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Abstract

A model for learning human movement is proposed. The
learning model generates plausible trajectories of limbs
that mimic the human movement. The learning model is
able to generalize these trajectories over extrinsic con-
straints. These constraints result from the space of start
and end configuration of the human body and task-specific
constraints such as obstacle avoidance. This generaliza-
tion is a step forward from existing systems that can learn
single gestures only. Such a model is needed to develop hu-
manoid robots that move in a human-like way in reaction
to diverse changes in their environment. The model pro-
posed to accomplish this uses a combination of principal
component analysis (PCA) and a special type of a topolog-
ical map called the dynamic cell structure (DCS) network.
Experiments on a kinematic chain of 3 joints show that this
model is able to successfully generalize movement using a
few training samples for both free movement and obstacle
avoidance.

1. Introduction

Human motion is characterized as being smooth, effi-
cient and adaptive to changes in the environment. In recent
years a lot of work has been done in the fields of robotics
and computer animation to capture, analyze and synthesize
this movement with different purposes. In robotics there has
been a large body of research concerning humanoid robots.
These robots are designed to have a one to one mapping to
the joints of the human body but are still less flexible. The
ultimate goal is to develop a humanoid robot that is able to
react and move in its environment like a human being. So
far the work that has been done is concerned with learning
single gestures like drumming or pole balancing which in-
volves restricted movements primitives in a simple environ-
ment or a preprogrammed movement sequence like a dance
without considering interaction with the environment. An
example where more adaptivity is needed would be a hu-
manoid tennis robot which given its current position and
of the incoming ball is able to move in a human-like way

to intercept it. This idea enables us to categorize human
movement learning from simple to complex as follows: (A)
Imitate a simple gesture, (B) learn a sequence of gestures
to form a more complex movement, (C) generalize move-
ment over the range allowed by the human body, and (D)
learn different categories of movement specialized for spe-
cific tasks (e.g. grasping, pulling, etc.).

This paper introduces two small applications for learning
movement of type (C) and (D). The learning components of
the proposed model are not by themselves new but the way
they are used together for these applications is. The first
application is generating realistic trajectories of a simple
kinematic chain representing a human arm. These trajecto-
ries are adapted to a movement space which consists of start
and end positions of the arm as shown in fig. 2. The second
application demonstrates how the learning algorithm can be
adapted to specific tasks which in this case is obstacle avoid-
ance where the position of the obstacle varies. Next, we de-
scribe an overview of the work done related to movement
learning and compare them with the proposed model.

Billard et al. [2] demonstrated an elaborate neural ar-
chitecture for imitation learning of arm movements. The
architecture simulates the visio-motor mechanisms in bio-
logical systems. The system does not learn movement itself
but only to copy it, however, it demonstrates an interesting
biologically motivated approach.

Many non-biological models were also developed. For
example, Schaal [5] has done a lot of work in the field
of learning movement for humanoid robots. He de-
scribes complex movements as a set of movement primi-
tives (DMP) which are learned using reinforcement learn-
ing. He demonstrated his learning algorithm for applica-
tions like pole balancing, drumming. In all these cases the
humanoid robot learns quickly to imitate the human subject,
however dynamic movement primitives lack the flexibility
to generalize movement primitives to learn more complex
changes in the environment. That is, the robot can learn to
imitate a single gesture.

To go beyond a gesture, Giese in [4] proposed a
model for segmenting and morphing complex movement se-
quences. The complex movement sequence is divided into
segments. Matched movement segments are then combined



with each other to build a morphable motion trajectory
by calculating spatial and temporal displacement between
them. For example, these morphable sequences are able to
naturally represent movement transitions between different
people performing martial arts with different styles. This
method was used to analyze and synthesize a predetermined
sequence but not to adapt it to a variable environment. The
model proposed in this paper can align movements in a
more limited way than morphable motion segments but can
adapt them to environmental changes.

The closest work to the model presented in this paper is
done by Banarer [1]. He described a method for learning
movement and to make it adaptive to start and end posi-
tions. His idea is to use a topological map called Dynamic
Cell Structure (DCS) network [3]. The DCS network learns
the space of valid arm configurations and the shortest path
of configurations between the start and end positions repre-
sents the learned movement. The model he proposed does
not generalize well because as new paths are learned be-
tween new start and end positions the network grows very
quickly and cannot cope with the curse of dimensionality.
He demonstrated his algorithm to learn a single gesture and
also obstacle avoidance for a single fixed obstacle.

To sum up, the disadvantage of this model is that it is
not biologically motivated and at the moment cannot regis-
ter very complex trajectories. However it can successfully
adapt to the nonlinearities of movement in a changing en-
vironment by learning and generalizing which goes beyond
a simple parameterized gesture or an explicitly predefined
motion sequence.

2. Learning Model

After describing the problem, this section will develop
the concept for learning movement and then it describes
how this model is implemented.

In order to develop a system which is able to generalize
movement, we need a representation of movement space.
The first step is to learn the mechanics of movement it-
self and the second is to learn how movement changes with
start and end configuration and environmental changes. The
mechanics of movement are called intrinsic features. The
changes of intrinsic feature with respect to absolute position
and environment are called extrinsic features. The intrinsic
features describe movement primitives that are character-
istic for the human being. These features are the relative
coordination of joints in space and time. Extrinsic features
can be characterized as the variation of intrinsic feature in
the space of all possible absolute start and end positions of
the joints and any environmental parameters such as obsta-
cle positions.

The difference between intrinsic and extrinsic features
that characterizes movement enables the formulation of a

Figure 1. Example of aligning a training set.

learning model that directly reflects this idea. The learning
model consists of two parts: The first part is responsible for
learning intrinsic features which uses principal component
analysis (PCA) applied on the aligned trajectories of the
joints to reduce the dimensionality. The second part mod-
els the extrinsic features using a special type of an adaptive
topological map called the dynamic cell structure (DCS)
network to learn nonlinearities of this mapping.

Intrinsic features using PCA We assume throughout this
paper a kinematic chain of 3 joints representing a human
arm with shoulder, elbow and hand which has four degrees
of freedom: 2 for shoulder and 2 for elbow.

To perform statistical analysis, several samples of mo-
tion sequences are recorded. In each motion sequence the
positions of the joints are recorded with their time.

The first step is to interpolate between the 3D points from
the stereo cameras of each movement sequence. We end up
with a set of parametric curves {pk(t)} for each motion se-
quence k where pk(t) returns the position vector of all the
joints at time t. After that, each pk(t) is sampled at n equal
time intervals from the start of the sequence k to its end
forming a vector of positions vk = [p1,k,p2,k . . .pn,k].
Then the Euclidean coordinates of each vk are converted
to relative orientation angles (φ, θ) in spherical coordinates
Sk = [s1,k, s2,k, . . . sn,k]. After this we align the trajecto-
ries taken by all the joints with respect to each other. This
alignment makes trajectories comparable with each other in
the sense that all extrinsic features are eliminated leaving
only the deformations of the sample set from the mean. To
accomplish this, we define a distance measure between two
trajectories as the mean radial distance between correspond-
ing direction vectors formed from the orientation angles of
the joints. Two transformaions are applied on trajectories to
minimize the distance between them: 3D rotationR and an-
gular scaling between the trajectory’s direction vectors by a
scale factor s. An example of aligning is in fig. 1. The left
image shows hand and elbow direction trajectories before
alignment and the right is after. We see how the hand tra-
jectories cluster together and the mean trajectory becomes
smoother.



Figure 2. Movements of the arm.

Figure 3. Movement modes.
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component analysis is applied on X yielding latent vectors
Ψ = [ψ1|ψ2| . . . |ψn]. Only the first q components are used
where q is chosen such that the components cover some per-
centage of the data Ψq = [ψ1|ψ2| . . . |ψq]. Any point in
eigenspace can be then converted to the nearest plausible
data sample using the following equation

S = S + Ψqb (1)

where S = 1
p

∑p
k=1 Sk and b is an eigenpoint.

The latent coordinates b represent the linear combina-
tion of deformations from the average paths taken by the
joints. An example of that can be seen in fig. 3. In this
example, the thick lines represent the mean path and the
others represent ±3 standard deviations in the direction of
each eigenvector which are called modes. The first mode
(left) represents the twisting of the hand’s path around the
elbow and shoulder. The second mode (middle) shows the
coordination of angles when moving the hand and elbow
together. The third mode (right) represent the bulginess of
the path taken by the hand and shoulder around the mid-
dle. We see that these deformation modes have meaningful
mechanical interpretations.

Extrinsic features using DCS The PCA performs a lin-
ear transform (i.e. rotation and projection in (1)) which

maps the trajectory space into eigenspace. We need a an-
other model that can learn nonlinearities of the mapped
eigenspace as a function of constraint space which in this
case consists of start and end position of the kinematic chain
and other task specific parameters such as obstacle posi-
tions. We need to associate every point in the constraint
space with a point in eigenspace that best describes the ac-
tual trajectory performed by the human being. To learn this
association we use a special type of self organizing maps
called dynamic cell structure [3]. This is a neural network
which is a hybrid between radial basis networks and Koho-
nen maps. The network adapts to the nonlinear distribution
by growing dynamically to fit the samples until some error
measure is minimized. The combination of DCS to learn
nonlinearities and PCA to reduce dimension enables us to
reconstruct realistic trajectories and then fit them to con-
straint space.

3. Experiments
As mentioned in section 2, the learning model tries to re-

construct the nonlinear trajectories in the space of start-end
relative positions. We have to measure how close the model-
generated trajectories are to the human’s. For this purpose it
is useful to compare the distance between the model and the
human to some worst case trajectory. The mean trajectory
is chosen as the worst case because it corresponds to the
zero vector in eigenspace b = 0 in (1) and represents a path
with no deformations. The b = 0 vector is what the DCS
network outputs when it has not learned anything. Next, we
describe the experiment and the validation using the mean.

A marker-based tracker which uses a pair of stereo cam-
eras tracked an arm at a rate of 8 frames per second. A set of
100 measurements were made for an arm consisting of three
joints. The measurements were divided into three groups of
movements. Each group had roughly an equal number of
samples (about 33) and begins with the same start position
but different end positions as shown in the fig. 2.

Fig. 4 shows a contour plot of each eigencoordinate cor-
responding to the modes in fig. 3 distributed over the in-
put space which in this figure is the orientation angles of
the hand (points represent samples). We see that the first
three eigenvalues have a smooth distribution with a single
global maximum. The first component explained 72% of
the training samples, the second 11% and the third 3%. All
subsequent components are noise due to measuring errors.
Each distribution is unimodal (i.e. brightest region contains
global maximum) and nonlinear. The points represent the
samples. If more samples are added to cover the space then
the distributions will become more crisp but will not change
significantly.

The performance of the DCS network was first tested
by a K-fold cross validation where all the samples of the
three movements were randomized. This was repeated for
10 runs. In each run the DCS network was trained and the



Figure 4. Distribution of eigenvalues.

number of neurons varied between 6 to 11 when the out-
put was set to an error bound of 0.7 standard deviations in
eigenspace. In 80% of the cases the DCS-trajectory was
closer to the sample trajectory than the mean trajectory. The
average distance between the DCS-trajectory and the data
sample was 3.9◦ and the standard deviation was 2.1◦. The
average distance between the mean trajectory and the data
samples was 7.9◦ and the standard deviation was 3.5◦. This
shows that the DCS network was able to generalize well
with a small sample size.

We can compare with Banarer [1] who fixed the DCS
network with an upper bound of 15 neurons to learn a single
gesture and not 3 as in our experiment. He used simulated
data of 70 samples with a random noise of up to 5◦ and the
mean error was 4.3◦ compared to our result 3.9◦ on real
data. The measurement error of the tracker is estimated to
be 4.6◦ standard deviation which accounts for the similar
mean errors. This shows that our model scales well with
variation.

Finally, we demonstrate the algorithm for obstacle avoid-
ance. In this case 100 measurements were taken for the arm
movement with different obstacle positions as shown in fig
5. The black lines show the 3D trajectory of the arm avoid-
ing the obstacle which has a variable position determined
by the distance B. We see how the hand backs away from
the obstacle and the elbow goes down and then upward to
guide the hand to its target. A is the Euclidian distance be-
tween the start and end positions of the hand. The grey lines
represent a free path without obstacles. In this case we need
to only take the first eigenmode from PCA b1 to capture the
variation of trajectories due to obstacle position. We define
the relative position of the obstacle to the movement as sim-
ply p = B

A . The DCS network learns the mapping between
p and b1 which required only 3 neurons because the relation
between p and b1 was nearly linear. The learned movement
can thus be used to avoid any obstacle between the start and
end positions regardless of orientation or movement scale.
This demonstrates how relatively easy it is to learn new spe-
cialized movements that are adaptive.

4. Conclusion

A model for learning human movement was developed
and tested. This model learns intrinsic features and learns

Figure 5. Trajectory for obstacle avoidance.

the distribution of these features in extrinsic space. Intrin-
sic features were extracted by principal component analysis
and extrinsic features are learned by a DCS network. The
experimental results look promising because the model is
able to scale well with data and can synthesize trajectories
comparable to the human movement and generalize them to
some extent. It is also able to model task specific extrinsic
features like obstacle avoidance.

In the future we plan to explore how to integrate posi-
tional and more task specific extrinsic features to achieve
more adaptivity.
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