
Evolutionary Learning of Neural Structures

for Visuo-Motor Control

Nils T Siebel1, Gerald Sommer1, and Yohannes Kassahun2

1 Cognitive Systems Group, Institute of Computer Science,
Christian-Albrechts-University of Kiel, Germany
nils@siebel-research.de, gs@ks.informatik.uni-kiel.de

2 Group for Robotics, DFKI Lab Bremen, University of Bremen, Germany
kassahun@informatik.uni-bremen.de

1 Introduction

Artificial neural networks are computer constructs inspired by the neural
structure of the brain. The aim is to approximate the vast learning and signal
processing power of the human brain by mimicking its structure and mecha-
nisms. In an artificial neural network (often simply called “neural network”),
interconnected neural nodes allow the flow of signals from special input nodes
to designated output nodes. With this very general concept neural networks
are capable of modelling complex mappings between the inputs and outputs
of a system up to an arbitrary precision [13, 21]. This allows neural net-
works to be applied to problems in the sciences, engineering and even eco-
nomics [4, 15, 25, 26, 30]. A further advantage of neural networks is the fact
that learning strategies exist that enable them to adapt to a problem.

Neural networks are characterised by their structure (topology) and their
parameters (which includes the weights of connections) [27]. When a neural
network is to be developed for a given problem, two aspects need therefore be
considered:

1. What should be the structure (or, topology) of the network? More pre-
cisely, how many neural nodes does the network need in order to fulfil the
demands of the given task, and what connections should be made between
these nodes?

2. Given the structure of the neural network, what are the optimal values for
its parameters? This includes the weights of the connections and possibly
other parameters.



2 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

1.1 Current Practice

Traditionally the solution to aspect 1, the network’s structure, is found by
trial and error, or somehow determined beforehand using “intuition”. Finding
the solution to aspect 2, its parameters, is therefore the only aspect that is
usually considered in the literature. It requires optimisation in a parameter
space that can have a very high dimensionality – for difficult tasks it can be
up to several hundred. This so-called “curse of dimensionality” is a significant
obstacle in machine learning problems [3, 22].3 Most approaches for determin-
ing the parameters use the backpropagation algorithm [27, chap. 7] or similar
methods that are, in effect, simple stochastic gradient descent optimisation
algorithms [28, chap. 5].

1.2 Problems and Biology-inspired Solutions

The traditional methods described above have the following deficiencies:

1. The common approach to pre-design the network structure is difficult or
even infeasible for complicated tasks. It can also result in overly complex
networks if the designer cannot find a small structure that solves the task.

2. Determining the network parameters by local optimisation algorithms like
gradient descent-type methods is impracticable for large problems. It is
known from mathematical optimisation theory that these algorithms tend
to get stuck in local minima [24]. They only work well with very simple
(e.g., convex) target functions or if an approximate solution is known
beforehand (ibid.).

In short, these methods lack generality and can therefore only be used to
design neural networks for a small class of tasks. They are engineering-type
approaches; there is nothing wrong with that if one needs to solve only a
single, more or less constant problem4 but it makes them unsatisfactory from
a scientific point of view.

In order to overcome these deficiencies the standard approaches can be re-
placed by more general ones that are inspired by biology. Evolutionary theory
tells us that the structure of the brain has been developed over a long period
of time, starting from simple structures and getting more complex over time.
In contrast to that, the connections between biological neurons are modified
by experience, i.e. learned and refined over a much shorter time span.

3 When training a network’s parameters by examples (e.g. supervised learning) it
means that the number of training examples needed increases exponentially with
the dimension of the parameter space. When using other methods of determining
the parameters (e.g. reinforcement learning, as it is done here) the effects are
different but equally detrimental.

4 The No Free Lunch Theorem states that solutions that are specifically designed for
a particular task always perform better at this task than more general methods.
However, they perform worse on most or all other tasks, or if the task changes.



Evolutionary Learning of Neural Structures for Visuo-Motor Control 3

In this chapter we will introduce such a method, called EANT, Evolution-
ary Acquisition of Neural Topologies, that works in very much the same way
to create a neural network as a solution to a given task. It is a very general
learning algorithm that does not use any pre-defined knowledge of the task
or the required solution. Instead, EANT uses evolutionary search methods on
two levels:

1. In an outer optimisation loop called structural exploration new neural
structures are developed by gradually adding new structure to an initially
minimal network that is used as a starting point.

2. In an inner optimisation loop called structural exploitation the parame-
ters of all currently considered structures are adjusted to maximise the
performance of the networks on the given task.

To further develop and test this method, we have created a simulation of
a visuo-motor control problem, also known in robotics as visual servoing. A
robot arm with an attached hand is to be controlled by the neural network
to move to a position where an object can be picked up. The only sensory
data available to the network is visual data from a camera that overlooks the
scene. EANT was used with a complete simulation of this visuo-motor control
scenario to learn networks by reinforcement learning.

The remainder of this chapter is organised as follows. In Section 2 we
briefly describe the visuo-motor control scenario and review related work.
Section 3 presents the main EANT approaches: genetic encoding of neural
networks and evolutionary methods for structural exploration and exploita-
tion. In Section 4 we analyse a deficiency of EANT and introduce an improved
version of EANT to overcome this problem. Section 5 details the results from
experiments where a visuo-motor control has been learnt by both the original
and our new, improved version of EANT. Section 6 concludes the chapter.

2 Problem Formulation and Related Work

2.1 Visuo-Motor Control

Visuo-motor control (or visual servoing, as it is called in the robotics commu-
nity) is the task of controlling the actuators of a manipulator (e.g. a human
or robot arm) by using visual feedback in order to achieve and maintain a
certain goal configuration. The purpose of visuo-motor control is usually to
approach and manipulate an object, e.g. to pick it up.

In our setup a robot arm is equipped with a camera at the end-effector
and has to be steered towards an object of unknown pose5 (see Figure 1).
This is realised in the visual feedback loop depicted in Figure 2. In our case a
neural network shall be used as the controller, determining where to move the

5 The pose of an object is defined as its position and orientation.



4 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

Fig. 1. Robot Arm with Camera and Object

robot on the basis of the object’s appearance in the image. Using the standard
robotics terminology defined by Weiss et al. [32] our visuo-motor controller is
of the type “Static Image-based Look-and-Move”.

The object has 4 circular, identifiable markings. Its appearance in the
image is described by the image feature vector yn ∈ IR8 that contains the
4 pairs of image coordinates of these markings. The desired pose relative to
the object is defined by the object’s appearance in that pose by measuring
the corresponding desired image features y⋆

∈ IR8 (“teaching by showing”).
Object and robot are then moved so that no Euclidean position of the object
or robot is known to the controller. The system has the task of moving the arm
such that the current image features resemble the desired image features. This
is an iterative process. In some of our experiments the orientation of the robot
hand was fixed, allowing the robot to move in 3 degrees of freedom, DOFs.
In others the orientation of the hand was also controllable, which means the
robot could move in 6 DOFs.

The input to the controller is the image error ∆yn := y⋆
− yn and ad-

ditionally image measurements which enable the neural network to make its
output dependent on the context. In some of the experiments this was simply
yn, resulting in a 16-dimensional input to the network. In other experiments
the additional inputs were the 2 distances in the image of the diagonally op-
posing markings, resulting in a 10-dimensional input vector. The output of the
controller/neural network is a relative movement un of the robot in the cam-
era coordinate system: un = (∆x, ∆y, ∆z) when moving the robot in 3 DOFs,
un = (∆x, ∆y, ∆z, ∆yaw, ∆pitch, ∆roll) when moving in 6 DOFs. This out-
put is given as an input to the robot’s internal controller which executes the
movement. The new state xn+1 of the environment (i.e. the robot and scene)



Evolutionary Learning of Neural Structures for Visuo-Motor Control 5

y⋆

- e+∆y
n- Controller -u

n Coord.

Trans.
-ũ

n

Robot (with inner control loop)

Inverse

Kinematics
- e+- Joint

Controller
-

�



�
	

Robot

Dynamics
--

joint angles
6-

�



�
	

Robot

Kinematics

x
n

�
�



�
	Scene�

�



�
	Camera�Feature

Extraction

η

6

y
n

-

Fig. 2. Visual Feedback Control Loop

is perceived by the system with the camera. This is again used to calculate the
next input to the controller, which closes the feedback loop shown in Figure 2.

In order to be able to learn and train the neural network by reinforcement
learning a simulation of the visuo-motor control scenario was implemented.
For the assessment of the fitness (performance) of a network N it is tested by
evaluating it in the simulated visual servoing setup. For this purpose s differ-
ent robot start poses and 29 teach poses (desired poses) have been generated.
In case of the 3 DOF scenario we used s = 1023 start poses, in the 6 DOF
scenario s = 58, 677 start poses. Each start pose is paired with a teach pose
to form a task. These tasks contain all ranges and directions of movements.
For each task, N is given the visual input data corresponding to the start and
teach poses, and its output is executed by a simulated robot. The fitness func-
tion F (N) measures the negative RMS (root mean square) of the remaining
image errors after the robot movements, over all tasks. This means that our
fitness function F (N) always takes on negative values with F (N) = 0 being
the optimal solution. Let yi denote the new image features after executing one
robot movement starting at start pose i. Then F (N) is calculated as follows:

F (N) := −

√

√

√

√

√

1

s

s
∑

i=1





1

4

4
∑

j=1

dj(yi)
2 + b(yi)



 (1)

where

dj(yi) :=
∥

∥

∥(y⋆)
2j−1,2j

− (yi)2j−1,2j

∥

∥

∥

2

(2)

is the distance of the jth marker position from its desired position in the
image, and (y)2j−1,2j shall denote the vector comprising of the 2j−1th and
2jth component of a vector y. The inner sum of (1) thus sums up the squared
deviations of the 4 marker positions in the image. b(y) is a “badness” function
that adds to the visual deviation an additional positive measure to punish
potentially dangerous situations. If the robot moves such that features are
not visible in the image or the object is touched by the robot, b(y) > 0,



6 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

otherwise b(y) = 0. All image coordinates are in the camera image on the
sensor and have therefore the unit 1 mm. The sensor (CCD chip) in this
simulation measures 8

3
mm× 2 mm.

For the 3 DOF data set the average (RMS) image error is −0.85 mm at the
start poses, which means that a network N that avoids all robot movements
(e.g. a network with all weights = 0) has F (N) = −0.85. F (N) can easily reach
values below -0.85 for networks that tend to move the robot away rather than
towards the target object.

An analysis of the data set used for training the network in the 3 DOF case
was carried out to determine its intrinsic dimensionality. The dimensionality
is (approximately) 4, the Eigenvalues being 1.70, 0.71, 0.13, 0.04 and the other
6 Eigenvalues below 1e-15. It is not surprising that the dimensionality is less
than 10 (the length of the input vector). This redundancy makes it more
difficult to train the neural networks, however, we see this challenge as an
advantage for our research, and the problem encoding is a standard one for
visual servoing.

2.2 Related Work: Visuo-Motor Control

Visuo-motor control is one of the most important robot vision tasks [14, 32].
Traditionally it uses a simple P-type controller—an approach known from
engineering [5]. In these controllers the output is determined as the minimal
vector that solves the locally linearised equations describing the image error
as a function of the robot movement. This output is often multiplied by a
constant scale factor α, 0 < α < 1 (dampening). Sometimes, more elaborate
techniques like trust-region methods are also used to control the step size of
the controller depending on its current performance [16]. From a mathematical
point of view, visuo-motor control is the iterative minimisation of an error
functional that describes differences of objects’ appearances in the image,
by moving in the search space of robot poses. The traditional approach to
a solution then becomes an iterative Gauss-Newton method [9] to minimise
the image error, using a linear model (“Image Jacobian”) of the objective
function.

There have also been approaches to visuo-motor control using neural net-
works, or combined Neuro-Fuzzy approaches like the one by Suh and Kim [11].
Urban et al. use a Kohonen self-organising map (SOM) to estimate the Image
Jacobian for a semi-traditional visuo-motor control [31]. Zeller et al. also train
a model that uses a Kohonen SOM, using a simulation, to learn to control
the position of a pneumatic robot arm based on 2 exteroceptive and 3 propri-
oceptive sensor inputs [35].

Many of these methods reduce the complexity of the problem (e.g. they
control the robot in as few as 2 degrees of freedom, DOFs) to avoid the
problems of learning a complex neural network. Others use a partitioning
of the workspace to learn a network of “local experts” that are easier to
train [6, 12]. A neural network that controls a robot to move around obstacles



Evolutionary Learning of Neural Structures for Visuo-Motor Control 7

is presented in [23]. The network is optimised by a genetic algorithm, however,
its structure (topology) is pre-defined and does not evolve.

There are a few methods that develop both the structure and the topology
of a neural network by evolutionary means. These methods will be discussed
in section 3.5 below. However, we have not seen these methods applied to
visuo-motor control problems similar to ours.

To our mind it is a shortcoming of most (if not, all) existing visuo-motor
control methods that the solution to the control task is modelled by the
designer of the software. Whether it be using again an Image Jacobian, or
whether it be selecting the size and structure of the neural network “by
hand”—that is, by intuition and/or trial and error—these methods learn only
part of the solution by themselves. Training the neural network then becomes
“only” a parameter estimation, even though the curse of dimensionality still
makes this very difficult.

We wish to avoid this pre-designing of the solution. Instead, our method
learns both the structure (topology) and the parameters of the neural network
without being given any information about the nature of the problem. To
achieve this, we have used our own, recently developed method, EANT, Evo-
lutionary Acquisition of Neural Topologies [19] and improved its convergence
with an optimisation technique called CMA-ES [10] to develop a neural net-
work from scratch by evolutionary means to solve the visuo-motor control
problem.

3 Developing Neural Networks with EANT

EANT, Evolutionary Acquisition of Neural Topologies [18, 19], is an evolution-
ary reinforcement learning system that is suitable for learning and adapting
to the environment through interaction. It combines the principles of neural
networks, reinforcement learning and evolutionary methods.

3.1 EANT’s Encoding of Neural Networks: The Linear Genome

EANT uses a unique genetic encoding that uses a linear genome of genes
that can take different forms. A gene can be a neuron, an input to the neural
network or a connection between two neurons. We call “irregular” connections
between neural genes “jumper connections”. Jumper genes are introduced by
structural mutation along the evolution path. They can encode either forward
or recurrent connections.

Figures 3(a) through 3(c) show an example encoding of a neural network
using a linear genome. The figures show (a) the neural network to be encoded.
It has one forward and one recurrent jumper connection; (b) the neural net-
work interpreted as a tree structure; and (c) the linear genome encoding the
neural network. In the linear genome, N stands for a neuron, I for an input to



8 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

(a) Original neural network (b) Same network in tree format

(c) Corresponding Linear Genome

Fig. 3. An example of encoding a neural network using a linear genome

the neural network, JF for a forward jumper connection, and JR for a recurrent
jumper connection. The numbers beside N represent the global identification
numbers of the neurons, and x or y represent the inputs coded by the input
gene. As can be seen in the figure, a linear genome can be interpreted as a tree
based program if one considers all the inputs to the network and all jumper
connections as terminals.

The linear genome encodes the topology of the neural network implicitly
in the ordering of the elements of the linear genome. This enables one to
evaluate the represented neural controller without decoding it. The evaluation
of a linear genome is closely related to executing a linear program using a
postfix notation. In the genetic encoding the operands (inputs and jumper
connections) come before the operator (a neuron) if one goes from right to
left along the linear genome. The linear genome is complete in that it can
represent any type of neural network. It is also a compact encoding of neural
networks since the length of the linear genome is the same as the number of
synaptic weights in the neural network. It is closed under structural mutation
and under a specially designed crossover operator (see below). An encoding
scheme is said to be closed if all genotypes produced are mapped into a valid
set of phenotype networks [17].

If one assigns integer values to the genes of a linear genome such that the
integer values show the difference between the number of outputs and number



Evolutionary Learning of Neural Structures for Visuo-Motor Control 9

Fig. 4. An example of the use of assigning integer values to the genes of the linear
genome. The linear genome encodes the neural network shown in Figure 3(a). The
numbers in the square brackets below the linear genome show the integer values
assigned to the genes of the linear genome. Note that the sum of the integer values
is 1 showing that the neural network encoded by the linear genome has only 1
output. The shaded genes form a sub-network. The sum of these values assigned to
a sub-network is always 1.

of inputs to the genes, one obtains the following rules useful in the evolution
of the neural controllers:

1. The sum of integer values is the same as the number of outputs of the
neural controller encoded by the linear genome.

2. A sub-network (sub-linear genome) is a collection of genes starting from a
neuron gene and ending at a gene where the sum of integer values assigned
to the genes between and including the start neuron gene and the end gene
is 1.

Figure 4 illustrates this concept. Please note that only the number of inputs
to neural genes is variable, so in order to achieve a compact representation
only this number is stored within the linear genome.

3.2 Initialisation of the EANT Population of Networks

EANT starts with initial structures that are generated using either the full or
the grow method as known from genetic programming [2]. Given a maximum
initial depth of a tree (or in our case, a neural network), the full method
generates trees where each branch has exactly the maximum depth. The grow
method, on the other hand, adds more stochastic variation such that the
depth of some (or all) branches may be smaller. Initial structures can also be
chosen to be minimal, which is done in our experiments. This means that an
initial network has no hidden layers or jumper connections, only 1 neuron per
output with each of these connected to all inputs. Starting from simple initial
structures is the way it is done by nature and most of the other evolutionary
methods [33].

Using this simple initial network structure as a starting point, EANT
incrementally develops it further using evolutionary methods. On a larger
scale new neural structures are added to a current generation of networks.
We call this process the “exploration” of new structures. On a smaller scale
the current individuals (neural networks) are optimised by changing their
parameters, resulting in an “exploitation” of these existing structures. Both
of these optimisation loops are implemented as evolutionary processes. The



10 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

N 1 N 2 I x I y N 3 I x I y

W=0.3 W=0.7 W=0.5 W=0.8 W=0.6 W=0.4 W=0.3

I x

W=0.9

N 1 N 2 I x I y N 3 I x I y

W=0.3 W=0.7 W=0.5 W=0.8 W=0.6 W=0.4 W=0.3

JR1

W=0.1

1

2 3

x y

0.7 0.6

0.9

0.5 0.3

0.4

0.8

1

2 3

x y

0.7 0.6

0.1

0.5 0.3

0.4

0.8

0.3 0.3

Fig. 5. An example of structural mutation. The structural mutation deleted the
input connection to N1 and added a self-recurrent connection at its place.

main search operators in EANT are structural mutation, parametric mutation
and crossover. The search stops when a neural controller is obtained that can
solve the given task.

3.3 Structural Exploration: Search for Optimal Structures

Starting from a simple initial network structure, EANT gradually develops it
further using structural mutation and crossover.

The structural mutation adds or removes a forward or a recurrent jumper
connection between neurons, or adds a new sub-network to the linear genome.
It does not remove sub-networks since removing sub-networks causes a tremen-
dous loss of performance of the neural controller. The structural mutation
operates only on neuron genes. The weights of a newly acquired topology are
initialised to zero so as not to disturb the performance of the network. Figure 5
shows an example of structural mutation where a neuron gene lost connection
to an input and received a self-recurrent connection.

As a recently added new feature to EANT, new hidden neurons that are
added by structural mutation are only connected to a subset of inputs. These



Evolutionary Learning of Neural Structures for Visuo-Motor Control 11

inputs are randomly chosen. This makes the search for new structures “more
stochastic”.

The crossover operator exploits the fact that structures originating from
the same initial structure have some parts in common. By aligning the com-
mon parts of two randomly selected structures, it is possible to generate a
third structure which contains the common and disjoint parts of the two par-
ent structures. This type of crossover was introduced by Stanley and Miikku-
lainen [29] and has been incorporated into EANT. An example of the crossover
operator under which the linear genome is closed is shown in Figure 6.

The structural selection operator that occurs at a larger timescale selects
the first half of the population to form the next generation. New structures
that are introduced through structural mutation and which are better accord-
ing to the fitness evaluations survive and continue to exist. Since sub-networks
that are introduced are not removed, there is a gradual increase in the com-
plexity of structures along the evolution. This allows EANT to search for a
solution starting from a structure of minimum complexity and developing it
further without the need to specify the required network size beforehand.

3.4 Structural Exploitation: Search for Optimal Parameters

In the exploitation step, EANT optimises the weights (and possibly, other
parameters) of the networks, i.e. it exploits the existing structures. This is
accomplished by an evolutionary process that occurs at smaller timescale. This
process uses parametric mutation as a search operator. Parametric mutation
is accomplished by perturbing the weights of the controllers according to the
uncorrelated mutation in evolution strategy or evolutionary programming [7].

3.5 Related Work: Evolving Neural Networks

Until recently, only small neural networks have been evolved by evolutionary
means [33]. According to Yao, a main reason is the difficulty of evaluating the
exact fitness of a newly found structure: In order to fully evaluate a struc-
ture one needs to find the optimal (or, some near-optimal) parameters for
it. However, the search for good parameters for a given structure has a high
computational complexity unless the problem is very simple (ibid.).

In order to avoid this problem most recent approaches evolve the struc-
ture and parameters of the neural networks simultaneously. Examples include
EPNet [34], GNARL [1] and NEAT [29].

EPNet uses a modified backpropagation algorithm for parameter opti-
misation (i.e. a local search method). The mutation operators for searching
the space of neural structures are addition and deletion of neural genes and
connections (no crossover is used). A tendency to remove connections/genes
rather than to add new ones is realised in the algorithm. This is done to coun-
teract the “bloat” phenomenon (i.e. ever growing networks with only little
fitness improvement; also called “survival of the fattest” [7]).



12 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

Fig. 6. Performing crossover between two linear genomes. The genetic encoding
is closed under this type of crossover operator since the resulting linear genome
maps to a valid phenotype network. The weights of the genes of the resulting linear
genomes are inherited randomly from both parents.

GNARL is similar in that is also uses no crossover during structural mu-
tation. However, it uses an EA for parameter adjustments. Both parametrical
and structural mutation use a “temperature” measure to determine whether
large or small random modifications should be applied—a concept known
from simulated annealing [20]. In order to calculate the current temperature,
some knowledge about the “ideal solution” to the problem, e.g. the maximum
fitness, is needed.



Evolutionary Learning of Neural Structures for Visuo-Motor Control 13

The author groups of both EPNet and GNARL are of the opinion that
using crossover is not useful during the evolutionary development of neural
networks [34, 1]. The research work underlying NEAT, on the other hand,
seems to suggest otherwise. The authors have designed and used the crossover
operator described in section 3.3 above. It allows to produce valid offspring
from two given neural networks by first aligning similar or equal subnetworks
and then exchanging differing parts. Like GNARL, NEAT uses EAs for both
parametrical and structural mutation. However, the probabilities and stan-
dard deviations used for random mutation are constant over time. NEAT also
incorporates the concept of speciation, i.e. separated sub-populations that aim
at cultivating and preserving diversity in the population [7, chap. 9].

4 Combining EANT with CMA-ES

4.1 Motivation

During and after its development in the recent years EANT was tested on
simple control problems like pole balancing where is has shown a very good
performance and convergence rate—that is, it learns problems well with only
few evaluations of the fitness function. However, problems like pole balancing
are relatively simple. For instance, the neural network found by EANT to
solve the double pole balancing problem without velocity information only has
1 hidden neuron. The new task, visuo-motor control, is much more complex
and therefore required some improvements to EANT on different levels.

In order to study the behaviour of EANT on large problems we have im-
plemented visuo-motor control simulators both for 6 DOF and 3 DOF control
problems with 16/6 and 10/3 network in-/outputs, respectively. As a fitness
function F for the individual networks N we used again the negative RMS
of the remaining image errors, as defined in (1) above. This means that fit-
ness takes on negative values with 0 being the optimal solution. Our studies
were carried out on a small Linux PC cluster with 4 machines that each have
2 CPUs running at 3 GHz. This parallelisation was necessary because of the
significant amount of CPU time required by our simulation. One evaluation
of the fitness function in the 6 DOF case (58,677 robot movements and image
acquisitions) takes around 1 second. In the 3 DOF case (“only” 1023 robot
movements) the evaluation is of course considerably faster, however, paralleli-
sation is still very helpful.

For our experiments we have set the following EANT parameters:

• population size: 20 individuals for exploration, 7 n for exploitation, n being
the size of the network

• structural mutation: enabled with a probability of 0.5
• parametric mutation: enabled; mutating all non-output weights
• crossover: disabled



14 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

• initial structure: minimal; 1 gene per output, each connected to all inputs

The results from our initial studies have shown that EANT does develop
structures of increasing complexity and performance. However, we were not
satisfied with the speed at which the performance (fitness) improved over
time.

4.2 Improving the convergence with CMA-ES

In order to find out whether the structural exploration or the structural ex-
ploitation component needed improvement we took intermediate results (in-
dividuals with 175–200+ weights) and tried to optimise these structures using
a different optimisation technique. Since our problem is highly non-linear and
multi-modal (i.e. it has multiple local optima) we needed to use a global op-
timisation technique, not a local one like backpropagation, which is usually
equivalent to a stochastic gradient descent method and therefore prone to get
stuck in local minima. For our re-optimisation tests we used a global optimi-
sation method called “CMA-ES” (Covariance Matrix Adaptation Evolution
Strategy) [10] that is based on an evolutionary method like the one used in
EANT’s exploitation. CMA-ES includes features that improve its convergence
especially with multi-modal functions in high-dimensional spaces.

One important difference between CMA-ES and the traditional evolution-
ary optimisation method in EANT is in the calculation of the search area for
sampling the optimisation space by individuals. In EANT, each parameter
in a neural network carries with it a learning rate which corresponds to a
standard deviation for sampling new values for this parameter. This learning
rate is adapted over time, allowing for a more efficient search in the space:
parameters (e.g. input weights) that have not been changed for a long time
because they have been in the network for a while are assumed to be near-
optimal. Therefore their learning rate can be decreases over time, effectively
reducing the search area in this dimension of the parameter space. New pa-
rameters (e.g. weights of newly added connections), on the other hand, still
require a large learning rate so that their values are sampled in a larger inter-
val. This technique is closely related to the “Cascaded Learning” paradigm
presented by Fahlman and Lebiere [8]. It allows the algorithm to concentrate
on the new parameters during optimisation and generally yields better op-
timisation results in high-dimensional parameter spaces, even if a relatively
small population is used.

In EANT, the adaptation of these search strategy parameters is done ran-
domly using evolution strategies [7]. This means that new strategy parameters
may be generated by mutation and will then influence the search for optimal
network parameters. However, one problem with this approach is that it may
take a long time for new strategy parameters to have an effect on the fitness
value of the individual. Since adaptation is random the strategy parameter
may have been changed again by then, or other changes may have influenced



Evolutionary Learning of Neural Structures for Visuo-Motor Control 15

0 50000 100000 150000 200000 250000 300000 350000 400000 450000
function evaluations

-1.7

-1.6

-1.5

-1.4

-1.3

fit
ne

ss
 v

al
ue

init: EANT
init: unif. random [-1 1]
init: zeros
weights and sigmoids
all weights and sigmoids

CMA-ES optimisation of EANT-generated network (16 inputs, 6 outputs)
EANT generation 6 individual 0 of full 6 DOF experiment (169 non-output weights, 10 sigmoids)

initial fitness -1.64385

Fig. 7. Re-optimisation with CMA-ES of networks generated by EANT, 6 DOF

fitness. Therefore evolution strategies tend to work well only for evolutionary
algorithms that work with large populations and/or over very many genera-
tions.

CMA-ES uses a method similar to the original evolution strategies concept.
The sampling range of the parameters is also expressed by a standard devia-
tion hyper-ellipsoid. However, it is not necessarily aligned with the coordinate
axes (and hence, its axes identified with specific parameters). Instead, it is ex-
pressed in a general covariance matrix which is adapted over time (leading to
the letters “CMA”, Covariance Matrix Adaptation) depending on the function
values within the current population. Different to EANT’s evolution strate-
gies, the strategy parameters that define the hyper-ellipsoid are not adapted
by random mutation. Instead, they are adapted at each step depending on
the parameter and fitness values of current population members. CMA-ES
uses sophisticated methods to avoid things like premature convergence and
is known for fast convergence to good solutions even with multi-modal and
non-separable functions in high-dimensional spaces (ibid.).

Using CMA-ES, we improved the fitness of a network for the 6 DOF prob-
lem from -1.64 to a level between -1.57 and -1.35 in several experiments. This
can be seen in Figure 7 where the fitness is plotted against evaluations of
the fitness function (short: “fevals” for “function evaluations”). Each such ex-
periment has taken up to 24,000 CMA-ES generations (456,000 fevals) which
has taken slightly more than 41 days to develop running on a single CPU.
However, as can be seen in Figure 7, it should be noted that all of these ex-
periments showed improvement over the original fitness in under 10 hours.
Most of the CPU time was taken up by fevals but a small percentage also by
CMA-ES internal calculations that—among other things—aim to reduce the



16 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

total number of fevals needed for the optimisation. While these results show
that the optimisation still needs a large amount of CPU time (at least in
the 6 DOF case) the improvement in fitness was very significant. Experiments
with different initialisations have shown that the convergence of CMA-ES does
not depend much on the initial values of the parameters. The variance in the
resulting fitness values for optimisations with the same initial values is also an
indicator for the multi-modality of our problem, which stems, in part, from
our definition of the fitness function as a sum of many functions.

These 6 DOF experiments are very expensive to run due to their enormous
CPU usage. However, with only few experiments the results have only little
statistical significance. Therefore we made further experiments with networks
of similar size for the 3 DOF visuo-motor control scenario. In over 700 CMA-
ES re-optimisation experiments we always achieved very similar results to the
ones shown in Figure 7 and conclude that the parameter optimisation with
CMA-ES really does usually give a significant improvement in fitness value.

Our experiments have shown that by optimising only the parameters of
the networks that were generated by EANT their fitness can be considerably
increased. This indicates that for networks of this size the exploitation part
of EANT that optimises these parameters can and should be improved. En-
couraged by our positive results with CMA-ES we have therefore replaced the
structural exploitation loop of EANT by a new strategy that uses CMA-ES
as its optimisation technique.

5 Experimental Evaluation

5.1 Experimental Setup

After the studies with 6 DOF visuo-motor control described in Section 4 we
decided that the 3 DOF case with 1023 start poses will be difficult enough to
test the new CMA-ES-based EANT and compare it to the original version.
With the same setup as before, 10/3 in-/outputs and starting from minimal
structures (3 output neurons, each connected to all 10 inputs) we started
EANT again on 4 PCs, each with 2 CPUs running at 3 GHz. One master
process was responsible for the exploration of new structures and distributed
the CMA-ES optimisation of the individuals (exploitation of current struc-
tures) to slave processes. We used the same fitness function F (N) as before
for evaluating the individual networks N , in this case

F (N) = −

√

√

√

√

√

1

1023

1023
∑

i=1





1

4

4
∑

j=1

∥

∥

∥(y⋆)
2j−1,2j

− (yi)2j−1,2j

∥

∥

∥

2

2

+ b(yi)



, (3)



Evolutionary Learning of Neural Structures for Visuo-Motor Control 17

which means that fitness takes again on negative values with 0 being the
optimal solution.

Up to 15 runs of each method have been made to ensure a statistically
meaningful analysis of results. Different runs of the methods with the same
parameters do not differ much; shown and discussed below are therefore simply
the mean results from our experiments.

5.2 Parameter Sets

Following our paradigm to put as little problem-specific knowledge into the
system as possible, we used the standard parameters in EANT and CMA-ES
to run our experiments. Additionally we introduced CMA-ES stop conditions
that were determined in a few test runs. They were selected so as to make sure
that the CMA-ES optimisation converges to a solution, i.e. the algorithm runs
until the fitness does not improve any longer. These very lax CMA-ES stop
criteria (details below) allow for a long run with many function evaluations
(fevals) and hence can take a lot of time to terminate. In order to find out
how much the solution depends on these stop criteria additional experiments
were made with a second set of CMA-ES parameters, effectively allowing only
1

10
of the fevals and hence speeding up the process enormously. Altogether

this makes 3 types of experiments:

1. the original EANT with its standard parameters;
2. the CMA-ES-based EANT with a large allowance of fevals; and
3. the CMA-ES-based EANT with a small allowance of fevals

The optimisations had the following parameters:

Original EANT

• initial structure: minimal; 1 neuron per output, each connected to all in-
puts

• up to 20 individuals allowed in the exploration of new structures (global
population size)

• structural mutation: enabled with probability 50%; random addition of
hidden neurons and forward connections enabled; recurrent connections
and crossover operator disabled

• parametric mutation: enabled for non-output weights, probability 5%
• exploration: new hidden neurons connected to all inputs
• exploitation: 3 to 6 parallel optimisations of the same individual, adap-

tively adjusted according to current speed of increase in fitness (threshold:
5% fitness improvement during exploitation)

• exploitation population size 7 n or 14n, n being the size of the network;
adaptation as before

• number of exploitation generations: 15 or 30; adapted as above



18 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

0 10 20 30 40 50 60 70 80 90 100 110
identification number of the individual

-0.48

-0.46

-0.44

-0.42

-0.40

-0.38

-0.36

-0.34

-0.32

-0.30

-0.28

-0.26

-0.24

-0.22

fit
ne

ss
 v

al
ue

training fitness
testing fitness

Comparison of Training vs Testing Results
Plotted is the fitness of population members, which were sorted by training fitness

Fig. 8. Comparison Training vs. Testing Fitness Values

CMA-ES EANT, many fevals

• new hidden neurons connected to approx. 50% of inputs (which makes the
search for new structures stochastic)

• always only 3 parallel optimisations of the same individual
• 4 + 3 logn CMA-ES individuals (equal to number of fevals per CMA-ES

generation) when optimising n parameters
• CMA-ES stop criteria: improvement over previous 5,000 generations (iter-

ations) less than 0.000001 or maximum standard deviation in covariance
matrix less than 0.00005 or number of generations more than 100,000

• up to 2 optimisation results of the same individual may be kept, so that a
single structure cannot take over the whole population in less than 5 gen-
erations (very unlikely; it has not happened)

All other parameters, especially the exploration parameters, remained the
same as in the original EANT.

CMA-ES EANT, few fevals

The only change compared to the previous parameters is that all stop criteria
of the CMA-ES optimisation are more strict by a factor of 10:

• CMA-ES stop criteria: improvement over previous 5,000 generations (it-
erations) less than 0.00001 or maximum standard deviation in covariance
matrix less than 0.0005 or number of generations more than 10,000



Evolutionary Learning of Neural Structures for Visuo-Motor Control 19

0 1 2 3 4 5 6 7 8 9 10
EANT generation number

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l

original EANT, few fevals
CMA-ES EANT, many fevals
CMA-ES EANT, few fevals
Image Jacobian’s "fitness"

Development of Fitness EANT vs CMA-ES EANT

Fig. 9. Results from 3 DOF experiments: EANT and CMA-ES-based EANT

Due to the nature of the stop criteria in both cases the number of generations
in the CMA-ES optimisations varied strongly (from 2,696 to 100,000). There-
fore a parallelisation scheme with dynamic load balancing was employed.

5.3 Training and Testing

In order to carry out a meaningful analysis of the neural networks trained by
the EANT system we have generated a test set of 1023 visuo-motor control
tasks. They are comparable with the 1023 tasks the system was trained on. In
particular, the fitness value when not moving the robot is the same. However,
the testing data require completely different robot movements. All 115 neural
networks that were generated as intermediate results during one run of EANT
were tested, without any change to them, on the testing data. Figure 8 shows
a comparison of the resulting fitness values of these individuals, sorted by
training fitness. It can be seen that the training and testing fitnesses are
very similar indeed. The maximum deviation of testing fitnesses compared to
training fitnesses is 2.738%, the mean deviation 0.5527% of the fitness value.
From this follows that the neural networks developed with our technique did
not just memorise the correct responses of the network but are capable of
generalising to different, but compatible tasks.

5.4 Results

Figure 9 shows the development of the fitness value, plotted against the EANT
exploration generation since this is the determining factor for the complexity
of the networks. It can be clearly seen that our new version of EANT which



20 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

uses CMA-ES in the exploitation converges much faster to networks with a
good fitness. While the original EANT approach develops from around -0.490
to -0.477 in 11 generations both CMA-ES-based methods reach a value around
-0.2 at that point.

The CMA-ES exploitation experiment with “many fevals” uses many more
fevals per exploration generation than the EANT’s original exploitation, re-
sulting in longer running times of the algorithm. However, running times of
the “few fevals” variant uses about the same number of function evaluations
as the original EANT. When comparing the resulting fitness values of these
two variants one can see a difference of only about 10%. This indicates that
the more strict stop criteria could be sufficient for the problem.

5.5 Discussion

Let us recall that the fitness values are (modulo b(·)) the remaining RMS
errors in the image after the robot movement. The value without moving the
robot is -0.85. For comparison with the new methods we also calculated the
fitness value of the traditional Image Jacobian approach. The robot movement
was calculated using the (undampened) product of the Image Jacobian’s pseu-
doinverse with the negative image error, a standard method [14]. The resulting
fitness is -0.61. Why is this comparison meaningful? As in most optimisation
techniques, both the Image Jacobian and our networks calculate the neces-
sary camera movement to minimise the image error in one step. However, in
practice optimisation techniques (which includes visuo-motor control meth-
ods) usually multiply this step by a scalar dampening factor before executing
it. This dampening of the optimisation step is independent of the nature of
the model that was used to calculate it6.

This comparison with the standard approach shows that our networks are
very competitive when used for visuo-motor control. It can of course be ex-
pected that a non-linear model will be able to perform better than a linear
model. However, it should be taken into consideration that the Image Jaco-
bian is an analytically derived solution (which is something we aim to avoid).
Also, and more importantly, the Image Jacobian contained the exact distance
(z coordinate) of the object from the camera. While this is easy to provide in
our simulator in practice it could only be estimated using the image features.

The two types of experiments using CMA-ES have also shown that in
our optimisation task CMA-ES is not very demanding when it comes to the
number of fevals. The experiments with “few fevals” resulted in fitness val-
ues similar to those obtained with “many fevals” while keeping the CPU re-
quirements about the same as the original EANT. Separate re-optimisation
attempts with the original EANT exploitation that allowed for more fevals
did not improve the performance of existing EANT individuals significantly.

6 It is nevertheless useful to make it dependent on the correctness of the model, as
it is done in restricted step methods [9].



Evolutionary Learning of Neural Structures for Visuo-Motor Control 21

It can therefore be assumed that the main performance increase stems from
the use of CMA-ES, not from a the CPU time/feval allowance.

To conclude, it can be clearly seen that the use of CMA-ES in EANT’s
exploitation results in better performance of neural networks of comparable
size while not increasing the computational requirements. The performance
of neural networks developed with our new method is also very much better
than that of traditional methods for visuo-motor control.

6 Summary

Our aim was to develop neural networks automatically that can be used as
a controller in a visuo-motor control scenario. At the same time, our second
goal was to develop a method that would generate such networks with a min-
imum of predetermined modelling. To achieve this, we used and improved
our own evolutionary method called EANT, Evolutionary Acquisition of Neu-
ral Topologies. EANT uses evolutionary search methods on two levels: In an
outer optimisation loop called structural exploration new networks are devel-
oped by gradually adding new structures to an initially minimal network. In
an inner optimisation loop called structural exploitation the parameters of
current networks are optimised. EANT was used with a complete simulation
of a visuo-motor control scenario to learn neural networks by reinforcement
learning.

Initial experiments with a 6 DOF visuo-motor control scenario have shown
that EANT is generally well suitable for the task. However, the convergence
of the original EANT method needed to be improved. Tests with resulting
networks have indicated that it is most useful to work on the exploitation of
network structures. Re-optimisation of existing networks with an optimisation
method called CMA-ES, Covariance Matrix Adaptation Evolution Strategy
have shown a significant improvement in the controller’s performance.

Based on these results the exploitation loop of EANT was replaced with a
new strategy that uses CMA-ES as its optimisation algorithm. Experiments
with this new method have shown much improved results over the original
EANT method for developing a visuo-motor controller in the 3 DOF scenario.
It could also be seen that varying the CPU time available to the CMA-ES-
based parameter optimisation in the exploitation part by a factor of 10 did
not significantly influence the performance of the resulting networks. Their
performance is also very much better than that of the traditional approach
for visuo-motor control.

Our experimental results show that the new EANT method with CMA-
ES is capable of learning neural networks as solutions to complex and difficult
problems. The CMA-ES based EANT can be used as a “black-box” tool to
develop networks without being given much information about the nature of
the problem. It also does not require a lot of parameter tuning to give useful
results. The resulting networks show a very good performance.



22 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

Acknowledgements

The authors wish to thank Nikolaus Hansen, the developer of CMA-ES, for
kindly providing source code which helped us to quickly start integrating his
method into EANT.

References

1. Peter J Angeline, Gregory M Saunders, and Jordan B Pollack. An evolutionary
algorithm that constructs recurrent neural networks. IEEE Transactions on
Neural Networks, 5:54–65, 1994.

2. Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. Ge-
netic Programming: An Introduction on the Automatic Evolution of Computer
Programs and Its Applications. Morgan Kaufmann, San Francisco, USA, 1998.

3. Richard Ernest Bellman. Adaptive Control Processes. Princeton University
Press, Princeton, USA, 1961.

4. Andrea Beltratti, Sergio Margarita, and Pietro Terna. Neural Networks for
Economic and Financial Modelling. International Thomson Computer Press,
London, UK, 1996.

5. Chris C Bissell. Control Engineering. Number 15 in Tutorial Guides in Elec-
tronic Engineering. CRC Press, Boca Raton, USA, 2nd edition, 1996.

6. Wolfram Blase, Josef Pauli, and Jörg Bruske. Vision-based manipulator navi-
gation using mixtures of RBF neural networks. In International Conference on
Neural Network and Brain, pages 531–534, Bejing, China, April 1998.

7. Ágoston E Eiben and James E Smith. Introduction to Evolutionary Computing.
Springer Verlag, Berlin, Germany, 2003.

8. Scott E Fahlman and Christian Lebiere. The cascade-correlation learning archi-
tecture. Technical Report CMU-CS-90-100, Carnegie Mellon University, Pitts-
burgh, USA, August 1991.

9. Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, New
York, Chichester, 2nd edition, 1987.

10. Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation, 9(2):159–195,
2001.

11. Koichi Hashimoto, editor. Visual Servoing: Real-Time Control of Robot Manip-
ulators Based on Visual Sensory Feedback, volume 7 of Series in Robotics and
Automated Systems. World Scientific Publishing Co., Singapore, 1994.

12. Gilles Hermann, Patrice Wira, and Jean-Philippe Urban. Neural networks orga-
nizations to learn complex robotic functions. In Proceedings of the 11th European
Symposium on Artificial Neural Networks (ESANN 2003), pages 33–38, Bruges,
Belgium, April 2005.

13. Kurt Hornik, Maxwell B Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2:359–366, 1989.

14. Seth Hutchinson, Greg Hager, and Peter Corke. A tutorial on visual servo
control. Tutorial notes, Yale University, New Haven, USA, May 1996.

15. William R Hutchison and Kenneth R Stephens. The airline marketing tactician
(AMT): A commercial application of adaptive networking. In Proceedings of
the 1st IEEE International Conference on Neural Networks, San Diego, USA,
volume 2, pages 753–756, 1987.



Evolutionary Learning of Neural Structures for Visuo-Motor Control 23

16. Martin Jägersand. Visual servoing using trust region methods and estimation
of the full coupled visual-motor Jacobian. In Proceedings of the IASTED Appli-
cations of Control and Robotics, Orlando, USA, pages 105–108, January 1996.

17. Jae-Yoon Jung and James A Reggia. A descriptive encoding language for evolv-
ing modular neural networks. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pages 519–530. Springer Verlag, 2004.

18. Yohannes Kassahun and Gerald Sommer. Automatic neural robot controller
design using evolutionary acquisition of neural topologies. In 19. Fachgespräch
Autonome Mobile Systeme (AMS 2005), pages 259–266, Stuttgart, Germany,
December 2005.

19. Yohannes Kassahun and Gerald Sommer. Efficient reinforcement learning
through evolutionary acquisition of neural topologies. In Proceedings of the
13th European Symposium on Artificial Neural Networks (ESANN 2005), pages
259–266, Bruges, Belgium, April 2005.

20. Scott Kirkpatrick, Charles Daniel Gelatt, and Mario P Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, May 1983.

21. James W Melody. On universal approximation using neural networks. Report
from project ECE 480, Decision and Control Laboratory, University of Illinois,
Urbana, USA, June 1999.

22. Tom M Mitchell. Machine Learning. McGraw-Hill, London, UK, 1997.
23. David E Moriarty and Risto Miikkulainen. Evolving obstacle avoidance behav-

ior in a robot arm. In Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior, Cape Cod, USA, 1996.

24. Arnold Neumaier. Complete search in continuous global optimization and con-
straint satisfaction. Acta Numerica, 13:271–369, June 2004.

25. Apostolos-Paul Refenes, editor. Neural Networks in the Capital Markets. John
Wiley & Sons, New York, Chichester, USA, 1995.

26. Claude Robert, Charles-Daniel Arreto, Jean Azerad, and Jean-François Gaudy.
Bibliometric overview of the utilization of artificial neural networks in medicine
and biology. Scientometrics, 59(1):117–130, 2004.

27. Raúl Rojas. Neural Networks - A Systematic Introduction. Springer Verlag,
Berlin, Germany, 1996.

28. James C Spall. Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. John Wiley & Sons, Hoboken, USA, 2003.

29. Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99–127, 2002.

30. Robert R Trippi and Efraim Turban, editors. Neural Networks in Finance and
Investing. Probus Publishing Co., Chicago, USA, 1993.

31. Jean-Philippe Urban, Jean-Luc Buessler, and Julien Gresser. Neural networks
for visual servoing in robotics. Technical Report EEA-TROP-TR-97-05, Uni-
versité de Haute-Alsace, Mulhouse-Colmar, France, November 1997.

32. Lee E Weiss, Arthur C Sanderson, and Charles P Neuman. Dynamic sensor-
based control of robots with visual feedback. IEEE Journal of Robotics and
Automation, 3(5):404–417, October 1987.

33. Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, September 1999.

34. Xin Yao and Yong Liu. A new evolutionary system for evolving artificial neural
networks. IEEE Transactions on Neural Networks, 8(3):694–713, May 1997.



24 Nils T Siebel, Gerald Sommer, and Yohannes Kassahun

35. Michael Zeller, Kenneth R Wallace, and Klaus Schulten. Biological visuo-motor
control of a pneumatic robot arm. In Cihan Hayreddin Dagli, Metin Akay,
C L Philip Chen, Benito R Fernandez, and Joydeep Ghosh, editors, Intelligent
Engineering Systems Through Artificial Neural Networks. Proceedings of the Ar-
tificial Neural Networks in Engineering Conference, New York, volume 5, pages
645–650. American Society of Mechanical Engineers, 1995.


