
Imitation Learning and Transferring of Human

Movement and Hand Grabbing to Adapt to

Environment Changes

Stephan Al-Zubi and Gerald Sommer

Cognitive Systems, Christian Albrechts University, Kiel, Germany,
{sa, gs}@ks.informatik.uni-kiel.de

Abstract. We propose a model for learning the articulated motion of
human arm and hand grabbing. The goal is to generate plausible tra-
jectories of joints that mimic the human movement using deformation
information. The trajectories are then mapped to a constraint space.
These constraints can be the space of start and end configuration of the
human body and task-specific constraints such as avoiding an obstacle,
picking up and putting down objects. Such a model can be used to de-
velop humanoid robots that move in a human-like way in reaction to
diverse changes in their environment and as a priori model for motion
tracking. The model proposed to accomplish this uses a combination of
principal component analysis (PCA) and a special type of a topological
map called the dynamic cell structure (DCS) network. Experiments on
arm and hand movements show that this model is able to successfully
generalize movement using a few training samples for free movement,
obstacle avoidance and grabbing objects. We also introduce a method to
map the learned human movement to a robot with different geometry
using reinforcement learning and show some results.

1 Introduction

Human motion is characterized as being smooth, efficient and adaptive to the
state of the environment. In recent years a lot of work has been done in the
fields of robotics and computer animation to capture, analyze and synthesize this
movement with different purposes [1–3]. In robotics there has been a large body
of research concerning humanoid robots. These robots are designed to have a one
to one mapping to the joints of the human body but are still less flexible. The
ultimate goal is to develop a humanoid robot that is able to react and move in its
environment like a human being. So far the work that has been done is concerned
with learning single gestures like drumming or pole balancing which involves
restricted movements primitives in a simple environment or a preprogrammed
movement sequence like a dance. An example where more adaptivity is needed
would be a humanoid tennis robot which, given its current position and pose
and the trajectory of the incoming ball, is able to move in a human-like way to
intercept it. This idea enables us to categorize human movement learning from
simple to complex as follows: (A) Imitate a simple gesture, (B) learn a sequence

of gestures to form a more complex movement, (C) generalize movement over the
range allowed by the human body, and (D) learn different classes of movement
specialized for specific tasks (e.g. grasping, pulling, etc.).

This paper introduces two small applications for learning movement of type
(C) and (D). The learning components of the proposed model are not by them-
selves new. Our contribution is presenting a supervised learning algorithm which
learns to imitate human movement that is specifically more adaptive to con-
straints and tasks than other models. This also has the potential to be used for
motion tracking where more diverse changes in movement occur. We will call the
state of the environment and the body which affects the movement as constraint
space. This may be as simple as object positions which we must reach or avoid,
a target body pose or more complex attributes such as the object’s orientation
and size when grabbing it. The first case we present is generating realistic trajec-
tories of a simple kinematic chain representing a human arm. These trajectories
are adapted to a constraint space which consists of start and end positions of the
arm as shown in fig. 4. The second case demonstrates how the learning algorithm
can be adapted to the specific task of avoiding an obstacle where the position
of the obstacle varies. The third case demonstrates how hand grabbing can be
adapted to different object sizes and orientations.

The model accomplishes this by aligning trajectories. A trajectory is the se-
quence of body poses which change in time from the start to the end of a move-
ment. Aligning trajectories is done by scaling and rotation transforms in angular
space which minimizes the distance between similar poses between trajectories.
After alignment we can analyze their deformation modes which describe the
principal variations of the shape of trajectories. The constraint space is mapped
to these deformation modes using a topological map.

In addition to generating adaptive human movement, We also introduce in
this paper a reinforcement learning algorithm which enables us to transfer the
learned human movement to a robot with a different embodiment by using re-
inforcement learning. This is done by learning similar trajectories of the human
hand and the robot’s end effector. A reward function measures this similarity as
a mixture of constraint fitting in the robot’s workspace and the similarity of the
trajectory shape to the human’s. The reinforcement learning algorithm explores
trajectory space using a spectral representation of trajectories in order to reduce
the state space dimensionality. A special type of DCS networks called QDCS is
used for learning.

The Combination of adaptive movement learning and movement transfer
enables a complete movement learning and transfer system architecture. This
consists of two neural networks (NN) as shown in fig. 1. The first network re-
constructs human movement and the second transforms this movement to the
robot space using reinforcement learning.

Next, we describe an overview of the work done related to movement learn-
ing and transferring and compare them with the proposed model. After that the
adaptive movement algorithm will be presented followed by the transfer algo-
rithm and then experimental results.

Fig. 1. Architecture for learning movement and transferring it to a robot.

2 State of the art

There are two representations for movements: pose based and trajectory based.
We will describe next pose based methods.

Generative models of motion have been used in [2, 1] in which a nonlinear
dimensionality reducing method called Scaled Gaussian Latent Variable Model
(SGPLVM) is used on training samples in pose space to learn a nonlinear latent
space which represents the probability distribution of each pose. Such a likelihood
function was used as a prior for tracking in [1] and finding more natural poses
for computer animation in [2] that satisfy constraints such as that the hand has
to touch some points in space. Another example of using a generative model for
tracking is [4] in which a Bayesian formulation is used to define a probability
distribution of a pose in a given time frame as a function of the previous poses
and current image measurements. This prior model acts as a constraint which
enables a robust tracking algorithm for monocular images of a walking motion.
Another approach using Bayesian priors and nonlinear dimension reduction is
used in [5] for tracking.

After reviewing pose probabilistic methods, we describe in the following tra-
jectory based methods. Schaal [3] has contributed to the field of learning move-
ment for humanoid robots. He describes complex movements as a set of move-
ment primitives (DMP). From these a nonlinear dynamic system of equations are
defined that generate complex movement trajectories. He described a reinforce-
ment learning algorithm that can efficiently optimize the parameters (weights) of
DMPs to learn to imitate a human in a high dimensional space. He demonstrated
his learning algorithm for applications like drumming and a tennis swing.

To go beyond a gesture imitation, in [6] a model for segmenting and morphing
complex movement sequences was proposed. The complex movement sequence
is divided into subsequences at points where one of the joints reaches zero ve-
locity. Dynamic programming is used to match different subsequences in which

some of these key movement features are missing. Matched movement segments
are then combined with each other to build a morphable motion trajectory by
calculating spatial and temporal displacement between them. For example, mor-
phable movements are able to naturally represent movement transitions between
different people performing martial arts with different styles.

Another aspect of motion adaptation and morphing with respect to con-
straints comes from computer graphics on the topic of re-targeting. As an ex-
ample, Gleicher [7] proposed a nonlinear optimization method to re-target a
movement sequence from one character to another with an identical structure
but different segment lengths. The problem is to satisfy both the physical con-
straints and the smoothness of movement. Physical constraints are contact with
other objects like holding the box.

The closest work to the model presented in this paper is done by Banarer [8].
He described a method for learning movement adaptive to start and end posi-
tions. His idea is to use a topological map called Dynamic Cell Structure (DCS)
network [9]. The DCS network learns the space of valid arm configurations. The
shortest path of valid configurations between the start and end positions rep-
resents the learned movement. He demonstrated his algorithm to learn a single
gesture and also obstacle avoidance for a single fixed obstacle.

3 Contribution

The main difference between pose based methods and our approach is that
instead of learning the probability distribution in pose space, we model the
variation in trajectory space (each trajectory being a sequence of poses). This
representation enables us to generate trajectories that vary as a function of en-
vironmental constraints and to find a more compact representation of variations
than allowed by pdfs in pose space alone. Pose pdfs would model large variations
in trajectories as a widely spread distribution which makes it difficult to trace
the sequence of legal poses that satisfy the constraints the human actually makes
without some external reference like motion sequence data.

Our approach models movement variation as a function of the constraint
space. However, style based inverse kinematics as in [2] selects the most likely
poses that satisfy these constraints. This works well as long as the pose con-
straints do not deviate much from the training data. This may be suitable for
animation applications but our goal here is to represent realistic trajectories
adapted to constraints without any explicit modeling. Banarer [8] uses also a
pose based method and the model he proposed does not generalize well because
as new paths are learned between new start and end positions, the DCS network
grows very quickly and cannot cope with the curse of dimensionality. Our DCS
network generalizes over trajectory space not poses enabling more adaptivity.

Gleicher [7] defines an explicit adaptation model which is suitable to generate
a visually appealing movement but requires fine tuning by the animator because
it may appear unrealistic. This is because it explicitly morphs movement using
a prior model rather than learning how it varies in reality as done in [2].

In the case of Schaal [3], we see that DMPs although flexible are not designed
to handle large variations in trajectory space. This is because reinforcement
learning adapts to a specific target human trajectory.

Morphable movements [6] define explicitly the transition function between
two or more movements without considering the constraint space. Our method
can learn the nonlinear mapping between constraint space and movements by
training from many samples. The variation of a movement class is learned and
not explicitly pre-defined.

To sum up, we have a trajectory based learning model which learns the map-
ping between constraints and movements. The movement can be more adaptive
and generalizable over constraint space. It learns movements from samples and
avoids explicit modeling which may generate unrealistic trajectories.

4 Learning Model

After describing the problem, this section will develop the concept for learning
movement and then it describes how this model is implemented.

In order to develop a system which is able to generalize movement, a number
of reductions have to be made to the high dimensional space of start - end
configurations or any other envirounmental constraints. This reduction is done
in two steps. The first step is to learn the mechanics of movement itself and the
second is to learn how movement changes with start - end configuration. The
mechanics of movement are called intrinsic features. The changes of intrinsic
feature with respect to relative position are called extrinsic features. The intrinsic
features describe movement primitives that are characteristic for the human
being. These features are the following:

1. The acceleration and velocity of joints as they move through space. For
example a movement generally begins by a joint accelerating at the start
then decelerating as it nears its end position.

2. The nonlinear path taken by the joints to reach their destination. This is
what characterizes smooth human movement. Otherwise the movement will
look rigid similar to inverse kinematics used by robots. This nonlinearity is
not only seen in simple movements like moving from point a to b but also
it can be seen in more complex movements for which it is necessary like
obstacle avoidance and walking.

3. The coordination of joints with respect to each other in time. This means
that joints co-deform in space and time working together to achieve their
goal.

After modeling intrinsic features, extrinsic features can be characterized as
the variation of intrinsic feature in the space of all possible start and end posi-
tions of the joints and any environmental constraints such as obstacle positions.
Extrinsic features describe:

1. The range of freedom of joints.

2. The movement changes with respect to rotation and scale. As an example,
we can consider how the movement changes when we draw the letter A in
different directions or with different sizes.

The difference between intrinsic and extrinsic features that characterizes
movement enables the formulation of a learning model. This model consists
of two parts: The first part is responsible for learning intrinsic features which
uses principal component analysis (PCA). It is applied on the aligned trajec-
tories of the joints to reduce the dimensionality. The second part models the
extrinsic features using a special type of an adaptive topological map called the
dynamic cell structure (DCS) network. The DCS learns the nonlinear mapping
from the extrinsic features to intrinsic features that are used to construct the
correct movement that satisfies these extrinsic features.

In the following subsections we will take a detailed look at these mechanisms.

4.1 Intrinsic features using PCA

The algorithm which will be used to extract intrinsic features consists of the
following steps: (1) Interpolation, (2) Sampling, (3) Conversion to orientation
angles, (4) Alignment and (5) Principal component analysis. The main step is
alignment in which trajectories traced by joints in space are aligned to each
other to eliminate differences due to rotation and scale exposing the mechanics
of movement which can then be analyzed by PCA. In the following paragraphs
each step of the algorithm will be explained in detail as well as the reasons behind
it. As an example, we will assume throughout this paper that there is a kinematic
chain of 2 joints: shoulder and elbow. Each joint has 2 degrees of freedom (φ, θ)
which represent the direction of the corresponding limb in spherical coordinates.

To perform statistical analysis, we record several samples of motion se-
quences. In each motion sequence the 3D positions of the joints are recorded
with their time. Let us define the position measurements of joints of a move-
ment sequence (k) as {(xi,j,k, yi,j,k, zi,j,k, ti,j,k)} where (x, y, z) is the 3D position
of the joint, t is the time in milliseconds from the start of the motion. The index
i is the position (frame), j specifies the marker and k specifies the the movement
sequence.

The first step is to interpolate between the points of each movement sequence.
Usually a 2nd degree B-spline is sufficient to obtain a good interpolation. We
end up with a set of parametric curves {pk(t)} for each motion sequence k where
pk(t) returns the position vector of all the joints at time t.

The second step is to sample each pk(t) at equal time intervals from the start
of the sequence t = 0 to its end t = tendk

. Let n be the number of samples then we
form a vector of positions vk = [p1,k,p2,k . . .pn,k] where pi,k = pk((i−1

n−1)tendk
).

This regular sampling at equal time intervals enables us to represent trajectories
with a fixed length vector which facilitates statistical analysis on a population
of such vectors. This vector form also represents implicitly the acceleration and
velocity of these paths through variability of distances between points. This is the
reason why time was used as the variable in the parametric curves. In cases where

motion is more complex and consists of many curves, this method automatically
samples more points of high curvature than points of lower curvature. This places
comparable corner points of complex paths near each other and thus does not
normally necessitate more complex registration techniques to align the curves as
long as the trajectories have up to 4-5 corners.

The third step is to convert the Euclidean coordinates vk to direction angles
in spherical coordinates Sk = [s1,k, s2,k, . . . sn,k] where si,k is the vector of di-
rection angles for all the joints. This means that a given joint j in a kinematic
chain with some position pj = (xj , yj , zj) is attached to its parent with a posi-
tion pj−1 = (xj−1, yj−1, zj−1) and since the distance D between them is constant
we need only to represent the direction of joint j with respect to joint j − 1.
This can be done by taking the relative coordinates ∆p = pj − pj−1 and then
convert ∆p to spherical coordinates (ρj , φj , θj) where ρj = D is constant. After
that, we take only the direction angles (φj , θj) as the position of the joint. For
a kinematic chain of m joints we will need m − 1 such direction angles because
the first joint is the basis of the chain therefore has no direction.

The forth step is to align the paths taken by all the joints with respect
to each other. This alignment makes paths comparable with each other in the
sense that all extrinsic features are eliminated leaving only the deformations
of the path set from the mean. In order to accomplish this, we first convert
every direction point (φj , θj) of a joint j to a 3D unit vector ûj = ai + bj +
ck that corresponds to the direction of the joint at some point in time. With
this representation we can imagine that a moving joint traces a path on a unit
sphere ûj(t) as the paths shown in fig. 2. Given a kinematic chain of m joints
moving together, we can represent these moving joints as m − 1 moving unit
vectors U(t) = [û1(t), . . . ûj(t), . . . ûm−1(t)]. Sk samples the path at equal time
intervals t0, . . . , tnk

that correspond to Ui = U(ti), i = 0 . . . tnk
. This enables us

to represent the path as a matrix of direction vectors W = [U0, . . .Unk
]′. The

reason why we use direction vector representation W is because it facilitates
alignment of paths with each other by minimizing their distances over rotation
and scale transforms. To accomplish this, we define a distance measure between
two paths W1,W2 as the mean distance between corresponding direction vectors
of both paths (i.e. corresponding joints j at the same time ti)

pathdist(W1,W2) =
1

|W1|
∑

∀(ûi,jǫW1,v̂i,jǫW2)

dist(ûi,j , v̂i,j) (1)

where the distance between two direction vectors is simply the angle between

dist(û, v̂) = cos−1(û · v̂) (2)

Two transforms are used to minimize the distances between the paths:

1. Rotation (R): When we multiply each direction vector in the path with a
rotation matrix R, we can rotate the whole path as shown in fig. 2.

2. Scaling: We can scale the angles between path points. This assumption is
made by the observation that movements are scalable. For example, when

Fig. 2. Alignment of two trajectories by scale and rotation. The trajectories are a
sequence of direction vectors tracing curves on a unit sphere.

Fig. 3. Example of aligning a training set of trajectories represented as direction vectors
tracing curves on a unit sphere. Left before alignment and right after. We see how the
hand trajectories cluster together and the mean becomes smoother.

we draw a letter smaller and then bigger, we basically move in the same
way but with larger angles as shown in fig. 2. This is of course a simplifying
assumption that is not exactly true but it helps us later to fit start-end
positions of variable arc-length distances. To scale the path we simply choose
a reference direction vector on the path and then shift each direction vector
in the direction of the arc length between them by multiplying the arc length
θ with a scale factor s as depicted in fig. 2.

Minimizing distances can be done by simple gradient descent over the scale
parameter s and rotation angles around the three axes θx, θy, θz defining a rota-
tion matrix R = Rx(θx)Ry(θy)Rz(θz). When extending this algorithm to align
more than two paths, we can do that by computing the mean path W and then
fitting all the sample paths {W1, . . . ,Wp} to the the mean. We repeat this cycle
until the mean path W converges. The mean path is initialized by an arbitrary
sample W = Wj . It is computed from aligned samples in each iteration step

Start position

Movement1

Movement 2

Movement 3

Fig. 4. Three movements of the arm that all begin with the same start position (left
image), the rest are end positions.

by summing the corresponding direction vectors from all the sample paths and

then normalizing the sum W =

∑
i
Wi

|
∑

i
Wi|

. An example of aligning is in fig. 3.

The fifth step is to convert the aligned trajectories back to the angular rep-
resentation and form a data matrix of all p aligned motion sequences X =
[ST

1 . . .ST
k . . .ST

p]T . Principal component analysis is applied on X yielding la-
tent vectors Ψ = [ψ1, ψ2, . . . , ψn]. Only the first q components are used where
q is chosen such that the components cover a large percentage of the data
Ψq = [ψ1, ψ2, . . . , ψq]. Any point in eigenspace can be then converted to the
nearest plausible data sample using the following equation

S = S + Ψqb (3)

where S = 1
p

∑p

k=1 Sk and b is the column vector of an eigenpoint.
The inverse transform from eigenspace to trajectories is approximated by

b = Ψ′
q(S − S) (4)

The latent coordinates b represent the linear combination of deformations
from the average paths taken by the joints. An example of that can be seen in
fig. 5. In this example, the thick lines represent the mean path and the others
represent ±3 standard deviations in the direction of each eigenvector which are
called modes. The first mode represents the twisting of the hand’s path around
the elbow and shoulder. The second mode shows the coordination of angles when
moving the hand and elbow together. The third mode represent the bulginess of
the path taken by the hand and shoulder around the middle. We see that these
deformation modes have meaningful mechanical interpretations.

4.2 Extrinsic features using DCS

PCA performs a linear transform (i.e. rotation and projection in (3)) which maps
the trajectory space into the eigenspace. The mapping between constraint space

Fig. 5. The first three variation modes of a kinematic chain representing the shoulder,
elbow and hand constructed in 3D space. The middle thick line is the mean trajectory
and the others represent ±1,±2,±3 standard deviations along each eigenvector.

Fig. 6. Distribution of eigenvalues (bright regions represent maxima) in the angular
space of the end position of the hand.

and eigenspace is generally nonlinear. To learn this mapping we use a special type
of self organizing maps called Dynamic Cell Structure which is a hybrid between
radial basis networks and topologically preserving maps [9]. DCS networks have
many advantages: They have a simple structure which makes it easy to interpret
results, they adapt efficiently to training data and they can cope with changing
distributions. They consist of neurons that are connected to each other locally
by a graph distributed over the input space. These neurons also have radial
basis functions which are Gaussian functions used to interpolate between these
neighbors. The DCS network adapts to the nonlinear distribution by growing
dynamically to fit the samples until some error measure is minimized. When
a DCS network is trained, the output bDCS(x) which is a point in eigenspace
can be computed by summing the activations of the best matching neuron (i.e.
closest) to the input vector x representing a point in constraint space and the

local neighbors to which it is connected by an edge which is defined by the
function Ap(x). The output is defined as

bDCS(x) = fnrbf
P (x) =

∑
i∈Ap(x) bih(‖ x − ci ‖ /σi)∑
j∈Ap(x) h(‖ x − cj ‖ /σj)

, (5)

where ci is the receptive center of the neuron i, bi represents a point in eigenspace
which is the output of neuron i, h is the Gaussian kernel and σi is the width of
the kernel at neuron i.

The combination of DCS to learn nonlinear mapping and PCA to reduce
dimension enables us to reconstruct trajectories from b(x) using (3) which are
then fitted to the constraint space by using scale and rotation transformations.
For example, a constructed trajectory is fitted to a start and end position.

When using the network to generate new motion paths, the start-end posi-
tions Θ are given to the network. It returns the deformation modes b of the
given start-end position. We must use b to reconstruct the path between the
start and positions given by Θ. This is accomplished by converting b to angular
representation S given by (3). S is converted to direction vector representation
W. We take the start and end positions of W and find the best rotation and
scale transform that fits it to Θ using the same method shown in the previ-
ous section. The resulting path represents the reconstruction that contains both
intrinsic and extrinsic features from the learning model.

5 Learning Model for Transferring Movement to a robot

After building a model which can generate human movement as a function of
constraint space, we will introduce in this section a learning algorithm to transfer
this movement to the robot. The main problem here is how to transfer human
movement to a manipulator with a different geometry and degrees of freedom.
There are many solutions proposed in literature which basically fall into two
categories: The first class looks only at the effects of actions on the environment
[10]. If the effects of goal sequences are the same on the environment then the
robot movement is considered equivalent to the humans’. The other category
defines some ad hoc function which measures the similarity between the robot
and human movement [6]. This function can also be a mixture of degree of goal
satisfaction and pose similarity. In this paper we will solve this problem by using
a reinforcement learning approach rather than explicitly defining the function.
This approach will mix the two mapping categories. Specifically, we will use
similarities of trajectories between the end effector and the hand. This simplifies
the problem and enables us to define a meaningful intuitive mapping for any
manipulation task involving manipulation of objects. The reward function r will
be a weighted mixture of similarities of trajectories and constraint satisfaction
as follows

r(u,v, C) = α1f1(u,v) + α2f2(v, C) (6)

where u is the trajectory of the human hand, v is the trajectory of the robot
end effector. C is the constraints to be satisfied in the robots workspace. α1, α2

are wieghts, f1 measures the similarity between the shapes of trajectories and
f2 mesures constraint satisfaction in the robot space.

This approach is similar to programming by demonstration (POD) in [11, 12]
where a human teaches the robot to move in a similar way to avoid obstacles for
example. The reinforcement learning approach suffers from the drawback that
when the action space has a high dimensionality, the solution will not converge
in a reasonable time. For this reason we will use a frequency representation
of trajectories where only the first few components are used. Specifically, we
choose a discrete cosine transform representation of trajectories which uses only
real numbers. A trajectory is sampled at N points in 3D space equidistant in
time pn, n = 1 . . . N . This transform is

ak = wk

N∑

n=1

pncos(
π(2n − 1)(k − 1)

2N
), k = 1, . . . , N, (7)

wk = {
1√
N

,k=1√
2

N
,2≤k≤N

(8)

The reinforcement learning represents trajectories through the parameters
ak, k = 1...m that where m is some small dimension. The robot trajectory is
reconstructed using inverse discrete cosine transform applied on a zeros padded
vector of length N : (a1,a2, . . . ,am, 0, . . . , 0). This reduces the action space di-
mension enabling a fast converging solution. This is the advantage of using a
spectral representation of trajectories for reinforcement learning. The state is
represented as the vector (a1,a2, . . . ,am,C) = (Θ,C) where C is the constraint
that is satisfied by the trajectory that is reconstructed from Θ. The action ap-
plied on some state is some small increment ∆Θ added to Θ to get a new
modified trajectory.

The reinforcement learning begins exploring the states of trajectories that
optimize the reward function by incrementally modifying the trajectory param-
eters for some initial constraint C0. Once the optimal trajectory is found, new
optimal trajectories for a new constraint C1 close to C0 is learned. This will
exploit the optimal trajectory learned for C0 as a prior to learn quickly the
optimal trajectory of C1. The process continues for all constraints in constraint
space that are needed to be learned. When fully trained, we can use the QDCS
network to find the best robot trajectory that satisfies a given constraint.

A continuous version Q-learning is used to learn the optimal trajectory. In
it we replace the discrete Q table in normal Q learning with a DCS network
that learns the Q values online as demonstrated in [9]. The QDCS network uses
online learning to update its values. The algorithm is depicted in figure 7.

Initialize the QDCS network arbitrarily.
For each constraint C do

Initialize the start state Θ

Repeat
choose an action ∆Θ, observe Θ′ = Θ + ∆Θ and reward r

update online QDCS(C,Θ, ∆Θ) by adding:
α[r + γmax∆Θ′QDCS(C,Θ′, ∆Θ′) − QDCS(C,Θ, ∆Θ)]

Θ ← Θ′

Until Θ converges to a good solution

Fig. 7. Learning optimal trajectories using QDCS

6 Experiments

In order to record arm movements, a marker-based stereo tracker was developed
in which two cameras track the 3D position of three markers placed at the
shoulder, elbow and hand at a rate of 8 frames per second. This was used to
record trajectory samples. Two experiments were conducted to show two learning
cases: moving between two positions and avoiding an obstacle.

The first experiment demonstrates that our learning model reconstructs the
nonlinear trajectories in the space of start-end positions. A set of 100 measure-
ments were made for an arm movement consisting of three joints. The movements
had the same start position but different end positions as shown in Fig. 4.

The first three eigenvalues have a smooth nonlinear unimodal distribution
with respect to the start-end space as shown in Fig. 6. The first component
explained 72% of the training samples, the second 11% and the third 3%.

The performance of the DCS network was first tested by a k-fold cross vali-
dation on randomized 100 samples. This was repeated for k = 10 runs. In each
run the DCS network was trained and the number of neurons varied between 6
to 11. The average distance between the DCS-trajectory and the data sample
was 3.9◦ and the standard deviation was 2.1◦. This shows that the DCS network
was able to generalize well using only a small sample size (about 100).

We can compare with Banarer [8] who fixed the DCS network with an upper
bound of 15 neurons to learn a single gesture and not many as in our experi-
ment. He used simulated data of 70 samples with a random noise of up to 5◦ and
the mean error was 4.3◦ compared to our result of 3.9◦ on real data. The mea-
surement error of the tracker is estimated to be 4.6◦ standard deviation which
accounts for the similar mean errors. This shows that our model scales well.

Next, we demonstrate the algorithm for obstacle avoidance. In this case 100
measurements were taken for the arm movement with different obstacle positions
as shown in Fig. 8. The black lines show the 3D trajectory of the arm avoiding
the obstacle which has a variable position determined by the distance B. We see
how the hand backs away from the obstacle and the elbow goes down and then
upward to guide the hand to its target. A is the Euclidian distance between the
start and end positions of the hand. The grey lines represent a free path without

Fig. 8. Trajectory for obstacle avoidance
in 3D space.

Fig. 9. Variation of arm trajectory
with respect to the obstacle.

obstacles. In this case we need to only take the first eigenvector from PCA to
capture the variation of trajectories due to obstacle position. This deformation
mode is shown in Fig. 9 We define the relative position of the obstacle to the
movement as simply p = B

A
. The DCS network learns the mapping between

p and the eigenvalue with only 5 neurons. The learned movement can thus be
used to avoid any obstacle between the start and end positions regardless of
orientation or movement scale. This demonstrates how relatively easy it is to
learn new specialized movements that are adaptive to constraints.

Finally, this model was demonstrated on hand grabbing. In this case 9 mark-
ers were placed on the hand to track the index and thumb fingers using a monoc-
ular camera as in Fig. 10. The 2D positions of the markers were recorded at a
rate of 8.5 frames per second from a camera looking over a table. The objects to
be grabbed are placed over the table and they vary by both size and orientation.
The size ranged from 4 to 12 cm and orientation ranged from 0 to 60 degrees as
depicted in Fig. 11 and 12. The tracker recorded 350 grabbing samples of which
280 was used for training the DCS and 70 for testing. The DCS learned the vari-
ation of movement with 95 neurons and PCA reduced the dimension from 600
to just 23. The first two modes characterize variation of scale and orientation as
shown in Fig. 10. Fig. 11 and 12 depict an example comparison between grab-
bing movement generated by the DCS and an actual sample. Below we used two
measures that characterize well grabbing: distance between the tips of the index
finger and the thumb and the direction of the index finger’s tip with respect the
the direction of the arm. We see that the DCS and sample profiles look very
similar. In general, the model’s root mean square error for the first measure was
18 pixels for a 800 × 600 images and 8.5◦ for the second measure.

After presenting the experiments for movement generation, we demonstrate
some results for movement transfer. Fig. 13 shows a 2D human trajectory that a
robot has to learn. The markers (∗) are the constraints which represents the start
and end position that the robot must maintain. The discrete cosine transform
uses 8 coefficients: 4 for the x dimension and 4 for the y dimension. The algorithm

standard deviation= −3 standard deviation= +3

mode 1

mode 2

Fig. 10. The first two variation modes of grabbing.

0 20 40 60
50

100

150

200
Hand opening

time (t)

P
ix

el
s

0 20 40 60
0

20

40

60

80

Index fingure angle

time (t)

A
ng

le

DCS
Sample

DCS network Test sample

Fig. 11. Comparison between DCS and
and a grabbing movement for a 4 cm object
at 60◦ with respect to the hand.

0 20 40 60
200

250

300
hand openning

time (t)

P
ix

el
s

0 20 40 60
−50

−40

−30

−20

−10
Index finger angle

time (t)

A
ng

le

DCS
sample

DCS network Test sample

Fig. 12. Comparison between DCS
and and a grabbing movement for a
12 cm object at 0◦.

was able to learn the nearest trajectory after about 2000 itarations. The QDCS
was set to an upper bound of 200 neurons. The algorithm selects a random
action about 10% of the time and the action of maximum Q value the rest of
the time. This shows that the algorithm is able to learn in a reasonable time a
trajectory because the human motion and the constraints act as strong priors
to guide the low dimensional frequency representation of trajectories. Adapting
to more constraints is left as future work.

7 Conclusion

We proposed a learning model for generation of realistic articulated motion. The
model characterizes deformation modes that vary according to constraint space.
A combination of DCS network to learn the nonlinear mapping and PCA to
reduce dimensionality enables us to find a representation that can adapt to con-

Start Point Constraint

End Point constraint

Hand Trajectory

Learned Robot Trajectory

Fig. 13. Learned trajectory using start and end position constraints in 2D space

straint space with a few samples. This trajectory based method is more suited
for movement generation than pose based methods which are concerned with
defining priors for good fitting with image data such as tracking. The proposed
method models variation of movement with respect to constraints in a more clear
way than the previously proposed methods. The potential uses of our method is
in developing humanoid robots that are reactive to their environment and also
motion tracking algorithms that use prior knowledge of motion to make them ro-
bust. Three small applications towards that goal were experimentally validated.
We also proposed a trajectory based method that transfers the human move-
ment to a manipulator of a different embodiment using reinforcement leraning.
The method uses QDCS to exploit and expore the space of trajectories that fit
to constraints specified in robot space. This represents a natural extension of
the first algorithm that enables adaptive movement that is retargetable to any
robot manipulator system.

ACKNOWLEDGMENTS: The work presented here was supported by the the
European Union, grant COSPAL (IST-2003-004176). However, this paper does
not necessarily represent the opinion of the European Community, and the Eu-
ropean Community is not responsible for any use which may be made of its
contents.

References

1. Urtasun, R., Fleet, D.J., Hertzmann, A., Fua, P.: Priors for people tracking from
small training sets. In: International Conference on Computer Vision (ICCV).
(2005) 403–410

2. Grochow, K., Martin, S.L., Hertzmann, A., Popovic;, Z.: Style-based inverse kine-
matics. ACM Trans. Graph. 23(3) (2004) 522–531

3. Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.: Learning movement primitives.
In: International Symposium on Robotics Research (ISPR2003), Springer Tracts
in Advanced Robotics, Ciena, Italy (2004)

4. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3d human fig-
ures using 2d image motion. In: Proceedings of the 6th European Conference on
Computer Vision (ECCV ’00), London, UK, Springer-Verlag (2000) 702–718

5. Sminchisescu, C., Jepson, A.: Generative modeling for continuous non-linearly
embedded visual inference. In: Proceedings of the twenty-first International Con-
ference on Machine Learning (ICML ’04), New York, NY, USA, ACM Press (2004)

6. Ilg, W., Bakir, G.H., Mezger, J., Giese, M.A.: On the repersenation, learning
and transfer of spatio-temporal movement characteristics. International Journal of
Humanoid Robotics (2004)

7. Gleicher, M.: Retargeting motion to new characters. In: Proceedings of the
25th Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH ’98), New York, NY, USA, ACM Press (1998) 33–42

8. Banarer, V.: Struktureller Bias in neuronalen Netzen mittels Clifford-

Algebren. Technical Report 0501, Technische Fakultät der Christian-Albrechts-
Universität zu Kiel, Kiel (2005)

9. Bruske, J., Sommer, G.: Dynamic cell structure learns perfectly topology preserv-
ing map. Neural Computation 7(4) (1995) 845–865

10. Nehaniv, C., Dautenhahn, K.: Of hummingbirds and helicopters: An algebraic
framework for interdisciplinary studies of imitation and its applications. In: World
Scientific Press. (1999)

11. Jacopo Aleotti, S.C.: Trajectory clustering and stochastic approximation for robot
programming by demonstration. In: Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Edmonton, Alberta, Canada (2005)

12. J. Aleotti, S. Caselli, M.R.: Toward programming of assembly tasks by demonstra-
tion in virtual environments. In: 12th IEEE Int. Workshop on Robot and Human
Interactive Communication, Millbrae, California (USA) (2003)

