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Abstract. In this article we present EANT2, a method that creates neu-
ral networks (NNs) by evolutionary reinforcement learning. The structure of
NNs is developed using mutation operators, starting from a minimal struc-
ture. Their parameters are optimised using CMA-ES. EANT2 can create
NNs that are very specialised; they achieve a very good performance while
being relatively small. This can be seen in experiments where our method
competes with a different one, called NEAT, to create networks that control
a robot in a visual servoing scenario.

1 Introduction

As universal function approximators, artificial neural networks (NNs) are capable
of modelling complex mappings between the inputs and outputs of a system up to
an arbitrary precision [1]. However, with an increase in complexity of a given task
the required complexity of the NN also increases. Such a complex NN is difficult to
develop due to the high dimensionality of the space in which its parameters live.
This so-called “curse of dimensionality” has always been a significant obstacle in
machine learning problems [2].

NNs are characterised by their structure (topology) and their parameters (which
includes the weights of connections) [3]. A number of learning methods exist for
generating them. Most of these methods, like the popular “backpropagation” al-
gorithm [3, chap. 7], are methods to adjust the parameters of the network to a
given problem, but not its structure. When using such methods the structure of
the network has to be fit to the problem beforehand and “by hand”, i.e. by the
designer of the software. Once the structure is fixed, its parameters are learned.
These traditional approaches exhibit the following two problems:

1. The common approach to pre-design the network structure can be difficult
or even infeasible for complicated tasks. It may also result in overly complex
networks if the designer cannot find a small structure that solves the task.

2. Determining the network parameters by local optimisation algorithms like gra-
dient descent-type methods is impracticable for large problems. It is known
from mathematical optimisation theory that these algorithms tend to get stuck
in local minima. They only work well for very simple (e.g., convex) problems
or if an approximate solution is known beforehand.
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We have previously developed a method, called EANT, “Evolutionary Acqui-
sition of Neural Topologies”, that automatically learns both the structure and the
parameters of a NN to find a solution to a given problem [4, 5]. Both learning parts
use evolutionary algorithms (EAs) [6], global optimisation methods that are less
prone to get stuck in local minima. With these algorithms the NN is learned from
scratch by reinforcement learning [7].

In this article we present recent improvements to EANT that further accelerate
the generation of networks that perform well. In order to validate our claim we also
present for the first time an experimental comparison of this new method, EANT2,
and NEAT, a similar method.

The remainder of this article is organised as follows. Section 2 contains an
overview over related methods for evolutionary NN learning and describes our
approach to the solution. In Section 3 we formulate the visual servoing problem
that is used for testing the NN learning methods. Section 4 contains results from
experiments with EANT2 and NEAT; Section 5 concludes the article.

2 Methods for Evolutionary Learning of Neural Networks

In this section we review existing methods on evolutionary neural network (NN)
learning and present our own algorithm, EANT2. The paradigm is to learn both
the structure (topology) and the parameters of NNs with evolutionary algorithms
(EAs) without being given any information about the nature of the problem. The
development of networks is realised through reinforcement learning [7]. This means
that candidate solutions which have been generated by the EA are evaluated by
testing them on the target application. A scalar value of their “fitness” is fed back
to the algorithm to help it judge and determine what to do with this candidate.
These learning algorithm do not depend on the availability of input-output pairs
of the NN as supervised learning methods do.

2.1 Overview over Existing Methods

Until recently, only small NNs have been evolved by evolutionary means [8]. Ac-
cording to Yao, a main reason is the difficulty of evaluating the exact fitness of a
newly found structure: In order to fully evaluate a structure one needs to find the
optimal (or, some near-optimal) parameters for it. However, the search for good
parameters for a given structure has a high computational complexity unless the
problem is very simple (ibid.).

In order to avoid this problem most recent approaches evolve the structure and
parameters of the NNs simultaneously. Examples include EPNet [9], GNARL [10]
and NEAT [11]. EPNet uses a modified backpropagation algorithm for parameter
optimisation (i.e. a local search method). The mutation operators for searching the
space of neural structures are addition and deletion of neural nodes and connections
(no crossover is used). A tendency to remove connections/nodes rather than to add
new ones is realised in the algorithm. This is done to counteract the “bloat” phe-
nomenon (i.e. ever growing networks with only little fitness improvement; also called
“survival of the fattest” [6]). GNARL is similar in that is also uses no crossover dur-
ing structural mutation. However, it uses an EA for parameter adjustments. Both
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parametrical and structural mutation use a “temperature” measure to determine
whether large or small random modifications should be applied—a concept known
from simulated annealing [12]. In order to calculate the current temperature, some
knowledge about the “ideal solution” to the problem, e.g. the maximum fitness, is
needed.

The author groups of both EPNet and GNARL are of the opinion that using
crossover is not useful during the evolutionary development of neural networks [9,
10]. The research work underlying NEAT, on the other hand, seems to suggest
otherwise. The authors have designed and used a crossover operator that allows to
produce valid offspring from two given NNs by first aligning similar or equal subnet-
works and then exchanging differing parts. Like GNARL, NEAT uses EAs for both
parametrical and structural mutation. However, the probabilities and standard de-
viations used for random mutation are constant over time. NEAT also incorporates
the concept of speciation, i.e. separated sub-populations that aim at cultivating and
preserving diversity in the population [6, chap. 9].

2.2 Developing Neural Networks with EANT2

EANT2, “Evolutionary Acquisition of Neural Topologies Version 2”, is an evolu-
tionary reinforcement learning system that realises NN learning with EAs both
for the structural and the parametrical part. It is based on the previous method
EANT [4]. EANT2 features a unique and compact genetic encoding that uses a
linear genome to represent a NN together with its parameters. The linear genome
encodes the topology of the NN implicitly by the order of its elements (genes). The
following gene types exist: neurons, inputs to the network, bias neurons, forward
connections and recurrent connections. Linear genomes can be evaluated, with-
out decoding, similar to the way mathematical expressions in postfix notation are
evaluated. For example, a neuron gene is followed by its input genes. In order to
evaluate it, one can traverse the linear genome from back to front, pushing inputs
onto a stack. When encountering a neuron gene one pops as many genes from the
stack as there are inputs to the neuron, using their values as input values. The
resulting evaluated neuron is again pushed onto the stack, enabling this subnet-
work to be used as an input to other neurons. Connection genes make it possible
for neuron outputs to be used as input to more than one neuron. Together with
the bias neurons that are implemented as having a constant value of 1.0, the linear
genome can encode any NN in a very compact format. The length of the linear
genome is equal to the number of synaptic network weights.
The steps of our algorithm, shown in Figure 1, are explained in detail below.

Initialisation: EANT2 usually starts with minimal initial structures. An min-
imal network has no hidden layers or recurrent connections, only 1 neuron per
output, connected to some or all inputs. EANT2 gradually develops these simple
initial structures further using the structural and parametrical EAs discussed be-
low. On a larger scale new neural structures are added to a current generation
of networks. We call this “structural exploration”. On a smaller scale the current
structures are optimised by changing their parameters: “structural exploitation”.

Structural Exploitation: At this stage the structures in the current EANT2
population are exploited by optimising their parameters. Parametrical mutation in
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Fig. 1. The EANT2 algorithm. Please note that CMA-ES has its own optimisation loop
which creates in EANT2 a nested loop.

the original version, EANT, was implemented using evolution strategies (ES) [6].
This means that the strategy parameters in the EA, e.g. the standard deviation for
random mutation of connection weights, were themselves adapted by an EA. This
has the advantage that the system needs even less knowledge of the problem than
with a different EA, like evolutionary programming. However, using standard ES
for parametrical mutation has the following disadvantages:

1. After a strategy parameter has been adapted it takes many applications of the
mutation operator on the corresponding network parameter until the new value
of the strategy parameter can be judged. Even then it is unclear when looking at
the change in fitness value whether the network performs better/worse because
of this adapted strategy parameter or because of other changes that happened
during those many generations.

2. The number of strategy parameters adds to the number of total parameters in
the system, increasing even further the dimensionality of the space in which
ideal parameters are searched.

Disadvantage 1 can be ignored in settings where a very large population size is used.
However, it does matter in the context of NN development where large population
sizes are prohibitive unless the problem is very simple.

For these reasons newer versions of EANT, i.e. EANT2, use CMA-ES (“Covari-
ance Matrix Adaptation Evolution Strategy”) [13] in their parameter optimisation.
CMA-ES is a variant of ES that avoids random adaptation of the strategy parame-
ters. Instead, the search area that is spanned by the mutation strategy parameters,
expressed here by a covariance matrix, is adapted at each step depending on the
parameter and fitness values of current population members. CMA-ES uses so-
phisticated methods to avoid problems like premature convergence and is known
for fast convergence to good solutions even with multi-modal and non-separable
functions in high-dimensional spaces (ibid.).

Selection: The selection operator determines which population members are
carried on from one generation to the next. Our selection in the outer, structural
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exploration loop is rank-based and “greedy”, preferring individuals that have a
larger fitness. In order to maintain diversity in the population, it also compares
individuals by structure, ignoring their parameters. The operator makes sure that
not more than 1 copy of an individual and not more than 2 similar individuals are
kept in the population. “Similar” in this case means that a structure was derived
from an another one by only changing connections, not adding neurons. Again, no
network parameters are considered here.

Structural Exploration: In this step new structures are generated and added
to the population. This is achieved by applying the following structural mutation
operators to the existing structures: Adding a random subnetwork, adding or re-
moving a random connection and adding a random bias. Removal of subnetworks
(i.e. neurons together with all their connections) is not done as we found out that
this almost never helps in the evolutionary process. The same is valid for a crossover
operator, modelled after the one used in NEAT, which is currently not used. New
hidden neurons are connected to approx. 50% of inputs; the exact percentage and
selection of inputs are random to enable stochastic search for new structures.

Differences to Other Methods: EANT2 is closely related to the methods
described in the related work section above. One main difference is the clear sepa-
ration of structural exploration and structural exploitation. By this we try to make
sure a new structural element is tested (“exploited”) as much as possible before
a decision is made to discard it or keep it, or before other structural modifica-
tions are applied. Another main difference is the use of CMA-ES in the parameter
optimisation. This should yield more optimal parameters more quickly, which is
necessary when large networks are to be created. Further differences of EANT2 to
other recent methods, e.g. NEAT, are a small number of user-defined algorithm
parameters (the method should be as general as possible) and the explicit way of
preserving diversity in the population (unlike speciation).

3 The Visual Servoing Task

In order to study the behaviour of EANT2 and other algorithms on large problems
we simulate the visual servoing setup shown in Figure 2. The robot is equipped with
a camera at the end-effector and has to be steered towards an object of unknown
pose. This is achieved in the visual feedback control loop depicted in Figure 2. In
our system a NN shall be used as the controller, determining where to move the
robot on the basis of the object’s visual appearance.

The object has 4 identifiable markings, see Figure 2. Its appearance in the image
is described by the image feature vector yn ∈ IR8 that contains the 4 pairs of image
coordinates of these markings. The desired pose relative to the object is defined
by the object’s appearance in that pose by measuring the corresponding desired
image features y? ∈ IR8 (“teaching by showing”). Object and robot are then moved
to a start pose. The object’s position is unknown to the controller. The input to
the controller is the image error ∆yn := y? − yn and additionally the 2 distances
in the image of the diagonally opposing markings, resulting in a 10-dimensional
input vector. The output of the controller is a relative movement of the robot in
the camera coordinate system: (∆x,∆y,∆z) ∈ IR3.
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Fig. 2. Robot arm with object and the corresponding visual feedback control loop

From a mathematical point of view, visual servoing is the iterative minimisation
of an error functional that describes differences of objects’ visual appearances, by
moving in the search space of robot poses. The traditional solution is equivalent
to an iterative Gauss-Newton method to minimise the image error, with a linear
model (“Image Jacobian”) of the objective function [14, 15].

In our case a NN is developed as a controller by reinforcement learning. For the
assessment of the fitness (performance) of a network N it is tested by evaluating it in
the simulated visual servoing setup. For this purpose 1023 different robot start poses
and 29 teach poses (desired poses) have been generated. Each start pose is paired
with a teach pose to form a task. These tasks contain all ranges and directions of
movements. For each task, N is given the visual input data corresponding to the
start and teach poses, and its output is executed by a simulated robot. In order to
facilitate easy comparison between different neural networks only one movement is
calculated and executed for each of these tasks. The fitness function F (N) measures
the negative RMS (root mean square) of the remaining image errors after this robot
movement, over all tasks. This means that our fitness function F (N) always takes
on negative values with F (N) = 0 being the optimal solution. F (N) is calculated
as follows:

F (N) := −

√√√√√ 1
1023

1023∑
i=1

1
4

4∑
j=1

‖(y?)2j−1,2j − (yi)2j−1,2j‖2
2 + b(yi)

 (1)

where yi denotes the new image features after executing one robot movement start-
ing at start pose i, and (y)2j−1,2j shall denote the vector comprising of the 2j−1th
and 2jth component of a vector y. The inner sum of (1) thus sums up the squared
deviations of the 4 marker positions in the image. b(y) is a “badness” function that
adds to the visual deviation an additional positive measure to punish potentially
dangerous situations. If the robot moves such that features are not visible in the
image or the object is touched by the robot, b(y) > 0, otherwise b(y) = 0. The
function b is defined such that it usually takes on values ≤ 1. All image coordinates
are in the camera image on the sensor and have therefore the unit 1 mm. The
sensor (CCD chip) in this simulation measures 8

3 mm× 2 mm. The average (RMS)
image error is −0.85 mm at the start poses, which means that a network N that
avoids all robot movements (e.g. a NN with all weights = 0) has F (N) = −0.85.
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4 Experimental Comparison of EANT2 and NEAT

In order to validate learning methods we use the visual servoing simulation de-
scribed above, with 1023 start poses and the same definition of the fitness function
F , as in equation (1). The 10 inputs and 3 outputs to the neural networks (NNs)
are also defined as above. The computationally expensive evaluation of F , requiring
1023 NN evaluations and simulated robot movements makes it a priority to develop
networks with as few evaluations F (N) as possible.

4.1 The NEAT System

NEAT by Stanley and Miikkulainen [11] has already been briefly introduced in
Section 2.1. It uses one evolutionary optimisation loop in which structures and pa-
rameters of NNs are mutated, and networks recombined using a crossover operator.
The implementation of NEAT used here is the Java-based NEAT4J which is avail-
able as a SourceForge project (http://neat4j.sourceforge.net/). For reference
the original NEAT code by Stanley has also been analysed.

The initial population of NEAT4J consists of randomly generated networks
without hidden layers that are either fully or sparsely connected (at an option).
In each generation the population is split into a number of species so that each
two compatible individuals belong to the same specie. The split is done using a
compatibility measurement that incorporates network size, difference of weights
and number of different genes. New species are created if necessary. If a species has
a good average fitness, its size will be increased, otherwise the size is decreased.
Species become extinct if their size becomes zero or they excess a certain age. The
best individual of each species is kept together with their offspring. New members
of a species are spawned by crossover and mutation from their parents who are
selected among the best individuals in this species. Mutation is done by a stochastic
update of weights and structure. Nodes and connections are added with certain
probabilities, but never removed. Existing connections can, however, be switched
on and off by toggling a flag.

Search for Optimal NEAT4J Parameters: Unfortunately, there is no sug-
gestion how NEAT’s 13 evolution and 9 speciation parameters should be set. We
have tried many settings and found out that the values from the examples of the
original NEAT mixed with those of NEAT4J form a suitable starting point. The
settings were then adapted to tune the system for our visual servoing task.

NEAT tends to enlarge networks if the probability of toggling connections on/off
is low and slows down the growing of networks if it is high. We decided to re-
duce the probability of toggling (PToggleLink 0.0001) so as to enable NEAT4J
to sufficiently optimise the network weights before adding a lot of structure. For
the same reason we also decreased the probabilities for structural mutation (PAd-
dLink=0.0025, PAddNode=0.00125) after some test runs but left the probabilities
for weight changes high (PMutation=0.25, PWeightReplaced=0.85). NEAT reacts
very strongly to bias neurons and tends to add many of them. However, this made
the evolution process get stuck without improving the fitness in a few test runs. We
therefore deactivated biases altogether (which makes sense, considering the visual
servoing task). An appropriate population size is hard to calculate but concerning
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Fig. 3. Results from 5 runs each of EANT2 and NEAT

the fitness increase over (wall-clock) time a smaller population size usually works
better than a bigger. Hence, we tested two sizes of populations, 30 and 150. In
most cases the smaller population only performed slightly worse. We did not note
a significant change in the test outcome when varying parameters for speciation,
so we set the number of species to 1.

4.2 The EANT2 System

The EANT2 system which was described in detail in section 2.2 was used with the
following parameters:
– up to 30 individuals in the structural exploration (global population size)
– each individual spawns 2 children through structural mutation
– 2 parallel optimisations of the same individual by CMA-ES
– stop criteria for CMA-ES: maximum standard deviation in covariance matrix

less than 0.00005 or iteration (CMA-ES generation) number over 500.

4.3 Results and Discussion

Figure 3 shows the development of the best individual’s fitness value and size.
Results from 5 experiments each of EANT2 and NEAT are shown, plotted against
the generation number, the determining factor for the complexity of the networks.
It can be seen that after around 25,000 generations the fitness values in NEAT
reach -0.33 (better runs) and -0.38 (worse runs). They do not improve significantly
further until generation 100,000, at which point the experiments were stopped. In
EANT2, a significant increase in fitness value can be seen up to generation 15
(and further, as different experiments show). After 5 generations the average best
individual has a fitness of -0.27, which increases to -0.23 at generation 15.

An analysis of the network sizes shows that NEAT’s resulting networks are still
“sparse”, as that initialisation option was used. The best performing network has 17
genes, with only 2 hidden neurons. Only 1 gene was added between generation 3,000
and 100,000, which explains why the fitness does not increase any further. However,
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without the “sparse” option NEAT generates networks with sizes approx. 80–100
after 3,000 generations; their fitness is around -0.89 to -0.66. EANT2’s network
sizes are larger due to the different initialisation. The mean size at generation 5 is
55 (fitness -0.27), size increasing slower as time goes on, with a mean size of 83 at
generation 15 (fitness -0.23).

The fitness values are (modulo b(·)) the remaining RMS errors in the image
after the robot movement. Both methods quickly develop networks that reduce the
image error from the initial -0.85 to as low as -0.23 with 1 robot movement. This
is a very good result if one compares to the traditional Image Jacobian approach.
Calculating the robot movement using the (undamped) product of the Image Jaco-
bian’s pseudoinverse with the negative image error, a standard method [15] yields
a fitness of -0.61. The two methods differ in the way networks are generated, and it
looks like NEAT performs worse in this scenario. Only when the networks are small
and the probability of structural change is low compared to parametrical change
can NEAT optimise networks well with its EA. If some options influence NEAT to
produce larger networks they have a significantly worse performance compared to
EANT2 networks of the same size. This could mean that NN parameters in NEAT
are not optimised as well, or many structural elements exist that do not help the
task well, or both.

Overall, EANT2 created better networks than NEAT and required less param-
eter tuning to run successfully.

5 Conclusions and Future Work

In this article we have presented EANT2, a method to develop both the struc-
ture and the parameters of neural networks (NNs) by evolutionary reinforcement
learning. EANT2 differs from other recent methods by implementing a clear sepa-
ration of structural and parametrical development and the use of CMA-ES during
parameter optimisation. In order to validate EANT2, it was used with a complete
simulation of a visual servoing scenario to learn NNs by reinforcement learning.
The same task was given to NEAT [11], a similar method. Results from the ex-
periments show that both evolutionary methods can develop networks that make
“useful” robot movements, decreasing the image error and thereby moving towards
the goal. The performance of both methods is also significantly better than the
traditional visual servoing approach.

A comparison of both methods showed that the NNs created by EANT2 always
have a significantly better performance. NEAT performs good when configured to
keep network sizes very small, but then the development of networks comes to a
halt, showing almost no improvement over a long runtime. For similar network
sizes, EANT2’s NN perform much better.

For these experiments EANT2’s parameter optimisation with CMA-ES has been
reduced in complexity to make a fair comparison possible; previous experiments
used many more CMA-ES generations [5]. Our current work is to study the depen-
dence of EANT2 on these and other CMA-ES parameters.
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