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Abstract— This article presents results from experiments
where a detector for defects in visual inspection images was
learned from scratch by EANT2, a method for evolutionary
reinforcement learning. The detector is constructed as a neural
network that takes as input statistical data on filter responses
from a bank of image filters applied to an image region. Train-
ing is done on example images with weakly labelled defects.
Experiments show good results of EANT2 in an application
area where evolutionary methods are rare.

I. INTRODUCTION

AUTOMATED industrial inspection is an important area
for quality control. It is naturally dominated by engi-

neering approaches to the computer vision task. It would
therefore be unthinkable that an evolutionary method could
ever be used in such a setting—or would it? In the machine
vision industry there is a trend away from engineered solu-
tions with tuned parameters towards learning, self-optimising
methods. If a method existed that could learn to detect defects
in inspection images from simple training data this would
save development cost and setup time.

With this long-term goal in mind the application of evo-
lutionary and neural network-based methods to industrial
inspection tasks does not seem so unnatural anymore. Neural
networks are universal approximators, so they are able to
map image features to classification results. Evolutionary
methods are good at global optimisation which is useful in
the automatic tuning of parameters like those of the networks.

We aim to learn neural networks that act as classifiers
for defect detection. The network is learnt from scratch by
EANT2, an evolutionary reinforcement learning method. As
network inputs we calculate statistics on filter responses from
a bank of image filters applied to an image region.

The remainder of the article is as follows. Section II
describes related work. Details on our neuro-evolutionary
method can be found in Section III. The test setup and
results are located in Section IV, followed by conclusions
in Section V.

II. RELATED WORK

In this section we will discuss related work concerning
methods for learning neural networks by evolutionary algo-
rithms. To our knowledge, no related work exists for the
application of these neuro-evolutionary methods to visual
inspection tasks.
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Until recently, only small neural networks have been
evolved by evolutionary algorithms [1]. According to Yao,
a main reason is the difficulty of evaluating the exact fitness
of a newly found structure: In order to fully evaluate a
structure one needs to find the optimal (or, some near-
optimal) parameters for it. However, the search for good
parameters for a given structure has a high computational
complexity unless the problem is very simple (ibid.).

Most recent approaches evolve the structure and parame-
ters of the neural networks simultaneously. Examples include
EPNet [2], GNARL [3] and NEAT [4]. EPNet uses a modi-
fied backpropagation algorithm for parameter optimisation
(i.e. a local search method). The mutation operators for
searching the space of neural structures are addition and
deletion of neurons and connections (no crossover is used).
A tendency to remove connections/nodes rather than to add
new ones is realised in the algorithm. This is done to
counteract “bloat”—i.e. ever growing networks with only
little fitness improvement, also called “survival of the fat-
test” [5]. GNARL is similar in that is also uses no crossover
during structural mutation. However, it uses an evolutionary
algorithm for parameter adjustments. Both parametrical and
structural mutation use a “temperature” measure to determine
whether large or small random modifications should be
applied—a concept known from simulated annealing [6].
In order to calculate the current temperature, the algorithm
needs some knowledge about the “ideal solution” to the
problem, e.g. the maximum fitness expected to be reached.

Unlike EPNet and GNARL, NEAT uses a crossover
operator that allows to produce valid offspring from two
given neural networks. It works by first aligning similar
or equal subnetworks and then exchanging differing parts.
Like GNARL, NEAT uses evolutionary algorithms for both
parametrical and structural mutation. However, the proba-
bilities and standard deviations used for random mutation
are constant over time. NEAT also incorporates the concept
of speciation, i.e. separated sub-populations that aim at
cultivating and preserving diversity in the population [5].

III. LEARNING NEURAL NETWORKS WITH EANT2
A. The Algorithm

EANT2, “Evolutionary Acquisition of Neural Topologies
Version 2”, is an evolutionary reinforcement learning system
that realises neural network learning with evolutionary al-
gorithms both for the structural and the parametrical part.
It is based on the previous method EANT [7] but uses
different algorithms for structural mutation and parameter
optimisation [8]. EANT2 represents neural networks and



(a) Original neural network (b) Network in tree format

(c) Corresponding Linear Genome

Fig. 1. An example of encoding a neural network using a linear genome

their parameters in a compact genetic encoding, the “linear
genome”. It encodes the topology of the network implicitly
by the order of its elements (genes). The following basic
gene types exist: neurons, network inputs, biases and forward
connections. There are also “irregular” connections between
neural genes which we call “jumper connections”. Jumper
genes can encode either forward or recurrent connections.
Figure 1 shows an example encoding of a neural network
using a linear genome. The figures show (a) the neural
network to be encoded. It has one forward and one recurrent
jumper connection; (b) the neural network interpreted as a
tree structure; and (c) the linear genome encoding the neural
network. In the linear genome, N stands for a neuron, I for
an input to the neural network, JF for a forward jumper
connection, and JR for a recurrent jumper connection. The
numbers beside N represent the global identification numbers
of the neurons, x and y are the inputs coded by input
genes. As can be seen in the figure, a linear genome can
be interpreted as a tree based program if one considers all
the inputs to the network and all jumper connections as
terminals.

Linear genomes can be evaluated, without decoding, sim-
ilar to the way mathematical expressions in postfix notation
are evaluated. For example, a neuron gene is followed by
its input genes. In order to evaluate it, one can traverse the
linear genome from back to front, pushing inputs onto a
stack. When encountering a neuron gene one pops as many
genes from the stack as there are inputs to the neuron, using
their values as input values. The resulting evaluated neuron is
again pushed onto the stack, enabling this subnetwork to be
used as an input to another neuron. Connection (“jumper”)
genes make it possible for neuron outputs to be used as input
to more than one neuron, see JF3 in the example above.

The steps of our algorithm, shown in Figure 2, are ex-
plained in detail below.

Initialisation: EANT2 usually starts with minimal initial
structures. An minimal network has no hidden layers or
recurrent connections, only 1 neuron per output, connected to
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Fig. 2. The EANT2 algorithm. Please note that CMA-ES has its own
optimisation loop which creates a nested loop in EANT2.

some or all inputs. EANT2 gradually develops these simple
initial structures further using the structural and parametrical
evolutionary algorithms discussed below. On a larger scale
new neural structures are added to a current generation of
networks. We call this “structural exploration”. On a smaller
scale the current structures are optimised by changing their
parameters: “structural exploitation”.

Structural Exploitation: At this stage the structures in
the current EANT2 population are exploited by optimising
their parameters. Parametrical mutation is realised using
CMA-ES (“Covariance Matrix Adaptation Evolution Strat-
egy”) [9]. CMA-ES is a variant of Evolution Strategies
that avoids random adaptation of the strategy parameters.
Instead, the search area that is spanned by the mutation
strategy parameters, expressed here by a covariance matrix,
is adapted at each step depending on the parameter and
fitness values of current population members. CMA-ES uses
sophisticated methods to avoid problems like premature
convergence and is known for fast convergence to good
solutions even with multi-modal and non-separable functions
in high-dimensional spaces (ibid.).

Selection: The selection operator determines which pop-
ulation members are carried on from one generation to the
next. Our selection in the outer, structural exploration loop
is rank-based and “greedy”, preferring individuals that have
a larger fitness. In order to maintain diversity in the pop-
ulation, it also compares individuals by structure, ignoring
their parameters. The operator makes sure that not more
than 1 copy of an individual and not more than 2 similar
individuals are kept in the population. “Similar” in this case
means that a structure was derived from an another one by
only changing connections, not adding neurons. Again, no
network parameters are considered here.

Structural Exploration: In this step new structures are
generated and added to the population. This is achieved by
applying the following structural mutation operators to the
existing structures: Adding a random subnetwork, adding or
removing a random connection and adding a random bias.
Removal of subnetworks (i.e. neurons together with all their
connections) is not done as we found out that this almost



never helps in the evolutionary process. The same is valid
for a crossover operator, modelled after the one used in
NEAT, which is currently not used. New hidden neurons are
connected to approx. 50 % of inputs; the exact percentage and
selection of inputs are random to enable stochastic search for
new structures.

B. Comparison with Other Methods

EANT2 is closely related to the methods described in
Section II. One main difference is the clear separation of
structural exploration and structural exploitation. By this we
try to make sure a new structural element is tested (“ex-
ploited”) as much as possible before a decision is made to
discard it or keep it, or before other structural modifications
are applied. Another main difference is the use of CMA-ES
in the parameter optimisation. Further differences of EANT2
to other recent methods are a small number of user-defined
algorithm parameters (the method should be as general as
possible) and the explicit way of preserving diversity in the
population (unlike NEAT’s speciation).

In the past we have compared EANT2 with NEAT by
applying both algorithms to the same problem [10]. The test
environment was a visual servoing task run in a simulation.
Both methods were to develop neural networks to control a
robot in 3 degrees of freedom in order to align its gripper
to an object. The robot movement was determined based on
10 image measurements, so the networks had 10 inputs and 3
outputs. The results showed that NEAT had more problems
than EANT2 finding good parameters for given networks.
This, together with other features of NEAT, inhibited the
development of networks such that EANT2 was at a clear
advantage in this comparison. More details on the results of
these experiments can be found in [10].

IV. EXPERIMENTS AND RESULTS

A. Motivation and Context

On the DAGM Symposium 2007, the yearly conference
of the DAGM (German Association for Pattern Recognition)
Bosch organised a competition on a visual inspection task.
From the description given on the competition website1:

“The particular challenge of this contest is that the al-
gorithm must learn, without human intervention, to discern
defects automatically from a weakly labeled (i.e., labels
are not exact to the pixel level) training set, the exact
characteristics of which are unknown at development time.
During the competition, the programs have to be trained on
new data without any human guidance.

“The provided data is artificially generated, but similar to
real world problems. It consists of multiple data sets, each
consisting of 1000 images showing the background texture
without defects, and of 150 images with one labeled defect
each on the background texture. The images in a single data
set are very similar, but each data set is generated by a
different texture model and defect model.

1http://klimt.iwr.uni-heidelberg.de/dagm2007/prizes.php3, visited on Au-
gust 11 2007

“Not all deviations from the texture are necessarily defects.
The algorithm will need to use the weak labels provided
during the training phase to learn the properties that char-
acterize a defect. (...) For the development of the algorithm,
the participants will be provided with 6 different data sets,
each simulated using a different texture and defect model.
During the competition, the performance of the participants’
algorithms will be tested on 4 different data sets, previously
unknown to the users. Note that these data sets are generated
by texture models and defect models different from the
models of the first 6 data sets.”

The preparation of the image data was organised by the
Bosch R&D department for automated optical inspection
systems which suggests that the data is reasonably realistic.

Figure 3 shows the images available on the website for
the development of algorithms. Shown are for each of the 6
classes of defects 2 images with defects. It can be seen that
the data is very difficult since

• a large variation exists in the background (non-defective
image regions),

• some defects are small and/or very similar to the back-
ground and

• the weak label, given as an elliptical region, often con-
tains many more background pixels than defect pixels.

B. Approach and Features Used

Our approach to a solution was to set up a range of feature
detectors that describe a given image region. Statistical data
on these feature responses is then fed as an input to a neural
network which outputs a scalar value for the classification:
positive (there is a defect) or negative (there is no defect).

Two methods for image feature extraction are used: the
Structure Multivector by Felsberg and Sommer [11] and the
feature point detector by Harris and Stephenson [12].

The Structure Multivector [11] is an embedding of local
image structure in a Clifford algebra [13]. It allows to
extract structural information about the image, like local
amplitude, phase and intrinsic dimensionality. Derived within
the framework of geometric algebra, it is implemented by
simple operations in the Fourier domain. Like most methods
that work in the Fourier space it allows the restriction of
analysis to certain frequencies (i.e. image scales). Since we
do not know in advance which scale is the correct one we
apply the filter at a range of scales. In figure 4 are shown the
major and minor components of the local amplitude from the
response of the structure multivector applied on the image
shown in Figure 3(e) with a bandpass filter range of 1 to
2 pixels. It can be seen that at the position of the defect
these filter responses are relatively strong.

The Harris feature detector is based on the operator

R(x, y) = det Ĉ − κ · trace2(Ĉ)

where
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(a) Class 1, defective, im. 20 (b) Class 1, defective, im. 76 (c) Class 2, defective, im. 30 (d) Class 2, defective, im. 40

(e) Class 3, defective, im. 10 (f) Class 3, defective, im. 30 (g) Class 4, defective, im. 20 (h) Class 4, defective, im. 40

(i) Class 5, defective, im. 40 (j) Class 5, defective, im. 150 (k) Class 6, defective, im. 120 (l) Class 6, defective, im. 140

Fig. 3. Development data, Classes 1 through 6. Shown for every class are 2 out of 150 images with defects. Defects are marked with the weak label
provided with the data: the bigger of the 2 red ellipses drawn here. The smaller ellipses (half the diameter of the larger ones) was not given but is drawn
here to show that in many cases the defect only takes 1

4
or less of the area of the ellipse given. In some cases, however, (e.g. in (b) above) the inner

ellipse only contains a small or no part of the defective area. Difficulties also include defects that extend outside the image; in (j) only a small part of it
is in inside the image. Ellipses in class 6 are much larger than in other sets.

and Î. denotes the smoothed image derivatives in the given
spatial direction. κ can be used to steer the detector between
a corner (large κ) and an edge detector (small κ).

In our system we use a fixed value of κ = 0.01 and
applied this detector at 3 scales, using mask widths of 2,
4 and 8 pixels. Figure 5 shows the responses for the image
in Figure 3(j): strong responses are marked with a pink dot,
weaker responses in green. It can be seen that at the density
of Harris responses, especially strong ones, is higher in the
region of the defect: by a factor of 4.9 (coarse scale) and

25.5 (fine scale).

C. Feature Extraction and Training

In order to use a natural data description we worked with
elliptical image regions. Given 150 training examples of
defect ellipses a simple algorithm estimates the distribution
of their size and eccentricity. It then generates a set of 50–200
similar ellipses that cover the whole image, as in Figure 6.

On each image the structure multivector and the Harris
detector are applied at 3 different scales, which yields feature



Fig. 4. Normalised major and minor amplitude response of the Structure
Multivector applied to im. 10 of class 3, development data (see Figure 3(e))

Fig. 5. Harris feature point responses at coarse (left) and fine (right) scales.
Strong responses are marked in pink, weaker ones in green. Class 5, im. 150.

images and lists, respectively. On the 150 positive training
images the weak label (ellipse) was used to extract feature
data, on the 1000 negative images one of the generalised
ellipses was used per image. Given an elliptical region
the mean value/density, variance and entropy of feature
responses within the region are determined using standard
methods from statistics. These values are set in relation to
the values obtained with the same method outside an ellipse
of twice the size, giving a relative measure.

This gives altogether 81 scalar values describing the struc-
ture in that region. The result is an 81-dimensional input
vector to the neural networks, the output being a scalar
ranging from -1 (no defect) to 1 (defect found), using a tanh
activation function. The fitness function f used for evaluating
a given network N on a set of positive training data DP

and negative training data DN during EANT2 development
is the negative mean difference of the currently calculated
responses to ground truth from the training data, i.e.

f(N) = −
∑

d∈DP

m(|N(d)− 1|)−
∑

d∈DN

m(|N(d) + 1|),

where the function

m(x) =

{
x, if x > 0.01
0, else

(1)

is used to avoid optimisation problems (very large weights)

Fig. 6. Generalisation of ellipses given training examples

due to the nature of the tanh activation function. No infor-
mation about the task or desired properties of the solution
are explicitly given to the EANT2 algorithm.

D. Network Development on Development Data

Figure 7 shows the development of the fitness value
plotted against the EANT2 generation, i.e. the number of
structural mutations. In each EANT2 generation (outer loop
in Figure 2) CMA-ES optimises parameters for a maximum
of 7,500 generations. For 4 of the 6 defect classes a training
error of near 0 is achieved with the initial networks only by
optimising their parameters. For classes 1 and 2 the error is
reduced to 0.0794 and 0.1125 at generation 15. At this stage
the process was stopped since in the original setting from
the competition a time limit of 24 hours for the development
of detectors was given. Network sizes range from 75 to 203
at this stage.

These results look very good, however, in this training
data the “exact” (weak) labels of the defects were given, and
only one ellipse region per image is used to extract data.
In the testing/application stage the generalised ellipses are
used instead to sample the whole image, and the maximum
response of the neural detector used as a classification result
for a given image. It is very unlikely that a defect will be
examined by a perfectly matching ellipse (size, orientation).
Also, with up to 200 samples of the image the likelihood of
false positives increases accordingly.

The fast reduction of the error for classes 3 through 6 came
as a surprise because no structural development except for the
random initialisation of networks (EANT2 population size:
30) was done. We believe that in these cases simple networks
are already sufficient to model the training data due to the
rich information provided by the feature detectors. (This did
not occur with the Competition data which suggest that it is
more difficult.)

E. Results on Competition Data

The data of the actual competition is shown in Figure 9.
4 new defect classes with 4 new classes of background
pattern were again provided with 150 positive (defective)
and 1000 negative (no defect) images. Weak labels as seen
in Figure 9 were given for positive images.
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Fig. 7. Development of training fitness plotted against EANT2 generation,
for all 6 defect classes of the development data.

Our algorithm was trained, as before, on the feature
responses of the structure multivector and Harris detector.
Features were extracted using the given defect ellipse (posi-
tive examples) or one of the “generalised ellipses” per image
(negative examples). The training data obtained in this way
was used to develop neural networks with EANT2.

When performing classification on a given image it is
scanned using the generalised ellipses, e.g. 151 for Defect
Class 3. The maximum of the 151 responses of the neural
network is used as a (real-valued) classification value for the
whole image. A threshold τ can then be used as follows
to determine the result R(I) of the classifier given the
neural network responses N(ei) for i ellipses ei covering
an image I:

R(I) =

defect, if max
ei⊂I

N(ei) ≥ τ

no defect, if max
ei⊂I

N(ei) < τ

Figure 8 shows a ROC-type curve2 of the classifier applied
to all 4 defect classes of the training data (where ground truth
is available). It shows how a trade-off between false positives
(defect detected when there is none) and false negatives (no
detection when there is a defect) can be made by adjusting
the threshold τ .

For Defect Class 2 a perfect separation between positive
and negative responses is achieved such that no wrong
classification is calculated; the smallest response for an
image with defect is -0.7551, the largest response of an image
without defects is -0.8586. Therefore any τ : −0.7551 < τ ≤
−0.8586 will yield 100 % correct classification results. The
result for Classes 1 and 4 is also very good. For example,
within a threshold range −0.6915 < τ < −0.7039 the
correct classification rate for Class 1 is 97.9 %. Class 4
reaches 96.7 % correct classification.

For Class 3 the detection results are not as good, with a
maximum classification rate of 90.6 %. We believe this is due

2Receiver Operating Characteristic, see e.g. [14]. In this case we have
plotted the false positives against the false negatives.
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Fig. 8. ROC curves for all 4 classes of the Competition data, EANT2
classifier.

to the small size of the defect in relation to the image and the
similar appearance of the defects to parts of the non-defective
image area. (To our consolation even a human test subject
identified only 148 of 150 defect images hidden among 1000
non-defective images although he examined all 1150 images
4 times.)

V. SUMMARY AND CONCLUSIONS

In this article we dealt with the task of creating a sys-
tem that could automatically train a classifier for defect
detection in visual inspection images using a set of weakly
labelled training data. Our implementation of such a system
uses EANT2, a method for creating neural networks by
evolutionary reinforcement learning, as its learning com-
ponent. Feature extraction from a given image uses the
Structure Multivector and the Harris detector, yielding an 81-
dimensional feature vector to describe the appearance of an
image region. This is used as an input to the neural networks,
the output being the scalar classification value.

Our experiments showed that the data used during training,
using 1 example region per image, could be relatively easily
classified by networks evolved by EANT2. When the classi-
fier is used to examine a whole image, however, the detector
is applied to 50–200 regions covering the image area. In
this case the correct classification rate of our method ranges
from 90 % to 100 %, depending on the type of defect and
background used in the image.

In conclusion, our experiments have shown that EANT2
can generate neural networks that correctly classify almost
all defects in visual inspection images. Improvements on the
data processing and/or the learning method are necessary to
improve the classification rate for some difficult types of
images.
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(a) Class 1, defective, im. 3 (b) Class 1, defective, im. 129 (c) Class 2, defective, im. 120 (d) Class 2, defective, im. 121

(e) Class 3, defective, im. 116 (f) Class 3, defective, im. 121 (g) Class 4, defective, im. 109 (h) Class 4, defective, im. 132

Fig. 9. Competition training data, all 4 Classes. Shown are 2 out of 150 images of every class with defects. Red: weak label provided with the data.
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