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Abstract

In this article we introduce a method to learn neural
networks that solve a visual servoing task. Our method,
called EANT, Evolutionary Acquisition of Neural Topolo-
gies, starts from a minimal network structure and grad-
ually develops it further using evolutionary reinforcement
learning. We have improved EANT by combining it with an
optimisation technique called CMA-ES, Covariance Matrix
Adaptation Evolution Strategy. Results from experiments
with a 3 DOF visual servoing task show that the new CMA-
ES based EANT develops very good networks for visual ser-
voing. Their performance is significantly better than those
developed by the original EANT and traditional visual ser-
voing approaches.

1. Introduction and Related Work

Artificial neural networks are capable of modelling com-
plex mappings between the inputs and outputs of a system
up to an arbitrary precision. Another advantage of neural
networks is that they can learn to solve a problem. How-
ever, with an increase in complexity of a given task the
required complexity of the neural network also increases.
Such a complex neural network is difficult to develop due
to the high dimensionality of the space in which its param-
eters live. This so-called “curse of dimensionality” is a sig-
nificant obstacle in machine learning problems [3]. This
may be the reason why until today neural networks are
not widely used to solve robot vision tasks. One of the
most important robot vision tasks, visual servoing [14, 9],
traditionally uses a simple P-type controller—an approach
known from engineering—or sometimes, more elaborate
techniques like trust-region methods [10].

There have also been visual servoing approaches using
neural networks, or combined Neuro-Fuzzy approaches [7].

Many of these methods reduce the complexity of the prob-
lem (e.g. control the robot in as few as 2 degrees of freedom,
DOFs) to avoid the problems of learning a complex neural
network. Others use a partitioning of the workspace to learn
a network of “local experts” that are easier to train [4, 8]. A
neural network that controls a robot to move around obsta-
cles is presented in [12]. The network’s weights are opti-
mised by a genetic algorithm, however, its structure (topol-
ogy) is pre-defined and does not evolve.

We avoid all pre-designing of the solution. Instead, our
method learns both the structure (topology) and the param-
eters of the neural network without being given any infor-
mation about the nature of the problem. To achieve this, we
have previously developed a method called EANT (Evolu-
tionary Acquisition of Neural Topologies) [11]. In this arti-
cle we present an improvement of EANT by use of an opti-
misation technique called CMA-ES [6] to develop a neural
network from scratch by evolutionary reinforcement learn-
ing to solve the visual servoing problem.

The remainder of this article is organised as follows. In
Section 2 we formulate the problem and describe our ap-
proach to the solution. Section 3 contains an experimental
evaluation of the method; Section 4 concludes the article.

2. Learning Networks for Visual Servoing

2.1. Visual Servoing Setup

Our robot arm is equipped with a camera at the end-
effector and has to be steered towards an object of unknown
pose, see Figure 1. This is achieved in the visual feedback
control loop depicted in Figure 2. In our system a neural
network shall be used as the controller, determining where
to move the robot on the basis of the object’s visual appear-
ance. Using the standard terminology by Weiss et al. [14] it
is a “Static Image-based Look-and-Move” controller.

The object has 4 circular, identifiable markings. Its ap-
pearance in the image is described by the image feature vec-
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Figure 1. Robot Arm with Camera and Object

tor yn ∈ IR8 that contains the 4 pairs of image coordinates
of these markings. The desired pose relative to the object
is defined by the object’s appearance in that pose by mea-
suring the corresponding desired image features y� ∈ IR8

(“teaching by showing”). Object and robot are then moved
so that no Euclidean position of the object or robot is known
to the controller. The input to the controller is the image er-
ror ∆yn := y� − yn and additionally the 2 distances in
the image of the opposing markings 1-3 and 2-4, resulting
in a 10-dimensional input vector. The output of the con-
troller/network is a relative movement of the robot in the
camera coordinate system: (∆x, ∆y, ∆z).

The neural network is developed by reinforcement learn-
ing in a simulation of the visual servoing scenario. For the
assessment of the performance (“fitness”) of a neural net-
work N it is tested by evaluating it on 937 different robot
poses. In each of these poses it was given the corresponding
input and its output is executed by a simulated robot. The
error measure e(N) is then calculated as follows:

e(N) :=
937∑
i=1




4∑
j=1

‖(y�)2j,2j+1 − (yi)2j,2j+1‖2
2 + b(yi)




(1)
where yi denotes the new image features after executing one
robot movement starting at test pose i and (y)2j,2j+1 shall
denote the vector comprising of the 2jth and 2j+1th com-
ponent of an image feature vector y. The inner sum of (1)
thus sums up the squared deviations of the 4 marker posi-
tions in the image. b(y) is an additional “badness” function
that adds to the visual deviation error an additional posi-
tive measure to punish potentially dangerous situations. If
the robot moves such that features are not visible in the im-
age or the object is touched by the robot, b(y) > 0, oth-
erwise b(y) = 0. The CCD chip in this simulation mea-
sures 8

3 mm× 2 mm which means that e(N) can reach val-
ues greater than 25,000 for bad networks.
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Figure 2. Visual Feedback Control Loop

2.2. Developing Neural Networks with EANT

Evolutionary Acquisition of Neural Topologies
(“EANT”) [11] is an evolutionary reinforcement learning
system that is suitable for learning and adaptation to the
environment through interaction. It combines the principles
of neural networks, reinforcement learning and evolu-
tionary methods. EANT uses a unique genetic encoding
that uses a linear genome of genes (nodes). A node can
be a neuron, an input to the neural network or a jumper
connecting two neurons. Jumper genes can encode either
forward or recurrent connections.

The linear genome encodes the topology of the neural
network implicitly by the order of its elements. This en-
ables one to evaluate the represented neural controller with-
out decoding it. The linear genome is complete in that it
can represent any type of neural network. It is a compact
encoding of neural networks since the length of the linear
genome is the same as the number of synaptic weights in
the neural network. It is also closed under structural muta-
tion and under a specially designed crossover operator.

EANT starts with initial structures that are generated us-
ing either the grow or the full method [2]. Initial structures
can be chosen to be minimal. An initial network than has no
hidden layers or jumper connections, only 1 neuron per out-
put, each of them connected to all inputs. EANT gradually
develops the simple initial network structure further using
an evolutionary method. On a larger scale new neural struc-
tures are added to a current generation of networks. We call
this “exploration” of new structures. On a smaller scale the
current individuals (structures) are optimised by changing
their parameters: “exploitation”. Both of these optimisation
loops are implemented as evolutionary processes [5]. The
search stops when a neural controller with the necessary op-
timal structure that solves a given task is obtained.

EANT is closely related to the methods “GNARL” [1]
and “NEAT” by Stanley and Miikkulainen [13]. Compared
to these methods, EANT has the advantages of evaluating
the network without decoding the genome that represents
it, and it realises both adaptive parameter mutation (unlike
NEAT) and closedness under crossover operation (unlike
GNARL). More details on EANT can be found in [11].
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2.3. Combining EANT with CMA-ES

Until now, EANT was only applied to learning simple
control problems where is has shown a very good perfor-
mance and convergence rate (that is, it learns good solu-
tions with only few evaluations of the fitness function). Our
task, visual servoing, is much more complex and therefore
required some improvements to EANT on different levels.

In order to study the behaviour of EANT on large prob-
lems we implemented a visual servoing simulator for the
setup described in Section 2.1, with 10/3 network in-/out-
puts. As a fitness function for the individual networks N
we used the negative of the error measure e(N) defined in
(1). This means that fitness takes on negative values with
e(N) = 0 being the optimal solution. Some of the studies
were carried out on a GNU/Linux PC cluster. This paralleli-
sation is helpful because of the significant amount of CPU
time needed for the simulation (937 simulated robot move-
ments and image acquisitions per evaluation of e(N)).

The results from some initial studies have shown that
EANT develops structures of increasing complexity and
performance. However, we were not satisfied with the speed
at which performance improved with network complexity.
We have therefore searched for a replacement for the opti-
misation method used in the exploitation part of EANT. For
our new exploitation loop we used a global optimisation
method called “CMA-ES” (Covariance Matrix Adaptation
Evolution Strategy) [6] which is based on an evolutionary
method like the one used in EANT’s exploitation. CMA-ES
includes features that improve its convergence especially
with multi-modal functions in high-dimensional spaces.

3. Experimental Evaluation

3.1. Experimental Setup

In the following we will show results from experiments
with the new exploitation strategy that uses CMA-ES. We
will compare the results to the ones obtained with the orig-
inal EANT method. With the setup as before, 10/3 in-/out-
puts and starting from minimal structures (3 output nodes,
each connected to all 10 inputs) EANT was run again on
our GNU/Linux cluster. One master process was respon-
sible for the exploration of new structures and distributed
the CMA-ES optimisation of the individuals (exploitation)
to slave processes. The following parameters were used:

• up to 20 individuals in the exploration of new struc-
tures (global population size)

• mutation rate (probability for structural change) 50 %

• random addition of forward connections enabled, re-
current connections and crossover operator disabled

0 2 4 6 8 10 12 14 16 18 20
EANT generation number

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

ne
ga

tiv
e 

fit
ne

ss
, b

es
t i

nd
iv

id
ua

l

original EANT
CMA-ES EANT
Image Jacobian

Development of Fitness EANT vs CMA-ES EANT

Figure 3. EANT vs CMA-ES EANT

• new hidden neurons connected to approx. 50 % of in-
puts (⇒ stochastic search for new structures)

• 3 parallel optimisations of the same individual

• up to 2 optimisation results of the same individual may
be kept, so that a single structure cannot take over the
whole population in less than 5 generations (very un-
likely; it has not happened)

The original EANT algorithm was run with following pa-
rameters (listed are those that differ):

• new hidden neurons connected to all inputs

• exploitation: population size 7 N or 14 N , N being the
network size, 15 or 30 generations; adapted as above

3.2. Results and Discussion

Figure 3 shows the development of the fitness value.
Again we plot the negative fitness, this time against the
EANT exploration generation since this is the determin-
ing factor for the complexity of the networks. It can be
clearly seen that our version of EANT which uses CMA-
ES in the exploitation of structures converges much faster
to networks with a good fitness. While with the original
EANT approach the fitness develops from around -900 to
around -750 in 20 generations, our method reaches a value
above -200 after only 9 generations. However, it should
be noted that our CMA-ES exploitation uses many more
function evaluations (fevals) per generation than the orig-
inal one, resulting in longer running times. On the other
hand, re-optimisation attempts with the original EANT ex-
ploitation that allowed for more fevals did not improve the
performance significantly. It can therefore be assumed that
the main performance increase stems from the techniques
within CMA-ES and not from a larger allowance of fevals.
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For comparison we also calculated the fitness value of
the traditional Image Jacobian approach. The robot move-
ment was calculated using the (undamped) product of the
Image Jacobian’s pseudoinverse with the negative image er-
ror, a standard method [9]. The resulting fitness is -1,391.72
(the fitness without moving the robot is -2,720.41). Since
both the Image Jacobian and our networks calculate the nec-
essary camera movement to minimise the image error in one
step this is a meaningful comparison and shows that these
networks can indeed be used for visual servoing. Damp-
ening, as necessary, can be employed independent of the
method that calculates the step.

4. Conclusions and Future Work

Our aim was to develop neural networks automatically
that can be used as a controller in a visual servoing scenario.
In order to achieve this with a minimum of predetermined
modelling an evolutionary method called EANT, Evolution-
ary Acquisition of Neural Topologies, was used. EANT uses
evolutionary search methods on two levels: in an outer op-
timisation loop, exploration, new networks are developed
by gradually adding new structures to an initially minimal
network. In an inner optimisation loop, exploitation, the
parameters of current networks are optimised. EANT was
used with a complete simulation of a visual servoing sce-
nario to learn neural networks by reinforcement learning.

Based on initial experiments we decided to improve
EANT’s exploitation part. This loop was replaced with a
new strategy that uses CMA-ES as its optimisation algo-
rithm. Experiments with this new method have shown much
improved results over the original EANT method for devel-
oping a visual servoing controller. The performance is also
significantly better than the traditional visual servoing ap-
proach.

Our experimental results indicate that the new EANT
method with CMA-ES is promising and bears further in-
vestigation and development. Our future work will be to in-
vestigate how the CMA-ES optimisation can be combined
with more elaborate stop criteria to avoid spending a lot
of CPU time on individuals that do not seem to converge
to a promising solution. We also plan to investigate more
closely the impact of optimisation parameters, e.g. CMA-
ES’s population size, on the convergence speed.
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