. Note thatD3 is H-proper and bothD1 andD2 are
Ci-proper, respectively (w.r.t. the canonical identification
{a⇔ 1,b⇔ i,c⇔ j,d⇔ k}. Cη -proper data forη ∈ {j,k}
has been obtained fromD1,D2 by simple permutation of
components. For example,{a⇔ 1,b ⇔ j,c ⇔ i,d ⇔ k}
givesCj-proper data. For the MLP all that way derived data
is the same (section 4.2). Hence the number of setups reduces
to two in this case.

a b c d
D1 N (0,1) N (0,1) 2a+4b 4a−2b
D2 N (0,1) N (0,1) 1a+2b 2a−1b
D3 N (0,1) N (0,1) N (0,1) N (0,1)

Table 1: Distributions from which data for simulations has
been generated.N (0,1) denotes one–dimensional normal
distribution with mean 0 and variance 1.

5.1 Results for the MLP

Separation ofD1 vs D3 turned out to be much more diffi-
cult thanD2 vs D3 separation (D3 class was labeled as 0).
Training in the latter case was always successful with 6 hid-
den nodes (3000 iterations, learning rate 0.1) yielding zero
ore only misclassified pattern. Test performance varied be-
tween 97%-98% classification rate for different runs. Results
for the other separation task are worse w.r.t. both efficiency
and accuracy. With 20 hidden nodes (optimal learning pa-
rameters) a training error of 6-8 misclassified patterns was
achieved. Here test performance varied between 93%-94%
classification rate. Using more hidden nodes caused over-
fitting (worse test performance, seee.g.[7]) without reduc-
ing training error significantly. The lack of the MLP to ac-
tually identify structure (levels of properness) caused rather
low performance in this particular task.

5.2 Results for theH-MLP

D3 class was labeled as 0+0i+0j+0k and forCη -proper
data all four possible labels (21)-(24) have been tested yield-
ing a total of 24 different setups. In 23 of these setups the
H-MLP, having only 2 hidden nodes, was successful with 0-
5 misclassified training patterns and 93.5%-99.5% classifica-
tion rate for test data. One particular solution forCi-proper
vs H-proper separation usingD1 and CL4 (24) for theCi-
proper class is listed in table 2. This solution corresponds
to zero training error and 99.5% successful classification of
test data. Note that the hidden weightsw21,w22 are basically
just used for scaling. This means that separation has already
been done in the hidden layer. Also note the symmetry of the
1,j-components of the hidden layer weights. Same accuracy
was obtained using the other class labels, which is always
guaranteed theoretically for CL2, CL3 by the argumentation
provided in section 4.2.

Weight 1 i j k

w11 -9.350 -0.265 +9.374 +18.688
w12 +8.925 +0.430 -8.955 -17.823
θ11 +2.539 -2.369 -4.933 +1.275
θ12 +5.350 -8.112 -6.532 +1.929
w21 +3.965 +0.109 -0.115 -0.142
w22 +3.878 +0.103 -0.022 -0.119
θ21 -33.694 -20.531 -18.675 -23.595

Table 2:Ci-proper vsH-proper separation usingD1 and CL4
(24) for theCi-proper class. Solution found by the quater-
nionic network yielding perfect separation (zero error) for
the training sets.

Only for Cj-proper vsH-proper signal separation differ-
ent class labels caused non–equal performance. Output of
the first hidden neuron and the second hidden neuron for a
typical run using CL4 are shown in figure 1 and figure 2,
respectively. Again, successful separation was already per-
formed in the hidden layer. TheCj-proper class was solely
coded in thek-channel of the hidden neurons. Therfore out-
put weights have been used again only for scaling. With CL3
used for coding the ”same” solution is obtained. However,
the Cj-proper class is then solely coded in thej-channel.
In both cases test classification rate was always in between
96%-97.5% for all runs. With CL2 coding this rate dropped
down significantly to 93%-94.5%. This means the network
was not able to reproduce the CL3, CL4 solutions, which
can be done theoretically as outlined before. Actually, no
other solution than the ones from CL3, CL4 could be ob-
served when analyzing several runs. Switching class data
in the output layer to thei-channel from thej-channel or
k-channel, respectively, needs a more complicated operation
than scaling. Although theoretically possible for theH-MLP,
optimization becomes more complicated and the only locally
convergent training algorithm may get trapped in local min-
ima more likely. In the CL1 case, where there is also no
other solution than the ones mentioned before, such opera-
tion does not exist at all. This therfore accounts for the only
non–successful setting. Contrary, a CL1 solution well exists
when casted asCi-proper data, which can be seen from fig-
ure 3 (plot for the second hidden neuron is omitted again due
to space limitations).

This plot shows a total different type of solution using
two channels. Hence the difference of covariance matrices
derived in section 3.3 also causes different solutions for sep-
aration. Summarizing all the simulations, either CL3 or CL4
should be used as class labels. Then optimal separation of
Cη -proper vsH-proper signals is always possible by aH-
MLP having only two hidden neurons corresponding to a
total of only 28 real parameters. Note that the gap to per-
fect 100% is both due to the gap between sample statistics
and distribution statistics and also due to the local natureof
training algorithm. TheH-MLP will usually outperform a
standard MLP in terms of accuracy. The latter will always
be less efficient in terms of complexity. In one of the simu-
lations the standard MLP was not able to reach performance
of theH-MLP although having five times more parameters.
Also, note that overfitting does not occur for theH-MLP in
any case.
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Figure 1: Cj-proper vsH-proper separation usingD2 and
CL4 (24) for theC

j-proper class. Histograms of the output
of the first hidden neuron. Left column shows response for
H-proper data. Right column shows response forCj-proper
data. Each row shows one component of the output.
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Figure 2: C
j-proper vsH-proper separation usingD2 and

CL4 (24) for theCj-proper class. Histograms of the output
of the second hidden neuron.

6. CONCLUSION

We have presented a quaternionic approach for modeling po-
larized signals and their statistical properties. Stayinginside
the quaternionic framework by using aH-MLP gave better
results than using a real-valued MLP on signal separation
tasks. Moreover, successful separation was achieved by a
minimal quaternion architecture. Hence the presented results
illustrate well the advantages of the quaternionic framework
for processing of polarized signals.
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Figure 3: Ci-proper vsH-proper separation usingD2 and
CL1 (24) for theC

i-proper class. Histograms of the output
of the first hidden neuron.
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