
J Math Imaging Vis (2011) 40: 305–325
DOI 10.1007/s10851-011-0263-5

Image Analysis by Conformal Embedding

Oliver Fleischmann · Lennart Wietzke · Gerald Sommer

Published online: 9 February 2011
© Springer Science+Business Media, LLC 2011

Abstract This work presents new ideas in isotropic multi-
dimensional phase based signal theory. The novel approach,
called the conformal monogenic signal, is a rotational in-
variant quadrature filter for extracting local features of any
curved signal without the use of any heuristics or steering
techniques. The conformal monogenic signal contains the
recently introduced monogenic signal as a special case and
combines Poisson scale space, local amplitude, direction,
phase and curvature in one unified algebraic framework.
The conformal monogenic signal will be theoretically illus-
trated and motivated in detail by the relation between the
Radon transform and the generalized Hilbert transform. The
main idea of the conformal monogenic signal is to lift up n-
dimensional signals by inverse stereographic projections to
a n-dimensional sphere in R

n+1 where the local signal fea-
tures can be analyzed with more degrees of freedom com-
pared to the flat n-dimensional space of the original signal
domain. As result, it delivers a novel way of computing the
isophote curvature of signals without partial derivatives. The
philosophy of the conformal monogenic signal is based on
the idea to use the direct relation between the original signal
and geometric entities such as lines, circles, hyperplanes and
hyperspheres. Furthermore, the 2D conformal monogenic
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signal can be extended to signals of any dimension. The
main advantages of the conformal monogenic signal in prac-
tical applications are its compatibility with intrinsically one
dimensional and special intrinsically two dimensional sig-
nals, the rotational invariance, the low computational time
complexity, the easy implementation into existing software
packages and the numerical robustness of calculating exact
local curvature of signals without the need of any deriva-
tives.
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Isotropic · Local phase based signal analysis ·
Clifford analysis · Monogenic signal · Analytic signal ·
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1 Introduction

Low level signal analysis is often the first step of many sig-
nal processing tasks. Therefore, local signal features with
geometrical and structural information determine the quality
of subsequent higher level processing steps. It is important
not to lose or to merge any of the original signal informa-
tion within the local neighborhood of the test point (point of
interest). The constraints of local signal analysis are: to ob-
tain a set of feature vectors which span the space of signals
(split of identity) and to be robust against stochastic and de-
terministic perturbations between the actual signal and the
assumed signal model. One of the fundamental problems in
signal processing is a good signal representation. Such a sig-
nal representation is the local phase information which is
a robust feature with respect to noise and contrast changes
[6, 7, 10]. In case of image signals it is shown in [14] that
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the original signal can be recovered to a fairly large extend
by using only its phase information while setting its ampli-
tude information to unity. In contrast to that, if only the am-
plitudes are obtained and the phases are set to zero, the re-
covered image signal is completely indiscernible. Therefore,
phase based signal processing has found success in many ap-
plications, such as seismic data analysis in geophysics [13],
disparity estimation of stereo [7], matching [1], face recog-
nition [20] and optical flow estimation [11, 21].

2 Related Work

Phase based image processing is motivated by one-dimen-
sional phase based signal processing where one seeks for a
way to obtain the local linear phase φ ∈ [0,2π] and local
amplitude a ∈ R of a one-dimensional signal

f (x) = a cos(kx + φ) (1)

with x ∈ R, k ∈ R+. Gabor proposed to solve this problem
by constructing the complex valued analytic signal

fA(x) = f (x) + iH[f ](x) (2)

where H[·] denotes the one-dimensional Hilbert trans-
form [8]. Since the Hilbert transform anti-commutes with
the reflection f (x) → f (−x) [16], the analytic signal of the
one-dimensional signal model (1) reads

fA(x) = a(cos(kx + φ) + i sin(kx + φ)) (3)

such that the features local phase and local amplitude are
obtained as

φ(x) = arctan

(H[f ](x)

f (x)

)
, (4)

a(x) =
√

f (x)2 + H[f ](x)2. (5)

With this transformation in mind, Felsberg and Sommer
constructed a two-dimensional generalization of the analytic
signal in [4], called the monogenic signal. Assume the real
part of a two-dimensional plane wave

f (x) = a cos(k〈u,x〉 + φ) (6)

is given, where 〈·, ·〉 denotes the standard inner product in
R

n

〈a,b〉 =
n∑

i=1

aibi for a,b ∈ R
n (7)

and x ∈ R
2, u = (sin(θ), cos(θ))T ∈ R

2. One seeks for a
way to obtain, in addition to the local phase and the lo-
cal amplitude, the local orientation of the plane wave. The

authors propose the construction of the quaternion valued
monogenic signal fM(x) in terms of the so called Riesz
transforms in R

2, which we will also refer to as generalized
Hilbert transforms, as

fM(x) = f (x) + iH1[f ](x) + j H2[f ](x) (8)

where H1[·], H2[·] denote the generalized Hilbert transform
along the x1 and the x2 axes in R

2.
The Riesz transform or generalized Hilbert transform,

in R
n is a bounded linear operator which commutes with

the translation and the dilation operator and is furthermore
equivariant with respect to rotations in R

n [16]. Due to its
linear shift-invariance, it can be written as a convolution
with the kernels

hi(x) = Γ [(n + 1)/2]
π(n+1)/2

xi

|x| (9)

such that

Hi[f ](x) = (f ∗ hi)(x) (10)

with the convolution given by

(f ∗ hi)(x) =
∫

Rn

f (y)hi(x − y)dy. (11)

The features local orientation, local phase and local ampli-
tude in R

2 are then obtained as

θ(x) = arctan

(H2[f ](x)

H1[f ](x)

)
, (12)

φ(x) = arctan 2

(√
H1[f ](x)2 + H2[f ](x)2, f (x)

)
, (13)

a(x) =
√

f (x)2 + H1[f ](x)2 + H2[f ](x)2 (14)

with

arctan 2(x1, x2) (15)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan( x1
x2

) x2 > 0,

π + arctan( x1
x2

) x1 ≥ 0, x2 < 0,

−π + arctan( x1
x2

) x1 < 0, x2 < 0,

π
2 x1 > 0, x2 = 0,

−π
2 x1 < 0, x2 = 0,

undefined x1 = 0, x2 = 0.

(16)

The monogenic signal can be generalized to R
n by applying

the appropriate generalized Hilbert transforms in R
n accord-

ing to definition (10).
Most natural images locally consist of superpositions of

plane waves. Since the monogenic signal is only able to ex-
tract the mentioned features for single plane waves of one
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frequency, the input signal has to be filtered to suppress the
unwanted frequencies. Such filters are provided as bandpass
filters in the Poisson scale-space (see [5] for details). The
monogenic signal is embedded in the Poisson scale space
by convolving its components with the Poisson kernel in the
upper half space R

3+ given by

ps(x) = Γ [(n + 1)/2]
π(n+1)/2

s

(|x|2 + s2)(n+1)/2
(17)

with s ∈ R+, such that

f s
M(x) = Ps[f ](x)+ iPs[H1[f ]](x)+j Ps[H2[f ]](x) (18)

where the convolution is given by

Ps[f ](x) = (f ∗ ps)(x) =
∫

R3
f (y)ps(x − y)dy. (19)

The convolution of the generalized Hilbert transform ker-
nels and the Poisson kernel leads to the conjugate Poisson
kernels given by

qi
s(x) = Γ [(n + 1)/2]

π(n+1)/2

xi

(|x|2 + s2)(n+1)/2
(20)

Fig. 1 From left to right: Poisson convolution kernel ps and conjugate
Poisson convolution kernels q1

s and q2
s in spatial domain for a certain

scale space parameter s > 0

which are also shown in Fig. 1. With the Poisson kernel and
its conjugates the scale space embedding of the monogenic
signal for n = 2 reads

f s
M(x) = (ps ∗ f )(x) + i(q1

s ∗ f )(x) + j (q2
s ∗ f )(x) (21)

= Ps[f ](x) + iQ1
s [f ](x) + j Q2

s [f ](x). (22)

For further details about the standard monogenic signal we
refer the reader to [4] and [19].

3 The 2D Conformal Monogenic Signal

So far we introduced the analytic and the monogenic sig-
nal, two well known methods for one-dimensional and two-
dimensional signal processing. The local amplitude, local
orientation and local phase turned out to be invariant with
respect to rotations and translations, due to the rotational
equivariance and the linear shift invariance properties of the
generalized Hilbert transforms in the Euclidean plane. These
properties establish the monogenic signal as a powerful fea-
ture representation. Nonetheless it is limited to the class
of intrinsically one-dimensional signals. It can not capture
information about neither superimposed intrinsically one-
dimensional signals nor curved signals (see Fig. 2). For the
first case we proposed a solution in [19]. The aim of this pa-
per is to extend the signal model and find a solution for the
second case.

3.1 Curved Signal Modeling

Two-dimensional signals are classified into local regions
N ⊆ R

2 of different intrinsic dimensions as shown in Fig. 3
[22] (which correspond to their codimension). The intrinsic
dimension expresses the number of degrees of freedom nec-
essary to describe local structure. Constant signals are of in-
trinsic dimension zero (i0D), straight lines and edges are of
intrinsic dimension one (i1D) and all other possible patterns

Fig. 2 From left to right: signal with varying curvature in spatial
domain (top row) and in the corresponding 2D Radon space (bottom
row). The 2D Radon space is too flat for analyzing and parameterizing

the orientation and curvature of signals. Therefore, the dimension of
the 2D Radon space must be extended to 3D
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Fig. 3 From left to right: a constant signal (i0D), an arbitrary rotated
1D signal (i1D) and an i2D checkerboard signal consisting of two sim-
ple superimposed i1D signals. A curved i2D signal and two superim-
posed curved i2D signals. Note that all signals displayed here preserve
their intrinsic dimension globally

such as corners and junctions are of intrinsic dimension two
(i2D)

i0D = {f : f (xi ) = f
(
xj

) ∀xi ,xj ∈ N
}
, (23)

i1D = {f : f (x) = g(〈x, ξ 〉) ∀x ∈ N} \ i0D, (24)

i2D = L2(R2) \ (i0D ∪ i1D) (25)

where 〈·, ·〉 denotes the inner product in R
2 and g ∈ L2(R),

ξ ∈ R
2, |ξ | = 1. In general, i2D signals can only be modeled

by an infinite number of superposed i1D signals. Therefore,
it is essential to assume a certain signal model or a set of cer-
tain models for exact i2D signal analysis. Furthermore, the
intrinsic dimension also depends on the scale space parame-
ter s ∈ R+ at which the signal will be considered locally.
The standard monogenic signal in the Euclidean plane is
limited to the analysis of i1D signals as illustrated in Fig. 2.
To analyze a broader class of signal structures we extend our
signal model and include, in addition to i1D signals, curved
i2D signals of the type

fm(x) = a cos(k|x − m| + φ) ∈ i1D ∪ i2D (26)

where m = rm(cos(θm), sin(θm))T ∈ R
2, x ∈ R

2, rm ∈
R+, a ∈ R, k ∈ R+, φ ∈ [0,2π]. These are circular signals
with amplitude a, frequency k and linear phase shift φ de-
pending only on the distance from the center m, which has
direction θm and distance rm from the origin. We notice
that these signals are constant along all circles around m,
which constitute the isophotes of the signal, in contrast to
the i1D signals which are constant along all straight lines
with a certain orientation. In the following it will turn out
that this curved signal model contains the i1D signals as
a subset such that the new model extends the former i1D
signal model.

With respect to our new model for curved image struc-
tures, we have to ask for the properties of the this signal
type. Analogously to i1D signals the curved signals carry a
direction information induced by the angular part θm of the
center m. Furthermore, with respect to the origin in R

2, the
circular signal carries a new type of information, the curva-
ture of its isophotes. An isophote γm(x) of fm at x ∈ R

2 is
given by

γm(x) = {y ∈ R
2 : |x − m| = |y − m|} (27)

which is a circle around the center m with radius |x − m|.
From differential geometry we know, that the curvature of
a planar curve α(t) : R → R

2 is described by the relation
κ(t) = 1

r(t)
where r(t) is the radius of osculating circle of

α at t [3]. Due to the definition of our signal model fm, the
isophotes γm(x) are circles around m, such that the oscu-
lating circles of the isophotes are the isophotes themselves.
Therefore, the curvature κm(x) of an isophote γm(x) passing
through a point of interest x is obtained as

κm(x) = 1

rm(x)
= 1

|x − m| . (28)

Classical differential geometry yields the result, that for a
signal f ∈ L2(R2) the isophote curvature at a point x ∈ R

2

reads (see e.g. [12])

κ =
− ∂2

∂x2 f ( ∂
∂y

f )2 + 2 ∂
∂x

f ∂
∂y

f ∂2

∂xy
f − ∂2

∂y2 f ( ∂
∂x

f )2

(( ∂
∂x

f )2 + ( ∂
∂y

f )2)
3
2

.

(29)

The classical method has been used in various image
processing applications, see e.g. [18] and [17]. In the fol-
lowing we introduce a novel method to obtain the curvature
κm(x) of a signal fm at position x ∈ R

2 within our frame-
work of generalized Hilbert transforms without using partial
derivatives of any order. Furthermore we will still be able
to obtain the local orientation, local amplitude and, in the
case of certain signals, the local phase of our circular signal
within one single signal representation. We will show that
i1D signals are already included as a subset in our new sig-
nal representation such that we will not lose the properties
of the classical monogenic signal.

3.2 Conformal Embedding

As a first step of our novel method we will investigate how
we can obtain the radius of single isophotes of a circular
input signal fm. Let us fix an isophote γm(x) of a circular
signal fm passing through x ∈ R

2. Without loss of general-
ization we choose a new coordinate system in R

2 with x as
its origin. We will leave the Euclidean plane R

2 and embed
our isophote on the sphere

S
2 :=
{

u ∈ R
3 : u2

1 + u2
2 +
(

u3 − 1

2

)2

= 1

4

}
(30)

which is the sphere with center (0,0, 1
2 )T and radius 1

2 .
The sphere S

2 touches the Euclidean plane R
2 such that its

south-pole coincides with the origin (0,0,0)T . The embed-
ding of the isophote γm(x) is established by the application
of the inverse stereographic projection from R

2 to S
2 given
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Fig. 4 From left to right: The first two figure plane being mapped to circles not passing through the north pole (0,0,1) of the sphere and the next
two figure mapped to circles passing through the north pole of the sphere, i.e. lines are a special case of circles with infinite radius

by

S −1(x) = 1

1 + x2
1 + x2

2

⎛
⎜⎝

x1

x2

x2
1 + x2

2

⎞
⎟⎠ (31)

for x = (x1, x2)
T ∈ R

2 whereas the stereographic projection
from S

2 to R
2 is given by

S(ω) = 1

1 − ω3

(
ω1

ω2

)
(32)

for ω in S
2. The goal is now to obtain the curvature of the

isophote γm(x) of fm passing through x.

3.3 Properties of the Stereographic Projection

To explain the geometric idea of our curvature calculation
method, we first discuss some important properties of the
inverse stereographic projection. The inverse stereographic
projection is a conformal mapping from R

2 to S
2. It has

the properties, that it preserves angles and maps circles in
the Euclidean plane to circles on S

2. The first property is
important for us, since the embedding preserves the direc-
tion angle θm of our signal fm induced by the direction of
the center m of the signal. The second property is impor-
tant for us, since it allows us to treat the two signal types,
i1D and curved signals in the plane, as the same type on the
sphere: circles. A straight line in the Euclidean plane can be
interpreted as a circle with infinite radius. Since the inverse
stereographic projection maps circles in the plane to circles
on the sphere, not only circles with finite radius, but also
straight lines map to circles on the sphere. Since the north-
pole represents the point at infinity, all straight lines in R

2

map to circles on S
2 passing through the north-pole (0,0,1).

Since we have identified the south-pole of S
2 with the ori-

gin of R
2, straight lines through the origin map to great cir-

cles through the north- and the south-pole. Circles with fi-
nite radius through the origin in R

2 map to circles through
the south-pole of S

2. In addition, the direction angles in the
plane are preserved by the inverse stereographic projection,
such that both structure types retain their direction in the

case of curved signals and their orientation in the case of
i1D signals after the mapping. Figure 4 illustrates both sce-
narios.

3.4 Circles as Plane-Sphere Intersections

Now that we can describe straight lines and circles in the
plane as circles on the sphere, we make the important obser-
vation that we can also describe both of these structures as
intersections of the sphere S

2 with a two-dimensional plane
in R

3, since every circle on S
2 results from the intersection

of the sphere with a plane. If we restrict our analysis to the
isophotes passing through the origin, we know that these
map to circles through the south-pole of S

2. In the case of
straight lines they map to great circles additionally passing
through north-pole. Now consider the isophote γm(x) which
is projected to S

2 as

S −1(γm(x)) = {S −1(y) : y ∈ γm(x)}. (33)

There exists a plane Pm such that the projected isophote
S −1(γm(x)) is equal to the intersection of the sphere and
Pm

S −1(γm(x)) = Pm ∩ S
2. (34)

A plane in R
3 is characterized by its unit normal vector

nm and its distance dm from the origin. For the plane Pm
we know that it passes through the origin since the south-
pole (0,0,0)T is contained in Pm ∩ S

2. It follows that
(0,0,0)T ∈ Pm. Therefore, it follows that dm = 0. We con-
clude that an isophote γm(x) is uniquely described by the
normal vector nm of the corresponding plane Pm. We will
show in the next section how this normal vector nm and
therefore the plane Pm actually looks like and how it relates
to our chosen isophote γm.

Figure 4 shows several possible isophotes γm and their
projections to S

2. Notice that the first two belong to the
class of curved isophote, whereas the second two are straight
lines. For all curves a coordinate system is chosen in such
a way, that the south-pole of the sphere coincides with the
origin of this new coordinate system. The projection of the
isophote through the origin is then described by the intersec-
tion of a plane and S

2.
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3.5 Geometric Interpretation of the Normal Vector

Since an isophote γm(x) is uniquely described by the corre-
sponding normal vector nm, all the properties of the isophote
are encoded in the normal vector nm. The properties we are
interested in are the direction θm of m with respect to x and
the radius rm of the isophote passing through x, which is
equal to the distance |x − m|. Figure 5 shows the geometric
relationship between the isophote and its projection to S

2.
We formulate our result as:

Theorem 1 Let x ∈ R
2,m ∈ R

2, θm ∈ [0,2π] with

m = x + rm(cos(θm), sin(θm))T (35)

where rm = |x − m|. Let γm(x) denote the isophote of a sig-
nal fm through x and let Pm denote the plane which fulfills
S −1(γm(x)) = Pm ∩ S

2 with normal vector

nm =
⎛
⎜⎝

nm,1

nm,2

nm,3

⎞
⎟⎠=

⎛
⎜⎝

sin(ϕ) cos(θ)

sin(ϕ) sin(θ)

cos(ϕ)

⎞
⎟⎠ . (36)

Then it holds that

ϕ = arctan(2|x − m|) = arctan(2rm) (37)

= arccos

(
1√

1 + 4r2
m

)
(38)

and

θ = θm. (39)

Fig. 5 Illustration of an isophote γm(u) and its projection S −1(γm(u))

to S
2. The radius |m − x| = rm can be calculated from the angle ϕm as

tanϕm = 2|m|. Therefore ϕm can be obtained from the normal vector
of Pm

Proof By Thales theorem we find that
⎛
⎜⎝

2m1 − x1

2m2 − x2

1

⎞
⎟⎠⊥ Pm (40)

such that

nm = 1√
1 + 4r2

m

⎛
⎜⎝

2m1 − x1

2m2 − x2

1

⎞
⎟⎠ (41)

=
⎛
⎜⎝

2rm cos(θm)

2rm sin(θm)

1

⎞
⎟⎠=

⎛
⎜⎝

sin(ϕm) cos(θm)

sin(ϕm) sin(θm)

cos(ϕm)

⎞
⎟⎠ (42)

which concludes the proof. �

3.6 Isophote Properties

The theorem is the central idea of our curvature estimation
method. It shows, that it is possible to obtain the direction
angle θm of the center m with respect to x and the radius rm
of the isophote of fm passing through x just from compo-
nents of the normal vector nm of the plane Pm as:

Corollary 1 (Isophote curvature)

κm = 1

rm
= 1

|x − m| = 2nm,3√
n2

m,1 + n2
m,2

. (43)

Corollary 2 (Isophote direction)

θm = arctan 2(nm,2, nm,1). (44)

3.7 Isophote Classification

The two important properties isophote curvature and iso-
phote direction are encoded in the normal vector of the
plane Pm. Apart from obtaining these properties, we are also
able to decide whether an isophote is a straight line, which
corresponds to a circle with an infinite radius, or a circle with
a finite radius. Let γm denote an isophote with an infinite ra-
dius modeled by a center m with infinite distance from the
origin:

m = lim
rm→∞ rm(cos(θm), sin(θm))T . (45)

Then the projection S −1(2m) coincides with the north-
pole such that the angle ϕm approaches π/2 and cos(ϕm)

vanishes. It follows that the normal vector nm of the
plane Pm describing S −1(γm(x)) is obtained as nm =
(cos(θm), sin(θm),0)T . For every isophote with finite ra-
dius, the angle cos(ϕm) does not vanish. We can therefore
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distinguish between straight lines and curved isophotes by
examining the third component nm,3 of the normal vec-
tor nm.

So far we developed a method which is able distinguish
between straight line and curved isophotes and to obtain the
curvature and the direction of the isophote by its normal
vector nm, corresponding to the plane passing through the
projected isophote on S

2. The problem of isophote curva-
ture estimation is therefore equivalent to the estimation of
the normal vector nm. The method has been developed for
single isolated isophotes as illustrated in Fig. 4, but actually
we do not know the isophotes in advance. Hence we are not
able to project a single isolated isophote to S

2. Instead we
always project a local neighborhood of our signal fm with
respect to our point of interest to S

2. Consequently we are
faced with the problem of estimating the normal vector nm,
which is the key to the curvature information, from our pro-
jected neighborhood around x. We will introduce a method
which will estimate the normal vector nm from the projected
signal using the generalized Hilbert transforms in R

3 such
that a curvature estimation according to Theorem 1 will be
possible.

3.8 Relationship Between the Generalized Hilbert
Transform and the Radon Transform

It is well known from the two dimensional setting, that the
close relationship between the generalized Hilbert trans-
forms and the Radon transform provides an intuitive in-
terpretation of the generalized Hilbert transforms for plane
wave signals (see e.g. [19]). The orientation of plane waves
in R

3 is, just as our plane Pm, characterized by a single nor-
mal vector in R

3. We will establish a link between the nor-
mal vector of our plane Pm describing a projected isophote,
and the orientation vector of a plane wave in R

3 using
the relationship between the generalized Hilbert transforms
and the Radon transform. We will introduce a novel signal
model, called the conformal monogenic signal, and justify
its construction by the Radon transform in R

3. The Radon
transform in R

n is an integral transform integrating a func-
tion over all n − 1 dimensional hyperplanes in R

n which is
defined as:

Definition 1 (Radon transform) Let f ∈ L2(Rn), ξ ∈ R
n,

|ξ | = 1, t ∈ R. Then the Radon transform of f is defined as

R[f ](ξ , t) =
∫

Rn

f (u)δ(t − 〈ξ ,u〉)du. (46)

The inversion of the Radon transform in R
n reads

f (u) = 1

2
(2π)1−n(−1)(n−1)/2

·
∫

|ξ |=1

∂n−1

∂tn−1
R[f ](ξ , 〈ξ ,u〉) dξ (47)

if n is odd, and

f (u) = (2π)−n(−1)n/2

·
∫ ∞

−∞
1

q

∫
|ξ |=1

∂n−1

∂tn−1
R[f ](ξ , 〈ξ ,u〉 + q)dξ dq

(48)

if n is even.

It integrates over all hyperplanes with normal vector ξ

and distance t from the origin. The parameter space of the
Radon transform in R

3 is therefore spanned by the two an-
gles (ϕ, θ) describing the unit normal vector of the plane
and its distance t from the origin. For a fixed unit normal
vector ξ , R[f ](ξ , ·) describes a one-dimensional function
in Radon domain which we will refer to as a slice. We
are interested in the Radon transform of the real part of a
three dimensional plane wave in R

3 with orientation vector
ω, |ω| = 1, amplitude a ∈ R, frequency k ∈ R+ and linear
phase shift φ ∈ [0,2π] given by

ψ(u) = a cos(k〈u,ω〉 + φ), u ∈ R
3. (49)

For the Radon transform to be well defined we require ψ to
vanish at infinity. So we embed it in the Poisson scale space
in R

4+ as

ψs(u) = Ps[ψ](u), s ∈ R+. (50)

Its Radon transform results in

R[ψs](ξ , t) =
{

a P 1D
s [cos(·)](k t + φ) for ξ = ω,

c else,
(51)

where c ∈ R is a constant and P 1D
s [·] : L2(R) → L2(R) with

P 1D
s [f ](t) = (ps ∗ f )(t) (52)

denotes the one-dimensional Poisson transform along a sin-
gle slice which is the one-dimensional convolution with the
Poisson kernel ps on the real line given by (17) for n = 1.
We notice that the Radon transform of ψs is only non-
constant along the slice defined by the parameters (ϕ, θ)

corresponding to the orientation vector ω. The generalized
Hilbert transform and the Radon transform in R

3 are related
due to

Corollary 3 (Relationship between the Radon transform
and the generalized Hilbert transform) Let f ∈ L2(Rn),

ξ ∈ R
n, |ξ | = 1, t ∈ R, i ∈ {1, . . . , n}. Then it holds that

R[Hi[f ]](ξ , t) = ξi H1D[R[f ](ξ , ·)](t) (53)

where H1D[·] : L2(R) → L2(R) denotes the one- dimen-
sional Hilbert transform along t for a fixed slice at ξ in the
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Radon domain given by the convolution

H1D[f ](t) = (h ∗ f )(t) (54)

with the Hilbert transform kernel h on the real line given by
(9) for n = 1.

In terms of the Radon transform, the generalized Hilbert
transforms Hi[·] perform a Radon transform, apply a one di-
mensional Hilbert transform along every slice indicated by
the normal vector ξ , multiply every slice with the i-th com-
ponent ξi of the normal vector and transform the result back
with the inverse Radon transform. This result is of impor-
tance with respect to our plane wave model ψs in R

3. Con-
sider the Radon transform of the generalized Hilbert trans-
forms in R

3 applied to ψs

R[Hi[ψs]](ξ , t) = ξi H1D[R[ψs](ξ , ·)](t). (55)

Due to (51) it follows that

R[Hi[ψs]](ξ , t), (56)

=
{

ωi H1D[P 1D
s [cos(·)]](kt + φ) for ξ = ω,

0 else,
(57)

where we used the fact, that the Hilbert transform of a co-
sine wave is a sine wave with the same frequency, amplitude
and phase and the Hilbert transform of a constant function
is zero. If we now apply the inverse Radon transform, the
inversion integral depends only on the normal vector ξ = ω

such that

Hi[ψs](u) = Qi
s[ψ](u) (58)

= R−1[R[Hi[ψs]]](u) (59)

= ωi R−1[(ξ , t) �→ H1D[R[ψs](ξ , ·)](t)](u).

(60)

We notice that the partial generalized Hilbert transforms of
ψs are equal up to the angular factor ωi . This is an important
consequence, since we are now able to extract the local an-
gles at a point of interest u ∈ R

3 describing the orientation
vector ω of the plane wave ψs from the generalized Hilbert
transform as

θ(u) = arctan 2(H2[ψs](u), H1[ψs](u)) (61)

and

ϕ(u) = arctan

(√H1[ψs](u)2 + H2[ψs](u)2

H3[ψs](u)

)
. (62)

3.9 Identifying Circular Signals with Plane Waves

Actually the method introduced above to extract the angles
of interest only holds for plane waves ψs in R

3. We intro-
duced the relationship between the Radon transform and the

Fig. 6 Illustration of the conformal mapping of 2D signals to the 3D
conformal space

generalized Hilbert transform with the goal in mind, to iden-
tify the projection of a circular signal fm to S

2 with a plane
wave, such that the orientation angles of the plane wave rep-
resent the parameters of the circular signal in the plane. To
establish this relationship, we first show that the projection
of a circular signal approximates a certain plane wave. We
define the spherical embedding gm of the circular signal fm

with respect to a point of interest x ∈ R
2 as

gx
m(u) =

{
fm(S(u) + x) for u ∈ S

2,

0 else
(63)

and its Poisson scale space embedding in R
4+ as

gx,s
m (u) = Ps[gx

m](u) (64)

=
∫

R3
gx

m(v)ps(u − v)dm(v). (65)

Here dm(v) = δ(|v − c|)dv denotes the Radon measure for
the functional gm supported on sphere S

2 where c is the cen-
ter of S

2 and δ(·) is the Delta distribution. For further details
on the validity of this construction we refer the reader to
[23]. Note that we define this embedding with respect to a
point of interest x, since we want to analyze our signals lo-
cally. For each x we want the south-pole of the sphere to
coincide with x such that we will evaluate all operations at
the south-pole of S

2. So actually for every x we consider
x as the origin of a new coordinate system and project to
S

2 with respect to this new coordinate system such that the
south-pole of S

2 coincides with the new origin. In the fol-
lowing we will show that for all x ∈ R

2, g
x,s
m approximates

a plane wave restricted to S
2 such that the Radon transform

of g
x,s
m inherits the properties of a plane wave in R

3. Let
x ∈ R

2 and assume a new coordinate with x as the origin is
chosen. With respect to this fixed x, which is the new origin,
we abbreviate g

x,s
m = g

0,s
m = gs

m.
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Fig. 7 Geometric illustration of
the mapping T . For sufficiently
small Δt we find that Δx ≈ Δt

Theorem 2 Let m = rm(cos(θm), sin(θm)), rm > 0 and let
fm(x) = a cos(k |m − x| + φ) denote a circular signal with
center m, amplitude a ∈ R, linear phase φ ∈ [0,2π] and
frequency k ∈ R+. Let ψ(u) = a cos(k〈u,ω〉 + k rm + φ)

denote a plane wave in R
3 with orientation vector

ω = (sin(ϕm) cos(θm), sin(ϕm) sin(θm), cos(ϕm))T (66)

=
(

1

4
+ r2

m

)− 1
2
(

rm cos θm, rm sin θm,
1

2

)T

. (67)

Then for all x ∈ R
2

εmin < |fm(x) − ψ(S −1(x))| < εmax (68)

where

εmax ≈ |Δt(2rm(1 + 4r2
m)

3
2 − 1)|, (69)

εmin ≈ |Δt(3rm(1 + 4r2
m)−

1
2 − 1)| (70)

and Δt = 〈S −1(x),ω〉.

Proof Without loss of generalization we assume that m is
located on the x1 axes with m = (m1,0). Then the isophote
γ (0) passing through the origin is a circle with center m
whose projection C = S −1(γ (0)) is a circle which passes
through the south-pole of S

2. Let ψ(u) = cos(k〈u,ω〉 +
k rm + φ) denote the plane wave in R

3 with orientation vec-
tor

ω = (sin(ϕm) cos(θm), sin(ϕm) sin(θm), cos(ϕm))T (71)

=
(

1

4
+ r2

m

)− 1
2
(

rm cos(θm), rm sin(θm),
1

2

)T

. (72)

There exists a plane Pω with normal vector ω whose inter-
section with S

2 results in C = Pω ∩ S
2. For all u ∈ C we

find that

fm(S(u)) = ψ(u) = cos(krm + φ) (73)

since 〈u,ω〉 = 0. Suppose we move the plane Pω in the di-
rection ω by Δt ∈ R as (see also Fig. 7)

P′
ω = {v + Δtω : v ∈ Pω}. (74)

We impose the restriction, that the distance of shifted plane
is less than the radius of the sphere S

2

0 ≤ cos(ϕ)

2
+ Δt <

1

2
(75)

such that the intersection P′
ω ∩ S

2 is nonempty. Then for all
u′ ∈ C′ where C′ = P′

ω ∩ S
2

ψ(u + Δtω) = a cos(k(rm + Δt) + φ) (76)

since

〈u′,ω〉 = 〈u,ω〉 + Δt = Δt. (77)

As expected, the argument of plane wave ψ depends lin-
early on the shift by Δt since we move our points of inter-
est in the direction of its orientation vector. We will show
that the shifted points back-projected to the plane and eval-
uated with respect to our circular signal fm almost behave
linearly with respect to Δt for sufficiently small Δt . To in-
vestigate how the projection of the points u ∈ C behaves,
if C is mapped to C′, we first give the explicit construc-
tion of the corresponding mapping. Let Rα(u) denote a ro-
tation of u in R

3 around the axis (0,1,0)T by the angle α.
We define the mapping T Δt

α : C → C′ as the composition
u �→ (T6 ◦ T5 ◦ T4 ◦ T3 ◦ T2 ◦ T1)(u) where

(i) T1(u) = u + (0,0,− 1
2 )T

(ii) T2(u) = Rα(u)

(iii) T3(u) = u − Δt(0,0,1)T

(iv) T4(u) = (u1/s,u2/s,u3) where s = cos(α)
cos(α)+2Δt

(v) T5(u) = R−α(u)

(vi) T6(u) = u + (0,0,+ 1
2 )T .
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The mapping T Δt
ϕm

is a diffeomorphism from C to C′ and
maps each u ∈ C to the u′ ∈ C′ with the smallest distance
to u where the distance is taken with respect to the spheri-
cal geodesics. Now let u ∈ C. Then x = S(u) is an element
of the isophote γ (0) passing through the origin. Further let
x′ = T Δt

ϕm
(u). We are interested in the distance of x′ from

the center m and its dependence on Δt . We investigate how
much this distance differs from a linear shift by Δt towards
the center m by defining the error

ε =
∣∣∣∣x′ −

(
x + Δt

x − m
|x − m|

)∣∣∣∣ . (78)

The error ε is maximized for x ∈ γ (0) with the largest dis-
tance from 0, which is xmax = (2rm,0)T with respect to our
choice of m, and is minimized for xmin = 0 ∈ γ (0). A first
order Taylor expansion of T with respect to Δt yields

εmax = |T Δt
ϕm

(xmax) − (2rm + Δt,0)T | (79)

≈ |Δt(2rm(1 + 4r2
m)

3
2 − 1)|, (80)

εmin = |T Δt
ϕm

(xmin) − (Δt,0)T | (81)

≈ |Δt(3rm(1 + 4r2
m)−

1
2 − 1)|. (82)

�

The theorem above tells us, that the approximation of the
plane wave is most accurate for points u ∈ S

2 located on
those circles on S

2, whose characterizing plane intersecting
S

2 has a small distance from the origin, which is further
illustrated by Fig. 6. Since we embed our projected signal
in the Poisson scale space in R

4+ as g
x,s
m , the Poisson ker-

nel introduces a high weighting for points on S
2 near the

south-pole. This weighting results in high weights for points
on planes with small distance to the origin and low weights
for planes with high distance to the origin, adjusting for the
accuracy of the approximation towards the more accurate
regions. The diffusion resulting from the convolution with
the Poisson kernel is the standard diffusion on R

4+ which
acts like a low-pass filter on the plane wave ψs approxi-
mated by g

x,s
m . The scale s controls the size of the convolu-

tion mask pulled back to the plane by the stereographic pro-
jection. It is responsible for the accuracy of the plane wave
approximation with respect to the radius of the circular sig-
nals. For larger radii rm, the window size has to be increased
such that the isophote passing through the point of interest
is completely projected to S

2. With respect to the original
signal fm, the kernels pulled back to the plane do not con-
stitute a linear scale space in the upper half space R

3+ due
to a violation of the semigroup property. Nonetheless with
respect to the signal g

x,s
m which has been shown to approxi-

mate a plane wave in R
3, it constitutes the standard Poisson

scale space in the upper half space R
4+.

3.10 The Conformal Monogenic Signal

We will now use theorem 2 to characterize the behav-
ior of g

x,s
m under the Radon transform and the generalized

Hilbert transform in R
3. Since the Radon transform inte-

grates over planes in R
3, we know that the Radon trans-

form R[gx,s
m ](ξ , t) will be most accurate for t ∈ [−ε, ε] and

ε sufficiently small. This behavior does not interfere with
our consideration since we always evaluate the generalized
Hilbert transform at the origin which results in an implicit
evaluation of the Radon transform at t = 0. Due to the ad-
ditional weighting with a one-dimensional Poisson kernel
in the Radon domain along each slice (compare equation
(56)), the more inaccurate approximations will be further
suppressed. The Radon transform of g

x,s
m is, for sufficiently

small t ∈ [−ε, ε], ε � 1, up to a constant c′ ∈ R equal to the
Radon transform of ψs

R[gx,s
m ](ξ , t) = c′R[ψs](ξ , t). (83)

Since the Radon transform integrates over all hyperplanes
in R

3 and g
x,s
m is supported on a two-dimensional surface

in R
3, namely the sphere S

2, the integration of the Radon
transform has to be understood with respect to a certain
Radon measure. Let P denote a plane in R

3 with C = P ∩S
2

such that C �= ∅. If we integrate over the plane P, we ac-
tually want to integrate g

x,s
m over the circle C. Since this is

a Lebesgue null set with respect to the standard Lebesgue
measure in the plane, we have to introduce an alternate
measure. Instead, the Radon transform has to be under-
stood with respect to the Radon measure δ(C(u))du where
C(u) = 0 ⇔ u ∈ C and δ denotes the Delta distribution (see
also [23]). Nonetheless all the above considerations stay
valid with respect to this alternate measure. From (83) in
conjunction with (56) and (58) we directly conclude that

R−1[R[Hi[gx,s
m ]]](u) (84)

= Qi
s[gx

m](u) (85)

= ωi c
′ R−1[(ξ , t) �→ H1D[R[ψs](ξ , ·)](t)](u). (86)

For a graphical illustration of this important relationship we
refer to Fig. 8.

Keeping this relationship in mind, we introduce the con-
formal monogenic signal as:

Definition 2 (Conformal Monogenic Signal) Let fm be a
curved signal in R

2 and gx
m its embedding in R

3. Let H[·]
denote the generalized Hilbert transform operator in R

3.
Then for x ∈ R

2

f(x) =

⎛
⎜⎜⎜⎜⎝

gx
m(0)

H1[gx
m](0)

H2[gx
m](0)

H3[gx
m](0)

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

gx
m(0)

(h1 ∗ gx
m)(0)

(h2 ∗ gx
m)(0)

(h3 ∗ gx
m)(0)

⎞
⎟⎟⎟⎟⎠ (87)
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Fig. 8 Left figure: Curved i2D signal with direction θ and curvature
κ = 1

ρ
. Right figure: Corresponding 3D Radon space representation of

the i2D signal spanned by the parameters t , θ and ϕ

is called the conformal monogenic signal of fm. Its scale
space embedding in the Poisson scale space is obtained by
convolution with the Poisson kernel for the upper half space
R

4+ such that

fs(x) =

⎛
⎜⎜⎜⎜⎝

Ps[gx
m](0)

Q1
s [gx

m](0)

Q2
s [gx

m](0)

Q3
s [gx

m](0)

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

g
x,s
m (0)

H1[gx,s
m ](0)

H2[gx,s
m ](0)

H3[gx,s
m ](0)

⎞
⎟⎟⎟⎟⎠ . (88)

Consider the Radon transform of the partial Hilbert trans-
form in R

3 applied to an embedded curved signal g
x,s
m in R

3

with respect to a chosen scale s ∈ R+. Its conformal mono-
genic signal representation in terms of the Radon transform
reads

Corollary 4 (Conformal monogenic signal representation
of plane waves) Let m = rm(cos(θm), sin(θm)), rm > 0,
ϕm = arctan(2rm) and let fm denote a circular signal with
center m. Then

fs(x) =

⎛
⎜⎜⎜⎜⎝

Ps[gx
m](0)

Q1
s [gx

m](0)

Q2
s [gx

m](0)

Q3
s [gx

m](0)

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

g
x,s
m (0)

sin(ϕm) cos(θm)T (0)

sin(ϕm) sin(θm)T (0)

cos(ϕm)T (0)

⎞
⎟⎟⎟⎠ (89)

with

T (u) = c′R−1[(ξ , t) �→ H1D[R[gx,s
m ](ξ , ·)](t)](u) (90)

and c′ ∈ R.

Proof Let x ∈ R
2. Then with respect to x, gx,s

m approximates
the plane wave ψs in R

3 with orientation vector

ω = (sin(ϕm) cos(θm), sin(ϕm) sin(θm), cos(ϕm))T

=
(

1

4
+ r2

m

)− 1
2
(

rm cos(θm), rm sin(θm),
1

2

)T

(91)

according to Theorem 2. Applying (84) to the components
of the conformal monogenic signal concludes the proof. �

We are now able to relate the orientation vector of the
plane wave approximated by g

x,s
m to the normal vector of the

plane intersecting S
2, which contains the isophote passing

through x:

Corollary 5 (Isophote-Plane-Wave relationship) Let m =
rm(cos θm, sin θm), rm > 0 and let fm(x) = a cos(k |m −
x| + φ) denote a circular signal with center m, amplitude
a ∈ R, linear phase φ ∈ [0,2π] and frequency k ∈ R+. Fix
x ∈ R

2. Let g
x,s
m be the embedding of fm with respect to x.

Further let ψ(u) = a cos(k〈u,ω〉 + k rm + φ) denote the
plane wave in R

3 with orientation vector

ω = (sin(ϕm) cos(θm), sin(ϕm) sin(θm), cos(ϕm))T

=
(

1

4
+ r2

m

)− 1
2
(

rm cos(θm), rm sin(θm),
1

2

)T

(92)

and scale space embedding ψs . Denote by γm(x) the
isophote of the function fm passing through our point of
interest x ∈ R

2. Further let nm denote the normal vector of
the plane Pm with

Pm ∩ S
2 = {S −1(y) : y ∈ γm(x)}. (93)

Then it holds that

nm = ω. (94)

Proof According to Theorem 2, g
x,s
m approximates ψs

whose orientation vector is ω. But according to Theorem 1,
ω is exactly the normal vector of Pm. �

We are now able to estimate the normal vector nm by es-
timating the orientation vector ω of the corresponding plane
ψs wave approximated by g

x,s
m . The estimates are obtained

from the conformal monogenic signal representation of g
x,s
m

using Corollaries 4 and 5 as:

θm(x) = arctan 2
(

Q2
s [gx

m](0), Q1
s [gx

m](0)
)

(95)

and

ϕm(x) = arctan

(√Q1
s [gx

m](0)2 + Q2
s [gx

m](0)2

Q3
s [gx

m](0)

)
(96)

such that the curvature of the isophote passing through x is
obtained as

κm(x) = 2

tan(ϕm(x))
= 2Q3

s [gx
m](0)√

Q1
s [gx

m](0)2 + Q2
s [gx

m](0)2
.

(97)



316 J Math Imaging Vis (2011) 40: 305–325

The parameter θm will be interpreted as the orientation
θ ∈ [0,π) in i1D case and naturally deploys to direction
θ ∈ [0,2π) for the i2D case. In Sect. 3.7 we have already
classified single isophotes into straight lines and curved
isophotes depending on the angle ϕm. Since we have now
established the link between single isophotes and curved
signals, we are able to classify the underlying signal type.
Figure 9 illustrates, that we are able to distinguish i1D and
curved i2D signals, depending on the angle ϕm. As ϕm ap-
proaches π

2 , a i1D signal is approximated. Otherwise the
underlying signal is a curved i2D signal. Consequently the
conformal monogenic signal is able to estimate the intrinsic
dimension of the underlying signal. Further, the local ampli-
tude of the conformal monogenic signal fs is defined by

am(x) =
√√√√Ps[gx

m](0)2 +
3∑

i=1

(Qi
s[gx

m](0))2. (98)

The i1D and i2D phase of curved 2D signals is defined
by

φm(x) = arctan 2

⎛
⎝
√√√√ 3∑

i=1

(Qi
s[gx

m](0))2, Ps[gx
m](0)

⎞
⎠ (99)

where the phase indicates a measure of parity symmetry as
it is known from classical phase based signal analysis. It is
worth noting that all these properties have been obtained by
the conformal monogenic signal filterset in (88) which is
based on simple convolutions with the Poisson kernel and its

Fig. 9 Left figure: The plane indicates an i2D signal. Right figure: The
plane of an i1D signal passes through the north pole of the sphere

conjugate parts. The linear shift invariance and the rotational
equivariance of the generalized Hilbert transform carry over
to the conformal monogenic signal. It follows that the prop-
erties phase, curvature and direction are invariant with re-
spect to constant illumination changes. Figures 10 and 11
show the features of the conformal monogenic signal ob-
tained from two synthetic signals. We notice that the phase
and the orientation are exactly the features which can be ob-
tained from the classical monogenic signal. But in addition
we also obtain the isophote curvature of the input signal.
Note that the curvature information may serve as a corner
measure as indicated in the figure the output to a classical
Sobel edge detector.

4 Experiments

We are interested in the accuracy of our curvature estimator.
Since experiments regarding the orientation and the phase
of the monogenic signal have already been carried out in the
mentioned literature, we focus on experiments concerning
the new curvature feature.

4.1 Planar Curves

We first evaluate the proposed method for planar curves. Let
l(t) = (x(t), y(t)), t ∈ [a, b] be a part of a parameterized
plane curve. Then we sample l as li = (x(i d), y(i d)), i ∈

Fig. 11 Top row from left to right: Original signal, isophote curvature
[12] and Sobel detector output. Bottom row from left to right: Con-
formal monogenic signal direction, curvature and phase. Note the ob-
servable illumination invariance of the conformal curvature and phase.
Convolution mask size: 7 × 7 pixels

Fig. 10 From left to right: Original synthetic i2D signal f (x) = a0 cos(
√

x2
1 + x2

2 ), conformal monogenic signal curvature, conformal monogenic
signal amplitude, phase and direction. Convolution mask size: 11 × 11 pixels. Rotational invariance and isotropic properties can be clearly seen
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{1, . . . ,N}, d = |a−b|
N

,N ∈ N. The estimation of the curva-
ture relies on the choice of a scale described by the neigh-
borhood or window size W ∈ N with respect to the cur-
rent point of interest. For each point li we first shift the
neighborhood NBW(li ) = {li−W, . . . , li , . . . , li+W } to the
origin and project it to the sphere S

2 such that NB ′
W(li ) =

{S −1(li−W − li ), . . . , (0,0,0), . . . , S −1(li+W − li )}. The
curvature is then obtained as

κW (li ) = 2
M3

W

((M1
W)2 + (M2

W)2)(1/2)
(100)

with

Mk
W =

W∑
j=−W

qk
W (S −1(li+j − li )), k ∈ {1,2,3} (101)

where qk
W denotes the k-th component of the conjugate Pois-

son kernel in the upper half space R
4+ with respect the

scale W . We compare our method to curvature estimations
obtained by circle fittings through the points of the neigh-
borhood NB ′

W(li ). To fit a circle through these points we
use two different distance functions which are minimized,
an algebraic distance according to [9] and a geometric dis-
tance according to [2].

Algebraically a circle may be represented as the set of all
x ∈ R

2 satisfying

axT x + bT x + c = 0 (102)

with a �= 0,b ∈ R
2, c ∈ R. We fit a circle through the points

x ∈ NB(li ,W) by minimizing

‖Au‖ = min s.t. ‖u‖ = 1 (103)

with

A =

⎛
⎜⎜⎝

x2
11 + x2

12 x11 x12 1
...

...
...

...

x2
m1 + x2

m2 xm1 xm2 1

⎞
⎟⎟⎠ (104)

and m = 2W + 1,u = (a, b1, b2, c)
T . The radius of curva-

ture r is then obtained as

r =

√√√√
√

b2
1 + b2

2

4a2
− c

a
. (105)

The second method, which we refer to as the geometric
method, minimizes the distance

2W+1∑
j=1

(xj1 − a1)
2 + (xj2 − a2)

2 − r2 (106)

which is minimized for the unknown center a = (a1, a2)

∈ R
2 and the unknown radius r by solving a linear least-

squares problem (see [2]). The radius serves as a curvature
measure due to the already mentioned relation κ = 1

r
. Fig-

ure 12 shows the comparison of our method with the alge-
braic and geometric fitting method for three test curves with
and without noise. We measured the absolute average error
over all curve points for different window sizes as

EW(l) =
|l|∑

i=1

|κ(li ) − κ̃W (li )| (107)

where κ(li ) denotes the ground truth curvature and κ̃W (li )
the estimated curvature of the curve at li . It turns out that
our novel method converges to the true radius of curvature in
the case of the assumed signal model, a circle. Compared to
the two methods based on circle fittings, it is robust against
noise resulting in accurate curvature estimations. Note that
the figure depicts the average error over all curve points de-
pending on the window size. Since the curvature is not con-
stant for all curve points in the case of the ellipse and the spi-
ral there are always points on the curve for which the given
window size provides a correct estimate but also points for
which the given window size provides incorrect results, af-
fecting the overall average error. Therefore there is no con-
vergent behaviour with respect to the average error for these
curve types. But actually this is also a problem of the esti-
mators we compared our method to, so you notice that our
estimator behaves like the standard estimators and delivers
comparable results.

4.2 Digital Images

The curvature estimation based on the conformal monogenic
signal has the advantage, that it is not limited to digital
curves but can also be applied to images, where the curves
are not known in advance, e.g. isophotes in gray-scale im-
ages. In these cases the curvature is often supposed to serve
as a feature indicating corners or straight line segments in
the case of high or low curvature. The standard method to
obtain the isophote curvature in digital images uses first and
second order derivatives. To be comparable to our method,
which we introduced in a scale space embedding, we intro-
duce the classical derivative based method to calculate the
isophote curvature as [15]

κ = 2G
s1,s2
1,0 G

s1,s2
0,1 G

s1,s2
1,1 − (G

s1,s2
1,0 )2G

s1,s2
0,2 − (G

s1,s2
0,1 )2G

s1,s2
2,0

((G
s1,s2
1,0 )2 + (G

s1,s2
0,1 )2)3/2

(108)

where G
s1,s2
i,j denotes the convolution with the i-th and j -th

order derivatives of Difference-Of-Gaussian kernels with
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Fig. 12 First row: Test curves sampled at 200 points. Second row: Gaussian white noise perturbed test curves, σ = 0.1. Third and fourth row:
Average absolute curvature errors EW over all curve points depending on the window size W (abscissa) without and with noise (see also (107))
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Fig. 13 Left: Ground truth image f (x) =
√

x2
1 + x2

2 . Right: Ground
truth image perturbed with Gaussian white noise, σ = 0.1

scales s1, s2 along the x1 and x2 axes. To study the ac-
curacy of our estimator we apply it to the artificial signal

f (x) =
√

x2
1 + x2

2 . Since the test signal depends linearly on
the distance from the origin, its ground truth isophote curva-
ture reads κ(x) = (x2

1 + x2
2)(−1/2). Figure 13 shows the test

signal with and without noise. In Fig. 14 the curvature ob-
tained for different scales is plotted against the ground truth
curvature. The left column shows the results obtained from
the conformal monogenic signal. The right column shows
the results obtained from (108). Since the ground truth sig-
nal is isotropic, the plot is restricted to the slice (x1,0). Fig-
ure 15 depicts the same situation but with respect to the
noise perturbed ground truth image. With increasing con-
volution mask size the accuracy of our proposed estimator
increases and finally converges to the true curvature. Fur-
ther it performs better than the derivative based method on
the noise perturbed signal, especially for small convolution
mask sizes. Figure 16 shows the average absolute error of
the curvature over the whole image for the conformal and the
derivative based method. Again the noiseless and the noise
perturbed case are shown. It justifies our proposed method
as a robust and accurate curvature estimator.

Another important aspect of the isophote curvature in-
formation is the ability to obtain the ridge curves of an im-
age [15]. The ridge curves are the isophotes for which the
gradient vanishes such that the curvature obtained by (108)
is degenerate. Due to their invariance properties concerning
translation, rotation and monotonic intensity changes, ridges
serve as a useful feature, especially if their evolution is con-
sidered across multiple scales. Figure 17 shows the ridge
curves (degeneracies of the isophote curvature) of the Lenna
test-image obtained by the proposed method using (97) and
the curvature obtained according to the classical (108) using
Difference-of-Gaussian convolutions kernels across differ-
ent scales. Based on the results we conclude that our pro-
posed estimator delivers results comparable to the standard
method and therefore provides practical alternative access to
the problem of isophote curvature estimation.

5 Outlook: The 3D Conformal Monogenic Signal

While the last chapter focused on the analysis of curved sig-
nal structures in the Euclidean plane using the conformal
monogenic signal, this section is supposed to provide an out-
look on how the proposed signal model can be generalized
to three dimensions. It serves as a novel tool for volume and
image-sequence processing.

Analogous to the previous chapters our signal model are
signals

fm(x) = a cos(k |x − m| + φ) (109)

with x,m ∈ R
3, a ∈ R, k ∈ R+, φ ∈ [0,2π]

m =
⎛
⎜⎝

m1

m2

m3

⎞
⎟⎠= rm

⎛
⎜⎝

sin(θm,1) cos(θm,2)

sin(θm,1) sin(θm,2)

cos(θm,2)

⎞
⎟⎠ (110)

which are spherical signals only depending on the distance
from x to m. In contrast to the two dimensional case, the
isophotes γm(x) of these signals are constituted by spheres
in R

3 around m. In order to apply concepts from the previ-
ous chapter we project our 3D signal to the hypersphere

S
3 =
{

u ∈ R
4

∣∣∣∣∣
3∑

i=1

u2
i +
(

u4 − 1

2

)2

=
(

1

2

)2
}

(111)

using the inverse stereographic projection S −1 : R
3 → S

3

given by

S −1(x) = 1

1 +∑3
i=1 x2

i

⎛
⎜⎜⎜⎜⎝

x1

x2

x3∑3
ı=1 x2

i

⎞
⎟⎟⎟⎟⎠ (112)

for x ∈ R
3. The projected signal with respect to a point of

interest x ∈ R
3 is interpreted as a signal gm ∈ L2(R4) such

that

gx
m(u) =

{
fm(S(u) + x), if u ∈ S

3,

0, else,
(113)

where S denotes the stereographic projection from S
3 to R

3.
The standard three dimensional monogenic signal is able to
obtain the local orientation, local phase and local amplitude
of plane waves in R

3 given by

f (x) = a cos(k 〈ω,x〉 + φ) (114)

where ω ∈ R
3, |ω| = 1 denotes the orientation of the plane

wave, φ the phase and a the amplitude.
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Fig. 14 Estimated curvatures of the ground truth image without noise for the slice f (x1,0) and scales (s1, s2) ∈ {(1,2), (2,4), (4,8), (8,16)}
(from top to bottom). Left column: Conformal method. Right column: Derivative based method
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Fig. 15 Estimated curvatures of the ground truth image with noise for the slice f (x1,0) and scales (s1, s2) ∈ {(1,2), (2,4), (4,8), (8,16)} (from
top to bottom). Left column: Conformal method. Right column: Derivative based method
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Fig. 16 Average absolute curvature errors for our ground truth signals
in Fig. 13 (top: no noise, bottom: noise perturbed) over the whole im-
ages for scales (s1, s2) = (2x ,2x+1) calculated for the conformal and
the derivative based method, where x is the abscissa

In analogue to the two-dimensional case, the conformal
monogenic signal is supposed to extend the monogenic sig-
nal such that curved signal structures, in this case spheri-
cal signal structures, can by analyzed. The type of curved
signals which can be analyzed is again determined by the
geometric entities represented by the intersection of hyper-
planes with the sphere. Compared to the two-dimensional
case the hyperplanes are now three-dimensional. While the
intersections of planes and S

2 were circles in the two-
dimensional case, we now deal with spheres contained in
the surface of the hypersphere S

3 passing through the south-
pole of S

3. Since we chose S
3 such that its south-pole coin-

cides with the origin of R
4, these hyperplanes pass through

the origin in R
4. We are therefore able to characterize these

hyperplanes by just using their normal vectors.
We consider the Radon transform in R

4, which integrates
over 3 dimensional hyperplanes in R

4. Using the relation-
ship between the Radon transform in R

4 and the general-
ized Hilbert transform in R

4 in analogue to the relationship
in R

3, we notice that for a projected spherical signal g
x,s
m

with respect to a point of interest x ∈ R
3 and scale s ∈ R+,

its conformal monogenic signal representation in the Pois-

son scale-space in the upper half-space R
5+ reads

fs(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ps[gx
m](0)

Q1
s [gx

m](0)

Q2
s [gx

m](0)

Q3
s [gx

m](0)

Q4
s [gx

m](0)

⎞
⎟⎟⎟⎟⎟⎟⎠

(115)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

g
x,s
m (0)

sin(ϕm) sin(θm,2) cos(θm,1)T (0)

sin(ϕm) sin(θm,2) sin(θm,1)T (0)

sin(ϕm) cos(θm,2)T (0)

cos(ϕm)T (0)

⎞
⎟⎟⎟⎟⎟⎟⎠

(116)

where

T (u) = c′R−1[(ξ , t) �→ H1D[R[gx,s
m ](ξ , ·)](t)](u), (117)

with c′ ∈ R.
We are therefore able to extract the direction angles of the

original signal fm in the three-dimensional space at x ∈ R
3

as

θm,1(x) = arctan

(Q2
s [gx

m](0)

Q1
s [gx

m](0)

)
, (118)

θm,2(x) = arctan 2
(√

Q1
s [gx

m](0)2 + Q2
s [gx

m](0)2,

Q3
s [gx

m](0)
)
. (119)

The curvature measure which corresponds to the radius
of the spherical signal is obtained as

κm(x) = 2Q4
s [gx

m](0)√∑3
i=1 Qi

s[gx
m](0)2

= 2

tanϕm(x)
. (120)

The amplitude and phase are determined by

a(x) =
√√√√Ps[gx

m](0)2 +
4∑

i=1

Qi
s[gx

m](0)2, (121)

φ(x) = arctan

√∑4
i=1 Qi

s[gx
m](0)2

Ps[gx
m](0)

. (122)

The isophote curvature in the three dimensional case rep-
resents the curvature of the sphere locally approximating the
signal at x. Therefore, we are able to extract the curvature
information for all surfaces which may locally be approxi-
mated by a sphere.

The conformal monogenic signal in R
3 turns out to be

useful in the analysis of volume images. Figure 18 shows
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Fig. 17 Top row: Isophote
curvatures calculated with the
proposed method in (97) at
scales (s1, s2) = (2,4), (4,8),
(8,16). Bottom row: Isophote
curvatures calculated with the
classical method in (108) at
scales (s1, s2) = (2,4), (4,8),
(8,16)

Fig. 18 From left to right: Volume rendering of a cube. (a) Regions with low curvature (high radius of curvature). (b) Regions with hight curvature
(low radius of curvature). (c) Direction with respect to θm,2. (d) Direction with respect to θm,1

Fig. 19 The 3D conformal signal delivers four local features which can be used for image sequence analysis such as optical flow and motion
analysis. From left to right: Curvature, phase and the two parts of the direction information. 3D convolution mask size 5 × 5 × 5 pixels

the features of sample volume rendering of a cube. Image
(a) shows the regions of the volume rendering where the
curvature is low. These are planar regions, since planes cor-
respond to spheres with infinity radius of curvature. Due to
the relation κ = 1

r
it follows that the curvature of a plane

tends to 0. This can be considered as the analogue to the
two-dimensional case, where straight lines represent cir-
cles with infinite radius. Image (b) shows the regions with
high curvature, which are regions which can be approxi-
mated by spheres with low radius. In general this measure
of curvature allows us to distinguish between planar sur-
faces, edges and corners in three-dimensional images. Fur-
thermore, as shown in Figs. 18 (c) and (d), we are able to

obtain the direction of these structures with respect to the
angles θm,1, θm,2.

The feature set of the conformal monogenic signal in R
3

is not limited to volume images but may also be used for
image-sequence analysis. Figure 19 shows the output of the
features for frame inside the Yosemite image sequence.

Future work includes the application of the conformal
monogenic signal to volume-images as well as image se-
quences. In volume image processing they may be used for
preprocessing, feature detection and image registration. Pos-
sible applications in the field of image sequence analysis in-
clude the application of the conformal monogenic signal as
optical flow constraints.
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6 Conclusion

In this contribution a new fundamental idea for locally an-
alyzing curved and straight signals in one unified frame-
work has been presented. It has been shown that the fea-
ture space of generalized Hilbert transforms in Euclidean
space is too flat for analyzing curved signals. Generalized
Hilbert transforms in Euclidean space lack from the restric-
tion to the classical intrinsically 1D local phase information
for all signal dimensions. In such a case arbitrary signals
can be modeled by a superposition of individual i1D sig-
nals. The two-dimensional generalized Hilbert transforms of
any order are always limited to the related 2D Radon space
which gives direct access to the feature space by formulat-
ing explicit systems of equations. The problem of analyzing
both i1D and i2D signals in one framework can be solved
by embedding n-dimensional signals in (n+1)-dimensional
conformal spaces in which (n + 1)-dimensional generalized
Hilbert transforms are possible with more degrees of free-
dom. Without steering and in a rotational invariant way, lo-
cal signal features such as local amplitude, phase, orienta-
tion/direction and curvature can be determined in spatial do-
main by convolution. The conformal monogenic signal can
be computed efficiently and can be easily implemented into
existing low level signal processing steps of any applica-
tion. Furthermore, exact curvature can be calculated with
all the advantages of rotational invariant local phase based
approaches (robustness against local and global signal am-
plitude changes) and without the need of any partial deriv-
atives. Hence, lots of numerical problems of partial deriv-
atives on discrete grids can be avoided. We gave formal as
well as experimental proofs of our results. The conformal
monogenic signal shows the natural relation of the original
image domain to geometric entities such as lines, circles,
hyperplanes and hyperspheres.
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