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Abstract. Averaging measured data is an important issue in computer
vision and robotics. Integrating the pose of an object measured with
multiple cameras into a single mean pose is one such example. In many
applications data does not belong to a vector space. Instead, data often
belongs to a non–linear group manifold as it is the case for orientation
data and the group of three–dimensional rotations SO(3). Averaging on
the manifold requires the utilization of the associated Riemannian met-
ric resulting in a rather complicated task. Therefore the Euclidean mean
with best orthogonal projection is often used as approximation. In SO(3)
this can be done by rotation matrices or quaternions. Clifford algebra as a
generalization of quaternions allows a general treatment of such approxi-
mated averaging for all classical groups. Results for the two–dimensional
Lorentz group SO(1, 2) and the related groups SL(2, IR) and SU(1, 1) are
presented. The advantage of the proposed Clifford framework lies in its
compactness and easiness of use.

1 Introduction

Averaging measured data is one of the most frequently arising problems in
many different applications. For example, integrating the pose of an object
measured with multiple cameras into a single mean pose is a standard task
in computer vision. Feature–based registration of images would be another such
example. The original motivation for this paper has been the following. In a
neural network where every neuron represents a geometric transformation, say
three–dimensional rotation, one has to average over several neurons in order to
adjust the network topology to new presented data.

Surely, averaging data belonging to some vector space is rather trivial. For a
set of points {x}n

i one only has to calculate the barycentre

A =
1

n

n∑

i=1

xi . (1)

In IRd this also minimizes the sum of the squared distances to the given points.
Because of that variational property, (1) is then also called the arithmetic mean.
Distance here refers of course to the usual Euclidean metric dE(·, ·) yielding

A = argmin
x∈IRd

n∑

i=1

dE(x, xi)
2 . (2)
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All of the examples given above, however, involve data which does not belong to
a vector space. Rather, the data are elements of a group, like SO(3) as for the
case of three–dimensional rotations. In fact one therefore has to deal with non–
linear manifolds having different geometrical structure than that of “flat” vector
spaces. So let M be a matrix group. Then the Riemannian distance between two
group elements is given by

dR(G1, G2) =
1√
2
‖ log(GT

1 , G2)‖ , (3)

where log refers to matrix logarithm and the usual Frobenius norm is applied
(see e.g. [5]). The Riemannian metric (3) measures the length of the shortest
geodesic connecting G1 and G2. Since every group acts transitively on itself
there is a closed form solution to that. However, the shortest geodesic may not
be unique. The Riemannian mean associated with (3) now reads

R = argmin
G∈M

n∑

i=1

‖ log(GT
i , G)‖2 . (4)

For many important groups solving (4) analytically is not possible. Recently,
in [11] it was proven that there is no closed form solution of (4) for SO(3).
Therein it was also demonstrated that Riemannian averaging is already a very
hard problem for one–parameter subgroups of SO(3).

As an alternative to computing the Riemannian mean, approximative em-
bedding techniques are well established (see e.g. [4]). The basic idea is to embed
the data into a larger vector space in which operations are then performed, and
project the result back onto the manifold. Technically, one thereby performs
constrained optimization and usually uses orthogonal projection. Both aspects
are treaded extensively in [3]. The natural embedding for a matrix group is of
course the covering general linear group GL(n), which in turn is also a vector
space. Hence the Frobenius norm induces the following metric on GL(n)

dF (G1, G2) = ‖G1 −G2‖ . (5)

Associated with (5) is the mean

E = argmin
G∈M

n∑

i=1

‖Gi −G)‖2 , (6)

which will be termed Euclidean mean from now on. Note that without back–
projection E does not have to be an element of M.

Whenever the group M is a differentiable manifold, i.e. a Lie group, there is a
further alternative for an approximation of the Riemannian mean R (4). Roughly
speaking, the Riemannian distance in the Lie group can be approximated by the
Euclidean distance in the corresponding Lie algebra. This is done by virtue of
the famous Baker–Campbell–Hausdorff formula [8]. The whole method is very
common in robotics [13]. A recent example for its use for motion estimation is
[6].



This paper, however, concentrates on the study of Clifford groups for approx-
imating the Riemannian mean R. It is well known, that any three–dimensional
rotation can be represented by a rotation matrix or a unit quaternion (among
other possible representations like Euler angles). Unit quaternions do form a
group which acts by a two–sided operation. That way a different Riemannian
mean approximation results than the one induced by rotation matrices. Unit
quaternions are a particularly example of a Clifford group. In fact all classical
groups do have a covering Clifford group. Hence the Clifford algebra framework
offers a general alternative for averaging on such groups.

The remainder of this paper is organized as follows. In section 2 we briefly
present basic facts about Clifford groups. This is then followed in section 3
by reviewing what is known about averaging on SO(3) using both rotations
matrices and unit quaternions. Additionally, an experimental comparison of the
two approaches for noisy data is presented. Averaging on the two–dimensional
Lorenz group SO(1, 2) and its covering Clifford group Γ1,2 is discussed in section
4. Therein a closer look on the related groups SL(2, IR) and SU(1, 1) is also
provided. The paper finishes with some concluding remarks.

2 Clifford Groups

Associated with every Clifford algebra there is the so–called Clifford group (or
Lipschitz group) formed by all of its invertible elements. A Clifford algebra can
be constructed from a quadratic space. Here we are particularly interested in
real quadratic spaces IRp,q , meaning IRp+q equipped with a quadratic form Q
of signature (p, q).

Definition 1 [10]. An associative algebra over IR with unity 1 is the Clifford
algebra Cp,q of IRp,q if it contains IRp+q and 1 · IR = IR as distinct subspaces so
that

(a) x2 = Q(x) for any x ∈ IRp+q

(b) IRp+q generates Cp,q

(c) Cp,q is not generated by any proper subspace of IRp+q .

Let {e1, e2, . . . , en} be an orthonormal basis of IRp,q . Then the following relations
hold

e2i = 1, 1 ≤ i ≤ p, e2i = −1, p < i ≤ n eiej = −ejei, i < j . (7)

That way an algebra of dimension 2n is generated (putting e0 = 1). The canonical
basis of a Clifford algebra is therefore formed by

Bµ = ej1ej2 · · · ejr
, 1 ≤ j1 < . . . jr ≤ p+ q . (8)

Those basis vectors which consist of an even number of factors do form a subal-
gebra. This subalgebra C+

p,q is called the even part of Cp,q.



For Clifford algebras the following isomorphisms hold

C0,0
∼= IR (9a)

C0,1
∼= C (9b)

C0,2
∼= IH , (9c)

with C denoting complex numbers and IH denoting quaternions as usual. The
embedding used in Definition 1 (a) above can be made more explicit as follows.
Define

α : IRp+q → Cp,q , x 7→ x =

n∑

i=1

xiei (10)

and identify IRp+q with its image under that mapping. The elements α(IRp+q )
are termed vectors again. All invertible vectors (x2 6= 0) already generate the
Clifford group. For a more revealing characterization the following two mappings
are required. Inversion, which is an automorphism, is defined by x̂ = −x and
âb = âb̂. Reversion is an anti–automorphism defined by x̃ = x and ãb = b̃ã.
Using (8) these mappings become

B̂µ = (−1)rBµ B̃µ = (−1)
r(r−1)

2 Bµ . (11)

Definition 2. The Clifford group associated with the Clifford algebra Cp,q is
defined by

Γp,q = {s ∈ Cp,q | ∀x ∈ IRp,q , sxŝ
−1 ∈ IRp,q} .

Hence the Clifford group is determined by its two–sided action on vectors. Fur-
thermore the map x 7→ sxŝ−1 is an orthogonal automorphism of IRp,q [12].

Normalizing the Clifford group Γp,q yields

Pin(p, q) = {s ∈ Γp,q | ss̃ = ±1} . (12)

The group Pin(p, q) is a two–fold covering of the orthogonal group O(p, q).
Further subgroups of Pin(p, q) are

Spin(p, q) = Pin(p, q) ∩ C+
p,q (13)

and
Spin+(p, q) = {s ∈ Spin(p, q) | ss̃ = 1} . (14)

Both groups are again two–fold covers of their classical counterparts. The whole
situation can be summarized as

Pin(p, q)\{±1} ∼= O(p, q) (15a)

Spin(p, q)\{±1} ∼= SO(p, q) (15b)

Spin+(p, q)\{±1} ∼= SO+(p, q) . (15c)

Thereby SO+(p, q) is formed by those elements which are connected with the
identity. This does not carry over to the covering groups, i.e. Spin+(p, q) does
not have to be connected [10]. In case of q = 0 one has SO+(p, 0) = SO(p, 0)
and Spin+(p, 0) = Spin(p, 0) (analogously for q = 0). Further on we simply write
SO(p) and Spin(p) then. Finally note that every Lie group can be represented
as spin group [2]. Hence averaging using Lie methods is also possible inside the
Clifford framework.



3 Averaging on Spin(3) and SO(3)

The already mentioned group of unit quaternions is isomorphic to the three–
sphere S3. The latter, in turn, being isomorphic to the group Spin(3). Addition-
ally C+

0,3
∼= C0,2

∼= IH yields, and therefore averaging rotations using Spin(3) is the
same as if using quaternions. To remain consistent everything in the following
will be denoted in terms of Spin(3).

Before actually turning to the problem of averaging rotations, a more theo-
retical remark may be in order. The group Spin(3) can also be used for averaging
on the three-sphere, which of course can not be done by using rotation matrices.
On the other hand no disadvantage results from the fact that Spin(3) is a two–
fold cover of SO(3). Formally, some care has to be taken due to the existence of
antipodal points (s,−s ∈ Spin(3) induce the same rotation). A consistent set of
group elements, however, can always be chosen easily if necessary.

As for representing rotations itself, the Euclidean mean can be defined both
in terms of SO(3)

ESO(3) = arg min
R∈SO(3)

n∑

i=1

‖Ri −R)‖2 (16)

and Spin(3)

ESpin(3) = arg min
s∈Spin(3)

n∑

i=1

‖si − s)‖2 . (17)

For the latter note that every Clifford algebra is of course also a real vector
space. The following was derived (using quaternions) in [7] for the Euclidean
mean on Spin(3)

ESpin(3) = arg max
s∈Spin(3)

n∑

i=1

ssi

= arg max
s∈Spin(3)

s

n∑

i=1

si

=

∑n

i=1 si

‖∑n

i=1 si‖2
, (18)

which is the ordinary arithmetic mean with normalization. Solving for the matrix
mean (16) is a special case of the famous Procrustes problem yielding

ESO(3) = arg max
R∈SO(3)

n∑

i=1

tr(RTRi)

= arg max
R∈SO(3)

tr(RT

n∑

i=1

Ri)

= arg max
R∈SO(3)

tr
(
RT

∑n

i=1Ri

n

)
, (19)



which is the orthogonal projection of the arithmetic mean onto SO(3). The
actual solution can then be obtained by using Singular Value Decomposition
(SVD). This, although not too complicated, is somehow more costly than simple
normalization as in (18). Moreover the two discussed approximation methods
for the Riemannian mean are indeed based on different linearizations.

A rotation is represented in the algebra C0,2 as

cos(
φ

2
)e0 + sin(

φ

2
)(xe1 + ye2 + ze1e2) , (20)

with (x, y, z) being the rotation axis and θ being the angle of rotation. Since
every Clifford group operates by a two–sided action (see Definition 2 again) the
approximation (18) is based on half the angle θ. Contrary, every matrix group
acts by ordinary matrix multiplication and the approximation (16) is therefore
based on the whole angle θ. An experimental comparison of the two methods
have been already provided in [7] using a Gaussian sampling for the angle and
a uniform one for the axis. Both methods have been reported as equally very
good. In our opinion a Gaussian sampling for both parameter types seems to be
at least as realistic.
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Fig. 1. Abbreviation of the approximated mean from the Riemannian mean for stan-
dard deviation of 0.2 (top) and 0.5 (bottom). See text for details.

For demonstration a little experiment on synthetic data has been carried



out. The sample size is set to 20, the mean is set to [1, 2, 3, 4]/‖[1, 2, 3, 4]‖ with
standard deviation of 0.2 (first setup) and 0.5 (second setup). Each setup is re-
peated 30 times. The true Riemannian mean is computed by using non–linear
optimization from MATLAB. The angle of the rotation transforming the approxi-
mated mean into the Riemannian mean is used as error measure. The obtained
results are shown in Fig. 1.

The average error in the small standard deviation setup is 0.83 deg. for
Spin(3) averaging versus 1.13 deg. for SO(3) averaging. Both values are very
good and the difference is rather insignificant. For the larger standard deviation
setup the value for Spin(3) is 2.17 deg. compared to 3.98 deg. for SO(3). Here
the difference is obviously noticeable. All in all in our chosen setup averaging
using Spin(3) seems therefore preferable.

Approximating the Riemannian mean using the aforementioned projected
Euclidean means works quite nice for three–dimensional rotations in reasonable
setups (taken into consideration both [7] and the above experiment). One pre-
requisite for any approximation to make sense is of course that the entity being
approximated makes sense itself. The Riemannian metric (shortest geodesic) for
three–dimensional rotation does. For example, it is bi–invariant [11]. For the
Special Euclidean group SE(3), of which SO(3) is a subgroup, however, no bi–
invariant metric does exist [1].

4 Averaging on Spin(1,2) and SO(1, 2)

When not familiar with Clifford algebra everything about quaternions seems to
be quite exceptional at first sight. As we have seen this is not true. All Clifford
groups do operate in the same way by a two–sided action yielding an orthogonal
automorphism. Hence there is also a general treatment of averaging on other
orthogonal (sub–)groups in terms of Clifford algebra. Quaternions being just
one example. Another such example will be studied in this section. In oder to
simplify notations we will use the canonical ordered basis derivable from (8) do
denote elements of a Clifford algebra. That is we just write (a, b, c, d) ∈ C0,2

instead of ae0 + be1 + ce2 + de1e2, for example.

In the following we want to study the two–dimensional Lorentz group SO(1,2).
As shown in [9] this group comes into play whenever measurements with respect
to motion are (realistically) considered as taking their own time. The group
SO(1,2) has time dimension (t) and spatial dimension (x, y) leaving invariant
the scalar product

< (t, x, y), (t′, x′y′) >= tt′ − xx′ − yy′ . (21)

More precisely, it is formed by those 3× 3 matrices with determinant one which
preserve (21). Geometrically, everything about SO(1,2) is related to cones. An
important example being the future cone {(t, x, y) | t2 − x2 − y2 ≥ 0, t ≥ 0}.



The group SO(1,2) has the two well known covering groups SU(1,1) and
SL(2, IR), which are defined by

{(
y1 y2
y2 y1

)
| y1, y2 ∈ C, |y1|2 − |y2|2 = 1

}
, (22)

and {(
a b
c d

)
| a, b, c, d ∈ IR, ad − bc = 1

}
, (23)

respectively. Using the Euclidean mean as approximation for the Riemannian
mean requires to project the arithmetic mean onto the manifold. This, yet, is
a rather complicated problem for SO(1,2) since the orthogonality condition is
now RRT = diag(1,−1,−1). Of course things are easier using SL(2, IR) instead.
In that case, however, there is no need to use a matrix group at all since the
following relations hold

SL(2, IR) ∼= SU(1, 1) ∼= Spin(1, 2) , (24)

the latter being a two–fold cover of SO(1,2) by definition. Hence as abstract
groups all groups in question are isomorphic. Moreover, the different represen-
tations as elements of the Clifford algebra C1,2 do only differ by permutation.
That can be easily checked using the fact C1,2

∼= C(2), where C(2) denotes the

space of all complex 2×2 matrices. A matrix

(
a b
c d

)
∈ SL(2, IR) is represented

in C1,2 by
1

2
(a+ d, b+ c, 0, c− b, 0, a− d, 0, 0) . (25)

Setting y1 = 1
2 ((a + d) + i(b − c)) and y2 = 1

2 ((b + c) − i(d − a)) yields the
corresponding SU(1,1) matrix, which in turn is represented by

1

2
(a+ d, b+ c, b+ c,−(c− b), 0, d− a, 0, 0) . (26)

Hence all groups have essentially the same representation in the Clifford algebra
C1,2. Furthermore the Euclidean means

ESpin(1,2) = arg min
s∈Spin(1,2)

n∑

i=1

‖si − s)‖2 (27a)

ESL(2,IR = arg min
R∈SL(2,IR)

n∑

i=1

‖Ri −R)‖2 (27b)

ESU(1,1) = arg min
U∈SU(1,1)

n∑

i=1

‖Ui − U)‖2 (27c)

are then also identical and can be computed all inside the algebra C1,2 just by
simple normalization ∑n

i=1mi

‖
∑n

i=1mi‖2
, (28)



with mi = si, mi = Ri, or mi = Ui accordingly to the cases in (27). Moreover,
everything could also been carried out in the algebra C3,0, which is isomorphic
to C1,2. For example,

1

2
(a+ d, 0, b+ c, d− a, 0, 0, b− c, 0) (29)

corresponds to (25). In the following we will only consider the group Spin(1,2).
In oder to evaluate the quality of approximation by (28) the Riemannian mean
has to be studied first a little bit closer. Formally, (4) does apply again. So we
are rather looking for a parameterization of SO(1,2). One such parameterization
is the Cartan decomposition SO(1,2)= KAK having factors

K =




1 0 0
0 cosφ − sinφ
0 sinφ cosφ


 and A =




coshψ 0 sinhψ
0 1 0
sinhψ 0 coshψ


 . (30)

Again an experiment on synthetic data has been performed to compare the
approximated Euclidean mean on Spin(1,2) with the true Riemannian mean.
Both angles arising from the Cartan decomposition (30) have been sampled
using a Gaussian distribution. In the first experiment we used φ = 30 deg. and
ψ = 20 deg. as mean values and a standard deviation of 2 deg. in both cases for
a sample of size 30. The obtained results are separately reported for both angles
in Fig. 2.

0 10 20 30
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Run

A
bs

ol
ut

e 
E

rr
or

 (
de

g.
)

φ Spin(1,2) 

0 5 10 15 20 25 30
1.6

1.8

2

2.2

2.4

2.6

Run

A
bs

ol
ut

e 
E

rr
or

 (
de

g.
)

ψ Spin(1,2)

Fig. 2. Abbreviation of the approximated mean from the Riemannian mean for stan-
dard deviation of 2 deg. for φ (left) and ψ (right). See text for details.

The results are quite good. The average error is 1.27 deg. for φ and 2.03 for ψ.
Using a standard deviation of both 5 deg. resulted in average errors of 2.56 and
3.87, respectively. As before the error was measured as angles of the transfor-
mation needed to carry over the approximated mean into the true Riemannian
one. The latter was computed using non–linear optimization from Matlab again.
From the obtained results averaging in Spin(1,2) seems to be a useful approxi-
mation method for practical applications.



5 Conclusions

In this paper we studied averaging in Clifford groups. More precisely, the approx-
imation of the Riemannian means by Euclidean means of such groups have been
discussed. The Clifford algebra framework allows a general and elegant treatment
of averaging problems. The particular case of three–dimensional rotations has
been reviewed comparing averaging in SO(3) (rotation matrices) with averaging
in Spin(3) (unit quaternions). In the chosen setup the latter performed slightly
better. More important, the Euclidean mean is always easy to compute for a Clif-
ford group, namely by just performing normalization in the associated algebras.
This was further demonstrated on SO(1, 2), where it has been also demonstrated
how related groups can be handled in the same manner. The obtained results
suggest that Clifford algebra is a useful and flexible tool for averaging. Future
work will be on testing the proposed methods for particular neural networks in
practical applications. Also a comparison with common Lie algebra averaging
seems to be interesting. Studying the influence of embeddings like the conformal
model of Clifford algebra for averaging in SE(3) might also be worthwhile.
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