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Abstract. The classical Hilbert transform on the real line is a valuable tool in signal processing. It constitutes the analytic
signal which allows the determination of the instantaneous phase and amplitude of a one dimensional signal. For signals in
in the Euclidean plane its analogue is the monogenic signal based on the Riesz transform, a generalization of the Hilbert
transform to the plane. In addition to the instantaneous phase and amplitude, the orientation of intrinsically one dimensional
structures in the plane can be determined. Various disciplines like geosciences, omnidirectional vision or astrophysics have
to deal with signals arising on the two-sphere. A Hilbert transform on the two-sphere is well known from Clifford analysis.
Yet it lacks a suitable interpretation from a signal processing viewpoint, especially in the frequency domain. In this paper we
derive a series expansion of the Hilbert transform on the two-sphere in terms of spherical harmonics. It provides an intuitive
interpretation and turns out to be a gradient-like operator acting only on the angular parts of the signal. This leads to intensity
and rotation invariant signal analysis techniques on the two-sphere in analogue to the Euclidean plane.
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INTRODUCTION

The classical Hilbert transform on the real line for functions f ∈ L2(R) given by the convolution with the Hilbert
kernel

H [ f ](x) = ( f ∗ 1
π

)(x) =
1
π

P.V.
∫
R

f (y)
x− y

dy (1)

has a well known interpretation in the Fourier domain:

F [H [ f ]](u) =−i sgn(u)F [ f ](u). (2)

It therefore justifies the interpretation as a π

2 phase shift for negative frequencies and a −π

2 phase shift for positive
frequencies. Assuming a sinusoid signal model f (x) = A(x)cos(φ(x)), where φ(x) denotes the local phase and A(x)
the local amplitude of f , its Hilbert transform is obtained as H [ f ](x) = A(x)sin(φ(x)). The sinusoid signal model
together with its Hilbert transform constitutes the analytic signal [1]

fa(x) = f (x)+ iH [ f ](x) = A(x)eiφ(x) (3)

consisting of strictly positive frequencies in the Fourier domain. The analytic signal is a standard tool in signal
processing used to obtain the local phase and local amplitude of sinusoid signals. It arises as the non-tangential
boundary value of the Cauchy transform. The classical Cauchy integral formula is well known from complex analysis.
Its generalization in the sense of Clifford analysis working in the real Clifford algebra R0,n is given by [2]

C [ f ](x) =
2

An

∫
∂G

E(x− y)n(y) f (y)dS(y) =
2

An

∫
∂G

x− y
|x− y|(n+1)/2

n(y) f (y)dS(y) (4)

with ∂G as the smooth boundary of G⊆Rn, dS the surface element of ∂G, An the surface area and n(y) the outward
pointing unit normal at y. For G = R2

+,∂G = R,x ∈ G the non-tangential boundary value of the Cauchy results in the
classical analytic signal



lim
n.t.x→ξ

C [ f ](x) = lim
n.t.x→ξ

(E ∗ f )(x) = fa(ξ ). (5)

In the following we investigate an analogue to the analytic signal on S2. The construction follows the classical
concept by considering the non-tangential boundary value of the Cauchy transform on S2 instead of the Cauchy
transform in the upper half space Rn

+. Furthermore we are interested in a spectral characterization in analogue to
the Fourier domain interpretation of the classical Hilbert transform. We will provide this characterization in terms of
spherical harmonic coefficients. The coefficients are obtained by a series expansion of the Cauchy transform integral.

THE CAUCHY TRANSFORM ON S2

The Cauchy transform on S2 for functions f ∈ L2(S2) is defined as [3]

C [ f ](x) =
2

A3

∫
S2

E(x−ω)ω f (ω)dS(ω) =
2

A3

∫
S2

x−ω

|x−ω|3
ω f (ω)dS(ω) (6)

where A3 denotes the surface area of the two-sphere and x = rξ ∈ B2. The Cauchy transform allows the splitting
into the Poisson transform and the conjugate Poisson transform in the unit ball B2 respectively as [4]

C [ f ](x) =
1
2
(P[ f ](x)+Q[ f ](x)) (7)

=
1

2A3

∫
S2

1−|x|2

|x−ω|3
f (ω)dS(ω)+

∫
S2

1+ |x|2 +2xω

|x−ω|3
f (ω)dS(ω)

 (8)

with non-tangential boundary values

lim
n.t. x→ξ

P[ f ](x) = f (ξ ) and lim
n.t. x→ξ

Q[ f ](x) = H [ f ](ξ ). (9)

The Poisson transform is the harmonic extension of f from S2 to B2. In accordance the conjugate Poisson transform
is the harmonic extension of the Hilbert transform H [ f ] on S2 to B2. They both solve the Laplace equation ∆P[ f ] = 0,
∆Q[ f ] = 0, where ∆ denotes the Laplace operator. In terms of scale-space theory the Cauchy transform naturally
embeds f in the Poisson scale-space which constitutes a linear scale space according to the well known Gaussian one.

THE CAUCHY TRANSFORM AS A GROUP CONVOLUTION

In the upper half space Rn
+ the Cauchy transform acts as a convolution with the Cauchy kernel on the target

function. Since we want to proceed analogously on the two-sphere, the Cauchy transform is interpreted as a group
convolution over SO(3). Let R(ρ)=R(θ ,ϕ,γ) describe a rotation operator rotating around the z−y−z axis. For every
ω = (θ ,ϕ) ∈ S2 we first rotate the function f by R−1(θ ,ϕ,0) = R−1(ρ) to the north pole, i.e. f (R−1(θ ,ϕ,0)ω),
and evaluate the Cauchy transform at the north pole η of the rotated function.

Cρ [ f ](rη) =
∫
S2

E(rη−ω)ω f (R−1(ρ)ω)dS(ω) = R(ρ)[h]? f . (10)

The modified transform Cρ [ f ](rη) is a function defined on SO(3) describing a convolution over SO(3) with the
Cauchy kernel centered at the north pole.



SERIES EXPANSION

The interpretation of the Cauchy transform in terms of a group convolution over SO(3) allows a series expansion into
SO(3) basis functions [5]:

R(ρ)[h]? f = ∑
l∈N

l

∑
m=−l

l

∑
n=−l

̂[R[h]? f ]
l
m,nDl

m,n(ρ) with ̂[R[h]? f ]
l
m,n = ĥl,n f̂l,m (11)

where the SO(3) basis functions used in this case are the Wigner-D functions defined by

Dl
m,n(ρ) = Dl

m,n(θ ,ϕ,ψ) = e−imψ dl
m,n(cosθ)e−inϕ . (12)

The series expansion depends on the spherical harmonic coefficients ĥl,n, f̂l,m of the filter kernel and the target
function respectively. Since the Cauchy transform splits into the Poisson and conjugate Poisson transform we can treat
these two transforms separately. Furthermore the conjugate Poisson kernel evaluated at the north pole x = η consists
of a scalar and a bivector part

Qr(x,ω) =
1+ |x|2 +2xω

|x−ω|3
=

1+ r2−2rω3(
1+ r2−2rω3

)3/2
− 2rω1e13(

1+ r2−2rω3
)3/2
− 2rω2e23(

1+ r2−2rω3
)3/2

= Q
(0)
r +Q

(1)
r e13 +Q

(2)
r e23.

(13)

which can be regarded as single filter kernels. We will therefore expand three filter kernels into its spherical harmonic
coefficients: the scalar Poisson kernel, which is equal to the scalar conjugate Poisson kernel part, and the two bivector
parts of the conjugate Poisson kernel. The Poisson kernel in B2 has a well known series expansion into Legendre
polynomials given by [6]

Pr(x,ω) =
1−|x|2

|x−ω|3
=

∞

∑
k=0

(2k +1)rkPn(〈ξ ,ω〉). (14)

such that its spherical harmonic coefficients are equal to

̂[Pr]l,m =
∫
S2

Pr(rη ,ω)Yl,m(ω)dS(ω) =
{

rl for m = 0
0 else

(15)

where Yl,m(ω) denote the standard spherical harmonics on S2.
For the conjugate poisson kernel we first expand 1

(1+r2−2rω3)3/2 into a series of Gegenbauer polynomials [7]

1(
1+ |x|2−2rω3

)3/2
=

∞

∑
k=0

rkC3/2
n (〈ξ ,ω〉) =

∞

∑
k=0

rkC3/2
n (cosθ). (16)

such that the spherical harmonic coefficients are obtained by evaluating

̂
[Q(1/2)

r ]l,m ==
∫
S2

Q
(1/2)
r (ω)Yl,m(ω)dS(ω) =

∫
S2

ω1/2

∞

∑
k=0

rkC3/2
k (cosθ)Yl,m(ω)dS(ω). (17)

Its coefficients turn out to be 0 for orders m 6=∓1 such that

[̂Q(1)
r ]l,±1 =∓2r4π

√
2π

3
1

4π

√
3l(l +1)
2(2l +1)

rl−1 =∓

√
4π l(l +1)
(2l +1)

rl (18)



[̂Q(2)
r ]l,±1 =∓i2r4π

√
2π

3
1

4π

√
3l(l +1)
2(2l +1)

rl−1 =∓i

√
4π l(l +1)
(2l +1)

rl . (19)

According to (11) the convolutions over SO(3) for the bivector parts result in

R(ω)[Q(1)
r ]? f = 2 ∑

l∈N

l

∑
m=−l

rl f̂l,m
∂

∂θ
Yl,m(ω) (20)

R(ω)[Q(2)
r ]? f = 2 ∑

l∈N

l

∑
m=−l

rl f̂l,m
1

sinθ

∂

∂ϕ
Yl,m(ω). (21)

We compare these two operators with the angular parts of the gradient operator ∇ on S2 acting on a function
f ∈ L2(S2) as

(∇ f )(ω) = ∑
l∈N

l

∑
m=−l

f̂l,m(∇Yl,m)(ω) = eθ ∑
l∈N

l

∑
m=−l

f̂l,m
∂

∂θ
Yl,m(ω)+ eϕ ∑

l∈N

l

∑
m=−l

f̂l,m
1

sinθ

∂

∂ϕ
Yl,m(ω). (22)

It turns out that the bivector parts of the conjugate Poisson kernel just act like the angular parts of the gradient
operator on S2. Instead of acting on the original function f they act on their harmonic extension P[ f ] into B2. We
may therefore analyze signals in terms of their local orientation β , local phase φ and local amplitude A in the plane
tangent to S2 at ω as

β = arctan2(R(ω)[Q(2)
r ]? f , R(ω)[Q(1)

r ]? f ). (23)

φ = arctan2(
√

(R(ω)[Q(1)
r ]? f )2 +(R(ω)[Q(2)

r ]? f )2,R(ω)[Pr]? f ) (24)

A =
√

(R(ω)[Q(1)
r ]? f )2 +(R(ω)[Q(2)

r ]? f )2 +(R(ω)[Pr]? f )2 (25)

CONCLUSION

It turned out that the Hilbert transform on S2 acts as a multiplier in the domain of SO(3) basis functions. This result
was motivated by the series expansion of the Cauchy transform in terms of Wigner-D functions. Compared to the
Hilbert transform on the real line the Hilbert transform on S2 acts like a local gradient operator. It may be used to
analyze the local orientation in terms of the local orientation, local phase and local amplitude in the tangent plane.
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