
Creating Edge Detectors by Evolutionary Reinforcement Learning

Nils T Siebel, Sven Grünewald, Gerald Sommer

Abstract— In this article we present results from experiments
where a edge detector was learned from scratch by EANT2, a
method for evolutionary reinforcement learning. The detector
is constructed as a neural network that takes as input the
pixel values from a given image region—the same way that
standard edge detectors do. However, it does not have any per-
image parameters. A comparison between the evolved neural
networks and two standard algorithms, the Sobel and Canny
edge detectors, shows very good results.

I. INTRODUCTION

EDGES characterise boundaries of image regions and are
therefore of great importance for image understanding.

Methods for edge detection, like most image processing
techniques, have a long signal processing tradition. Text
books generally take a very practically oriented approach
to edge detection, and many edge detectors have parameters
that need to be fine-tuned to an image in order to achieve
good detection results.

Our approach is to learn an edge detector from scratch by
EANT2, a method for evolutionary reinforcement learning.
The evolved detector is a neural network that takes as input
the pixel values from a given image region—the same way
that most edge detectors, like Canny’s and Sobel’s methods,
do. However, the network does not have any per-image
parameters, following our paradigm that learning methods
should be general and require only a minimum of input from
the user.

The remainder of the article is as follows. Section II
describes edge detection in general and related work. Details
on our learning algorithm can be found in Section III. The
test setup and main results are located in Section IV, followed
by conclusions in Section V.

II. PRELIMINARIES AND RELATED WORK

In this section we will discuss related work concerning
the two main areas that this work is meant to bring together:
edge detection and methods for learning neural networks by
evolutionary algorithms. Before we do so, however, we will
briefly discuss the nature and definition of edges in images.

A. Edges

Edge detection is a fundamental tool for image under-
standing. Object boundaries that are visible in the image
usually define edges, i.e. borders of image regions that
have a difference in brightness and/or colour. (Higher level
image analyses may also be able to distinguish edges that
occur within an object’s image region and outside of it

The authors are with the Cognitive Systems Group, Institute of Com-
puter Science, Christian-Albrechts-University of Kiel, Germany (e-mail:
{nts,svg,gs}@ks.informatik.uni-kiel.de).

but these considerations are not within the scope of this
article.) What is considered a “correct” edge and what not is
usually dependent on the context in which an edge detector
is used. Intended applications and the nature of images
(source, quality, visual appearance of objects in it) influence
this decision. The definition of what constitutes an edge is
not straightforward, and this makes it difficult to evaluate
and compare different edge detectors. Please consider the
11×9 pixel image depicted in Figure 1 where each square
corresponds to a pixel. Where is the edge around the dark
grey object? The actual border around the object is between
the dark and light pixels. However, here we are considering
edge detection methods that should tell us, for each pixel of
the image, whether this pixel contains an edge or not.

In order to determine the probability of an edge at a given
pixel position it is necessary to look at neighbouring pixels.
Commonly this is done by considering a square image region
centred around the pixel under consideration. This region
may for instance be of size 3×3 or 5×5 pixels. In Figure 1
we have marked such a 3×3 region by a red outline. The
pixel in question is marked with an “X”.

a21

a31

a11 a12 a13

a23

a33a32

Fig. 1. Classification of edge pixels by considering a 3×3 region

It is clear that if an edge can only be located at a pixel
position (not in between pixels) then the centre pixel “X”
definitely contains one. When looking at the 3×3 region one
does not have access to the information whether this pixel is
located inside or outside the dark object. With this in mind
if follows that the pixel marked “a21” is also an edge pixel
if we examine again a 3×3 square centred around it. If it
were not marked an edge as well our method might favour
dark objects on a light background over light objects on a
dark background (or, right edge pixels over left ones, etc.)
which is usually not desirable. Therefore edge detectors that
only consider such a 3×3 region would have to mark both
the “X” pixel and “a21” as edge pixels, resulting in an edge
outline around the object that is 2 pixels wide.

B. Edge Detection Methods

Mathematics tells us that changes such as those in pixel
values along a line in the image can be detected by examining
the derivative. This can be approximated by taking into
account differences of pixel values in a region like the 3×3
“mask” introduced above. In order to reduce the influence
of image noise and similar factors the image and/or the
response from the detector may also be smoothed, e.g. by
convolution with a Gaussian mask. The following common
methods for edge detection use approximations of the 1st
and 2nd derivative [1]:

• 1st derivative: Canny, Sobel and Prewitt edge detectors
• 2nd derivative: Marr-Hildreth algorithm (Laplacian of

the Gaussian a.k.a. Mexican hat image operator)
Methods that are approximating a 2nd derivative by look-

ing at a small square region are very sensitive to noise, so
we will be focusing on 1st order methods here.

The Sobel edge detector was first presented by Irwin
Sobel in 1968 [2]. It is a discrete differentiation operator
that computes an approximation of the gradient of image
intensities. It operates on the image using 2 square masks
like the 3×3 mask above and combines the 2 results (gradient
magnitudes in x and y direction) to form an estimate of
the absolute gradient magnitude at each image point. Then
usually a threshold is applied to classify edge pixels. The
Sobel edge detector is not very complex and hence very fast.

The Canny edge detector is probably the most commonly
used method. It was published by John Canny in 1986 along
with a thorough examination of the underlying theory [3].
It is a fairly complex algorithm that works by first filtering
the image with a Gaussian smoothing filter. Then it calculates
the image intensity gradient (e.g. using Sobel-like masks) and
looks for peaks in the gradient image using non-maximum
suppression. In the last stage the resulting detector responses
are filtered using two thresholds: First a high threshold is
applied with the intention of filtering out spurious responses
from image noise. Then the resulting strong edges are traced
and responses from the detector that are above a second,
lower threshold are added to the result. The Canny algorithm
thus contains adjustable parameters which can affect its
computation time and effectiveness, the parameters for the
Gaussian smoothing and the two thresholds. More elaborate
versions of the algorithm contain additional features like
edge thinning, surround inhibition etc.—and thereby, more
parameters that often need to be tuned on a per-image basis
for optimal results. Together with these features, however, the
Canny algorithm is one of the best performing edge detectors.

It should be noted that both in the pre- and postprocessing
steps the Canny algorithm does use information outside the
square image area where the gradient calculation takes place.
Also, due to its thinning step it usually calculates an edge
outline that is one 1 pixel wide, not 2.

C. Evolutionary Ways of Creating Neural Networks

Until recently, only small neural networks have been
evolved by evolutionary algorithms [4]. According to Yao,

a main reason is the difficulty of evaluating the exact fitness
of a newly found structure: In order to fully evaluate a
structure one needs to find the optimal (or, some near-
optimal) parameters for it. However, the search for good
parameters for a given structure has a high computational
complexity unless the problem is very simple (ibid.).

Most recent approaches evolve the structure and param-
eters of the neural networks simultaneously. Examples are
EPNet [5], GNARL [6] and NEAT [7]. EPNet uses a mod-
ified backpropagation algorithm for parameter optimisation
(a local method). Mutation operators for searching the space
of neural structures are addition and deletion of neurons and
connections (no crossover is used). EPNet has a tendency to
remove connections/nodes rather than to add new ones. This
is done to counteract “bloat” (i.e. ever growing networks with
only little fitness improvement; called “survival of the fattest”
in [8]). GNARL also does not uses crossover during struc-
tural mutation. However, it uses an evolutionary algorithm
for parameter optimisation. Both parametrical and structural
mutation use a “temperature” measure to determine whether
large or small random modifications should be applied—a
concept known from simulated annealing [9]. In order to
calculate the current temperature, the algorithm needs some
knowledge about the “ideal solution” to the problem, e.g. the
best fitness expected to be reached.

NEAT, unlike EPNet and GNARL, uses a crossover
operator that allows to produce valid offspring from two
given neural networks. It works by first aligning similar
or equal subnetworks and then exchanging differing parts.
Like GNARL, NEAT uses evolutionary algorithms for both
parametrical and structural mutation. However, the proba-
bilities and standard deviations used for random mutation
are constant over time. NEAT also incorporates the concept
of speciation, i.e. separated sub-populations that aim at
cultivating and preserving diversity in the population [8].

D. Using Neural Networks for Edge Detection

Pinho has applied artificial neural networks to edge de-
tection as early as 1993 [10]. He used a network of fixed
topology, with one fully connected hidden layer consisting of
9 neurons with a tanh-like activation function and thresholded
outputs. The 9 network inputs are pixel values from a 3×3
mask as in Figure 1. Rotational symmetry, as expected from
the detector network, was achieved by having the neurons
share weights with their symmetric counterparts, which re-
duced the number of parameters from 100 to 34. Training was
done on synthetic example data using the backpropagation
algorithm. Their results are reported to be very good when
compared to the Sobel method, and less sensitive to noise.

More recently, Becerikli et al. trained a neural network by
data generated by a Laplacian edge detector [11]. Again a
network of fixed topology was used, with 9 inputs from a
3×3 mask, one hidden layer of 12 neurons and trained using
backpropagation. They conclude that in their experiments the
approach with neural networks exhibits less sensitivity to
noise but is otherwise comparable to the Laplacian approach.

(a) Original neural network (b) Network in tree format

(c) Corresponding Linear Genome

Fig. 2. An example of encoding a neural network using a linear genome

In our approach we wish to avoid all pre-designing of the
solution, whether it be setting the neural structure manually
or re-formulating the problem by using information about
an anticipated property of the network (like symmetry).
Instead, we use evolutionary reinforcement learning to de-
velop neural networks that solve the edge detection task.
It uses evolutionary optimisation methods for the structure
and the weights since these global optimisation methods are
known to yield convergence to good solutions even in high-
dimensional spaces and with numerically “difficult” (e.g. ill-
posed) functions.

III. LEARNING NEURAL NETWORKS WITH EANT2
A. The Algorithm

EANT2, “Evolutionary Acquisition of Neural Topologies
Version 2”, is an evolutionary reinforcement learning system
that realises neural network learning with evolutionary al-
gorithms both for the structural and the parametrical part.
It is based on the previous method EANT [12] but uses
different algorithms for structural mutation and parameter
optimisation [13]. EANT2 represents neural networks and
their parameters in a compact genetic encoding, the “linear
genome”. It encodes the topology of the network implicitly
by the order of its elements (genes). The following basic
gene types exist: neurons, network inputs, biases and forward
connections. There are also “irregular” connections between
neural genes which we call “jumper connections”. Jumper
genes can encode either forward or recurrent connections.
Figure 2 shows an example encoding of a neural network
using a linear genome. The figures show (a) the neural
network to be encoded. It has one forward and one recurrent
jumper connection; (b) the neural network interpreted as a
tree structure; and (c) the linear genome encoding the neural
network. In the linear genome, N stands for a neuron, I for
an input to the neural network, JF for a forward jumper
connection, and JR for a recurrent jumper connection. The
numbers beside N represent the global identification numbers
of the neurons, x and y are the inputs coded by input genes.

Initialisation
(minimal networks)

?
Structural Exploitation
(parameter optimisation with CMA-ES)

?
Selection

(rank-based but preserving diversity)

?

��

@@ ��

@@
is

fitness
OK?

Yes-
�� �Finished

No?
Structural Exploration
(new individuals by structural mutation)

-

Fig. 3. The EANT2 algorithm. Please note that CMA-ES has its own
optimisation loop which creates in EANT2 a nested loop.

A linear genome can be interpreted as a tree based program
if one considers all the inputs to the network and all jumper
connections as terminals.

Linear genomes can be evaluated, without decoding, sim-
ilar to the way mathematical expressions in postfix notation
are evaluated. For example, a neuron gene is followed by
its input genes. In order to evaluate it, one can traverse the
linear genome from back to front, pushing inputs onto a
stack. When encountering a neuron gene one pops as many
genes from the stack as there are inputs to the neuron, using
their values as input values. The resulting evaluated neuron is
again pushed onto the stack, enabling this subnetwork to be
used as an input to another neuron. Connection (“jumper”)
genes make it possible for neuron outputs to be used as input
to more than one neuron, see JF3 in the example above.

The steps of our algorithm, shown in Figure 3, are ex-
plained in detail below.

Initialisation: EANT2 usually starts with minimal initial
structures. An minimal network has no hidden layers or
recurrent connections, only 1 neuron per output, connected to
some or all inputs. EANT2 gradually develops these simple
initial structures further using the structural and parametrical
evolutionary algorithms discussed below. On a larger scale
new neural structures are added to a current generation of
networks. We call this “structural exploration”. On a smaller
scale the current structures are optimised by changing their
parameters: “structural exploitation”.

Structural Exploitation: At this stage the structures in the
current EANT2 population are exploited by optimising their
parameters. Parametrical mutation is realised using CMA-ES
(“Covariance Matrix Adaptation Evolution Strategy”) [14].
CMA-ES is a variant of Evolution Strategies that avoids
random adaptation of strategy parameters. Instead, the search
area spanned by the mutation strategy parameters, expressed
here by a covariance matrix, is adapted at each step depend-
ing on the parameter and fitness values of current population
members. CMA-ES uses sophisticated methods to avoid
problems like premature convergence and is known for fast
convergence to good solutions even with multi-modal and
non-separable functions in high-dimensional spaces (ibid.).

Selection: The selection operator determines which pop-

(a) Training image (b) Rotated and inverted (c) Test image

(d) “Ledge” image (e) Natural image “Lab” (f) Natural image “Lena”

Fig. 4. Original images, training (top left) and 5 testing images

ulation members are carried on from one generation to the
next. Our selection in the outer, structural exploration loop is
rank-based and “greedy”, preferring individuals that have a
larger fitness. In order to maintain diversity in the population,
it also compares individuals by structure, ignoring their pa-
rameters. The operator makes sure that not more than 1 copy
of an individual and not more than 2 similar individuals are
kept in the population. “Similar” in this case means that a
structure was derived from an another one by only changing
connections, not adding neurons.

Structural Exploration: In this step new structures are
generated and added to the population. This is achieved
by applying the following structural mutation operators
to the existing structures: Adding or removing a random
subnetwork, adding or removing a random connection and
adding a random bias. New hidden neurons are connected to
approx. 50 % of inputs; the exact percentage and selection
of inputs are random.

B. Comparison with Other Methods

EANT2 is closely related to the methods described in
the related work section above. One main difference is
the clear separation of structural exploration and structural
exploitation. By this we try to make sure a new structural
element is tested (“exploited”) as much as possible before
a decision is made to discard it or keep it, or before other
structural modifications are applied. Another main difference
is the use of CMA-ES in the parameter optimisation. Further
differences of EANT2 to other recent methods, e.g. NEAT,

are a small number of user-defined algorithm parameters (the
method should be as general as possible) and the explicit way
of preserving diversity in the population (unlike speciation).

In the past we have compared EANT2 with NEAT by
applying both algorithms to the same problem [15]. The test
environment was a visual servoing task run in a simulation.
Both methods were to develop neural networks to control a
robot in 3 degrees of freedom in order to align its gripper
to an object. The robot movement was determined based on
10 image measurements, so the networks had 10 inputs and 3
outputs. The results showed that NEAT had more problems
than EANT2 finding good parameters for given networks.
EANT2 was at a clear advantage in this comparison. More
details can be found in [15].

IV. MAIN RESULTS

Our goal was to develop an edge detector with EANT2 that
takes the pixel values of a 3×3 or 5×5 image region as an input
and give the probability of an edge at the centre pixel as an
output. Since our activation function is a tanh function with
the range -1 to 1 we used the absolute value of the output
neuron’s value as network output. No information about the
task or desired properties of the solution (e.g. invariance to
rotation and edge-preserving changes to grey levels) were
explicitly given to the algorithm. The algorithm needed to
derive these properties from the training data.

A. Training and Testing Setup
In order to develop and evaluate edge detectors we have

created a synthetic training image, shown in Figure 4(a). It

0 5 10 15 20 25

EANT2 generation

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

b
e
s
t

fi
tn

e
s
s
 v

a
lu

e

0 5 10 15 20 25

0

0 5 10 15 20 25

EANT2 generation

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

b
e
s
t

fi
tn

e
s
s
 v

a
lu

e

0 5 10 15 20 25

0

Fig. 5. Results from 5 EANT2 runs each, mask size 3×3 (left) and 5×5 (right).

has 3969 pixels out of which 1878 (47 %) are edge pixels
with different grey levels and edge orientations, with an
added slight variation of brightness across the image. In order
to make it more natural-looking, a Gaussian smoothing with
σ = 0.6 pixels, similar to the effect one would have in a
camera, was applied to the image.

As test images we used the following (see Figure 4):
1) The training image, rotated and inverted so as to test

for invariance to rotation and grey level changes.
2) A test image that is more complex and difficult, con-

taining stronger non-edge grey level changes.
3) The “Ledge” image by Hans du Buf1.
4) The well known and widely used “laboratory” image.
5) The even better known and more widely used “Lena”.
Following the rationale in Section II-A we created “ground

truth” locations of edges with an edge width of 2 pixels.
While for the synthetic images it was easy to define ground
truth, no definite ground truth exists for the 2 natural images.

As a fitness function f for evaluating a neural network N
we used the negative mean deviation of the neural network
output to the binary ground truth:

f(N) =

−
X
(x,y)

˛̨
G(x, y)− |o(x, y)|

˛̨
(w − b)(h− b)

,

where w and h are the width and height of the image, o(x, y)
the output of the neural network and G(x, y) the ground truth
at image position (x, y). b is the size of the border region in
which no square neighbourhood can be defined, i.e. b = 1
for a 3×3 and b = 2 for a 5×5 mask size. Our definition of
f(N) means that it takes on negative values with f(N) = 0
for an ideal network. Pixel values range from 0 to 1 (=white).

B. Development of 3x3 and 5x5 Networks

The results from 5 runs each of EANT2 with mask sizes
3 × 3 and 5 × 5 are shown in Figure 5. Plotted is the
development of the fitness function dependent on the EANT2
generation, i.e. the number of structural mutations.

With both mask sizes the performance increases signif-
icantly in the first few generations with steady but smaller

1see http://w3.ualg.pt/˜dubuf/pubdat/ledge/ledge.html

TABLE I
COMPARISON OF RESULTS: DETECTION CORRECTNESS

Method Training Rot.&Inv. Test “Ledge”
EANT2, 3x3 97.71 % 97.32 % 95.03 % 94.75 %
EANT2, 5x5 99.19 % 98.31 % 91.82 % 89.52 %
Sobel, 3x3 96.53 % 96.53 % 93.53 % 94.22 %
Sobel, 5x5 82.17 % 82.17 % 85.97 % 81.43 %

improvements as time goes on. After generation 20 the mean
resulting fitnesses are -0.0374 and -0.0216, which shows that
the network with 25 inputs is at a clear advantage. This was
expected considering that the larger mask enables a better
analysis of the context a pixel under examination appears in.
The mean network sizes are 51.6 and 97, respectively.

C. Comparison and Evaluation of Results

For comparison, we applied the resulting neural networks
from generation 20 as well as the Canny and Sobel edge
detectors to the training image and 5 test images mentioned
above. In order to make a fair comparison to the neural
approaches we tuned the parameters of the Canny and Sobel
detectors to the training image and kept them fixed at these
values for the test images. We first show the results for
the comparison with the Sobel detector, where ground truth
(for 2-pixel edges) are available. Results with Canny will be
discussed below.

In addition to the visual evaluation we have quantified
the results in table I. We used the absolute value of the
network outputs and thresholded them with the value 0.5
to get a Boolean classification result edge/no edge, and mis-
classifications were counted. For the Canny edge detector
there is no ground truth with edge widths of 1 pixel (see
also Section II-A). A comparison with the 2-pixel ground
truth would unfairly yield classification rates of less than
50 %, therefore an additional comparison to the visual one
(below) cannot be made.

Figure 6 shows the resulting edge images on the original
training image and the rotated and inverted version. The
results all look very good and similar, except for the Sobel
detector with the 5×5 mask. The detector was so sensitive,
generating false positives, that during training the threshold
had to be set as low as 0.11 to achieve the best results in the

training image. Even then the detection rate is only at 82.2 %
and parts of the contours with lower contrast are missing.
Detection rates of EANT2 and the 3×3 Sobel range from
97 % to 99 % for both images. The 5×5 EANT2 network, like
the 5×5 Sobel, seems to be more susceptible to low frequency
noise like the slight “bump” in the middle left, creating more
false positive responses than the 3×3 network. However, with
this increased sensitivity comes a smaller number of false
negatives which leads to the better detection rate.

The invariance of all 4 algorithms to rotation and grey level
changes is very good. For the Sobel detector this does not
come as a surprise since these properties have been explicitly
incorporated. EANT2, on the other hand, learned edges in
all directions with different brightnesses independently by
examples but gives very similar responses.

In Figure 7 we see the results with the test and “Ledge”
images. For the test image the results from the 3×3 network
and 3×3 Sobel are very similar, while again the 5×5 network
with its higher sensitivity shows fewer false negatives, but
this time more false positives at positions with strong low
frequency transitions. This leads to the lower detection rate
of 91.8 %, with the 3×3 network and Sobel at 95.0 % and
93.5 %, 5× 5 Sobel at 86.0 % with many false negatives.
The “Ledge” image has very low contrast edges, making
it difficult. Visually, EANT2’s 5× 5 network shows the
best results, clearly showing the circles’ contours almost
completely. The 3× 3 network does not have most circle
edges but still achieves a result is 94.8 % since there are few
false positives, with Sobel following at 94.2 % and the 5×5
network at 89.5 %. The 5×5 Sobel achieves 81.4 %.

When looking at the natural images in Figure 8 again
the results from Sobel and the 3× 3 network look very
similar and good. Sobel is least distracted by noise here.
The 5×5 network shows good results on the lab image but
has too many responses in the Lena image, again being very
sensitive. The 5×5 Sobel again has many false negatives.

Figures 9 and 10 show the results from the Canny edge
detector (using a 3×3 mask), again with parameters tuned to
the training image. The results generally look very good but
it is clear that tuning the parameters to each image would
necessary to improve the results. This is most obvious in the
Lena and Lab images. Canny detects many high-frequency
edge outlines, which becomes most apparent in Lena’s hat. It
has probably detected most of the edges in the Lab image but
also has false positive responses due to noise in background
scene of Lena. Canny’s post-processing can, however, still
improve the detection results for the Ledge image (compare
Figure 9(d) to Sobel’s unrefined result in Figure 7(g)). In
Figures 9(a) and 9(b) it can be seen that the thin edges
show problems like a jagged contour and rounded edges of
the rectangles, which might create problems for higher-level
image processing algorithms working with these outlines.

Overall, all edge detectors have shown good results on
our images, with some more sensitive and therefore prone
to yield false positives while others show very clear and
correct edges. It is difficult to create an edge detector that

works well without parameter adjustment on such a wide
range of images. The neural networks created by EANT2
have shown the best classification rates for all images, with
the 3×3 network showing the most constant rates of 95–
98 %. Considering that features like the desired invariance
to rotation and edge-preserving grey-level changes were
not explicitly programmed into the solution as with the
theoretically founded and proven Sobel and Canny methods
we are very happy about their good performance.

(a) Lab (b) Lena

Fig. 10. Edge responses of the Canny detector (parameters fixed, from the
training image)

V. CONCLUSIONS

Our aim was to create neural networks by evolutionary
reinforcement learning that could perform edge detection
using a square image mask of size 3×3 or 5×5, giving the
pixel values from these regions as 9 or 25 separate inputs
to the networks. The development was done on a synthetic
training image using our method EANT2 [15]. We compared
the 3×3 and 5×5 networks on 5 test images to the standard
edge detection methods by Sobel and Canny.

The evaluation of the 4 edge detectors has shown that
the neural networks developed by EANT2 perform as good
or better than the Sobel detector. Comparison with Canny’s
method is difficult due to incompatible results. However, a
visual comparison shows that its pre- and postprocessing like
hysteresis thresholding and edge thinning improves results
beyond the capabilities of the neural networks that only
operate on masks in a one-step algorithm. However, in some
cases Canny’s results showed problems like jagged lines and
rounded edges that were not present in the other methods.

To conclude, our experiments have shown that EANT2
can generate neural networks that can compete with standard
edge detectors on a range of test images.

REFERENCES

[1] D. Ziou and S. Tabbone, “Edge detection techniques – an overview,”
International Journal of Pattern Recognition and Image Analysis,
vol. 8, no. 4, pp. 537–559, 1988.

[2] I. E. Sobel and J. A. Feldman, “A 3x3 isotropic gradient operator for
image processing,” 1968, unpublished, presented as a talk within the
Stanford Artificial Intelligence Project.

[3] J. F. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 8,
no. 6, pp. 679–698, November 1986.

(a) EANT2, 3x3 mask (b) EANT2, 5x5 mask (c) Sobel, 3x3 (d) Sobel, 5x5

(e) EANT2, 3x3 mask (f) EANT2, 5x5 mask (g) Sobel, 3x3 (h) Sobel, 5x5

Fig. 6. Edge responses on the original and the rotated and inverted training images (parameters tuned on the original image)

(a) EANT2, 3x3 mask (b) EANT2, 5x5 mask (c) Sobel, 3x3 (d) Sobel, 5x5

(e) EANT2, 3x3 mask (f) EANT2, 5x5 mask (g) Sobel, 3x3 (h) Sobel, 5x5

Fig. 7. Edge responses on the testing and “Ledge” images (parameters fixed, from training image)

(a) EANT2, 3x3 mask (b) EANT2, 5x5 mask (c) Sobel, 3x3 (d) Sobel, 5x5

(e) EANT2, 3x3 mask (f) EANT2, 5x5 mask (g) Sobel (h) Sobel

Fig. 8. Edge responses on the lab and Lena images (parameters fixed, from training image)

(a) training (b) rotated and inverted (c) testing (d) “Ledge”

Fig. 9. Edge responses of the Canny detector (parameters fixed, from the training image)

[4] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, September 1999.

[5] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial
neural networks,” IEEE Transactions on Neural Networks, vol. 8, no. 3,
pp. 694–713, May 1997.

[6] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary al-
gorithm that constructs recurrent neural networks,” IEEE Transactions
on Neural Networks, vol. 5, no. 1, pp. 54–65, 1994.

[7] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[8] Á. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Germany: Springer Verlag, 2003.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[10] A. J. Pinho, “Modeling non-linear edge detectors using artificial neural
networks,” in Proceedings of the 15th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society, EMBS-93,
San Diego, USA, October 1093, pp. 306–307.

[11] Y. Becerikli, H. E. Demiray, M. Ayhan, and K. Aktaş, “Alternative
neural network based edge detection,” Neural Information Processing–
Letters and Reviews, vol. 10, no. 8, pp. 193–199, August 2006.

[12] Y. Kassahun and G. Sommer, “Efficient reinforcement learning through
evolutionary acquisition of neural topologies,” in Proceedings of the
13th European Symposium on Artificial Neural Networks (ESANN
2005), Bruges, Belgium, April 2005, pp. 259–266.

[13] N. T. Siebel and Y. Kassahun, “Learning neural networks for visual
servoing using evolutionary methods,” in Proceedings of the 6th Inter-
national Conference on Hybrid Intelligent Systems (HIS’06), Auckland,
New Zealand, December 2006, p. 6 (4 pages).

[14] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[15] N. T. Siebel and G. Sommer, “Evolutionary reinforcement learning of
artificial neural networks,” International Journal of Hybrid Intelligent
Systems, vol. 4, no. 3, pp. 171–183, October 2007.

