
Efficient Neural Network Pruning during Neuro-Evolution

Nils T Siebel, Jonas Bötel, Gerald Sommer

Abstract— In this article we present a new method for the
pruning of unnecessary connections from neural networks cre-
ated by an evolutionary algorithm (neuro-evolution). Pruning
not only decreases the complexity of the network but also
improves the numerical stability of the parameter optimisation
process. We show results from experiments where connection
pruning is incorporated into EANT2, an evolutionary reinforce-
ment learning algorithm for both the topology and parameters
of neural networks. By analysing data from the evolutionary
optimisation process that determines the network’s parameters,
candidate connections for removal are identified without the
need for extensive additional calculations.

I. INTRODUCTION

A
RTIFICIAL Neural Networks have been the object of

research for several decades. Originally inspired by the

way our brain works, these “neural networks” have become a

powerful tool for function approximation (usually regression

analysis), classification and data processing. Based on the

Hahn-Banach theorem, Cybenko’s theorem proved in 1989

that the single-hidden-layer perceptron can act as a universal

function approximator [1]. This proves the versatility of

neural networks, and they have indeed been successfully

applied to problems in the sciences, engineering and even

economics [2], [3], [4], [5], [6].

While there is a common understanding of the underlying

principles and mathematics, there is still no straightforward

way to construct a neural network that solves a given task.

In many cases creating a good network requires a great deal

of domain knowledge and manual intervention, e.g. to deter-

mine the network’s topology (“structure”), or to adjust the

parameters of one’s learning algorithm (“hyperparameters”)

to the given problem and data. Even with manual intervention

and tuning, this may still be difficult or even impossible if

the problem is non-trivial.

Most of the past research work has been solely on learning

the parameters of a neural network; there are few constructive

algorithms for a neural network’s topology. Our goal is to

develop such an algorithm, one which creates compact neural

networks that solve a given task without requiring problem-

specific tuning (parameterless).

Our method is called EANT2, “Evolutionary Acquisition

of Neural Topologies Version 2” [7]. EANT2 constructs

neural networks (both topology and parameters) for a given

problem by reinforcement learning. It has been successfully

applied to learning a robot control (ibid.) and classifica-

tion tasks in image processing [8], [9] without setting any

problem-specific parameters (apart from the number of net-

work in- and outputs).

The authors are with the Cognitive Systems Group, Institute of Com-
puter Science, Christian-Albrechts-University of Kiel, Germany (e-mail:
{nts,jboe,gs}@ks.informatik.uni-kiel.de).

In this article we present a new variant of EANT2 which

automatically detects and removes insignificant connections

in a neural network. In contrast to existing methods for

neural network pruning our approach works in our reinforce-

ment learning scenario where no data pairs—and hence, no

derivative of the network training function—is available. By

using existing data from the network parameter optimiser,

candidate connections for removal are also identified without

the need for extensive additional calculations. The effects of

pruning are studied in detail in robot learning experiments.

The remainder of the article is organised as follows.

Section II introduces the terminology and describes related

work. Details on our neuro-evolutionary method can be

found in Section III. The pruning approach is described

in Section IV and validated by experiments in Section V.

Section VI concludes the article.

II. PRELIMINARIES AND RELATED WORK

A. Neural Network Learning Paradigms

A neural network can be regarded as a function f that

maps data points/vectors x from an input space X ⊆ IRn

to vectors y in an output space Y ⊆ IRm, i.e. f : X → Y,

x 7→ y. For a neural network with a fixed topology this

function f is parameterised by the parameters of the network,

e.g. the values of synaptic weights. Training a neural network

means to optimise these parameters such that the network is

suitable for a given task. For this the optimisation process

needs a measure of this suitability of given parameters,

usually expressed by an error or cost function which is

to be minimised during training. The main training/learning

paradigms for neural networks are supervised learning, un-

supervised learning and reinforcement learning.

1) Supervised Learning: Here a set of example data pairs

{(xi, yi)}i, xi ∈ X, yi ∈ Y ∀i, is given. The goal is to find a

function f : X → Y (here, a neural network) that describes

the mapping implied by the data points. The cost function is

related to the mismatch between our mapping and the data.

In classification problems, yi is the label of the point xi.

The most commonly used cost function is the mean-

squared error (MSE), i.e. the mean squared difference be-

tween the network’s output, f(xi), and its target value

yi, over all example pairs. A popular algorithm for the

minimisation process is the backpropagation algorithm [10,

chap. 4], which is essentially optimisation by stochastic

gradient descent.

2) Unsupervised Learning: As in the supervised case, we

are given data examples {xi}i, but not as pairs {(xi, yi)}i.

One form of unsupervised learning is clustering, further

examples are the estimation of statistical distributions of data

and blind source separation (e.g. based on Independent Com-

ponent Analysis, ICA). Examples for unsupervised learning

approaches by neural networks are Self-Organising Maps

(SOM) and Adaptive Resonance Theory (ART) systems.

3) Reinforcement Learning (RL): In RL scenarios, data

x is usually not given. Instead, the algorithm evaluates a

candidate solution by direct interaction with the environment.

One example would be a robot controller. A given network

can move the robot at each time instance t by an action yt

which is based on sensor data xt. The environment generates

an observation ot and often also an instantaneous cost C(ot),
according to the (usually unknown) dynamics of the system.

The aim is to discover a policy for selecting actions that

minimises a measure of a long-term cost, i.e. the expected

cumulative cost.

RL differs from supervised learning in that correct in-

put/output pairs are never presented, nor are sub-optimal

actions explicitly corrected. While this lack of information

makes RL more flexible in its application it also means that

the algorithm has no immediate hint in which direction to

move in a (possibly very high-dimensional) search space.

Therefore one focus is always on performance, which in-

volves finding a balance between exploration (of uncharted

territory) and exploitation (of current knowledge). The effi-

ciency of a RL algorithm can be measured in the number

of evaluations of the cost function (often short “fevals” for

“function evaluations”) it needs to find a good solution.

B. Pruning Neural Networks

Pruning, if done well, solves two important neural network

learning problems:

• Unnecessary connections: Often not all network con-

nections contribute to the solution, or they may cre-

ate insignificant parallel data flow. This can generate

numerical problems (ill-conditioning) [11] and lead to

overfitting [12].

• Large number of parameters: With the number of pa-

rameters of a network the difficulty to determine them

increases exponentially (“curse of dimensionality”) [13]

There are several approaches for neural network pruning:

1) Methods Based on Absolute Parameter Values: The

simplest method for pruning is the removal of the connection

with the smallest connection weight [10]. The idea is that a

small parameter value pi can be well approximated by 0,

which is equivalent to removing the corresponding connec-

tion altogether. In practise, however, it may turn out not to be

true; in fact small parameters can still have a large influence

on the behaviour of the network (ibid.).

2) Optimal Brain Damage (OBD): This is an improved

variant of the previous class of methods by LeCun et al. [14].

Instead of using absolute value |pi| OBD examines the 2nd

derivative of the cost function w.r.t. pi, i.e. the influence of

pi on the cost. Let c(p1, . . . , pl) be the cost as a function of

the network parameters. Then its Taylor expansion is

c(p + δ) = c(p) + Jc(p)δ +
1

2
δT Hc(p)δ + O(‖δ‖3). (1)

Fig. 1. Principles underlying popular pruning methods

Now, this method selects the connection for removal whose

parameter pi has the smallest corresponding value |hii| in

the Hessian Hc(p) =: (hij)i,j . As an added (or maybe,

motivating) benefit of this selection the condition κ of

the Hessian Hc(p) can decrease, and hence, the numerical

stability of the parameter optimisation process improve. The

reason is that κ = λmax

λmin

, where λmax and λmin are the

largest and smallest Eigenvalues of Hc(p). However, this is

only the case if the hii really are the Eigenvalues of Hc(p),
i.e. Hc(p) is diagonal. Also, ignoring the term O(‖δ‖3) in(1)

may or may not yield a good approximation, depending on

the structure of the data. It is a reasonable assumption in the

vicinity of a local minimum [15], however, elsewhere this

may not be the case. Hassibi and Stork also point out in their

experiments Hc(p) was seldom close to diagonal [16], which

would mean that OBD removes the wrong connections.

3) Optimal Brain Surgeon (OBS): Based on these possible

disadvantages of OBD, Hassibi and Stork have suggested a

new method, OBS (ibid.). In order to determine insignificant

network connections the following measure is introduced for

the ith connection, with parameter pi:

si :=
1

2

p2
i

h−1
ii

, (2)

where h−1
ij are the entries of the inverse Hessian matrix,

Hc(p)−1. The algorithm removes the connection i′ with the

smallest value si′ . In addition, the current parameter vector p

is shifted so as to make up for the missing connection, prior

to pruning (the removal is equivalent to setting pi′ := 0):

p′ := p −
pi′

h−1
i′i′

Hc(p)−1ei′ , (3)

where ei is the ith unit vector.

Figure 1 demonstrates all three presented principles for 2

parameters, p1 = 2 and p2 = 1.5. Hc(p)−1 is visualised

here by an ellipse, centred around the current point p,

whose main axis correspond to its Eigenvectors, scaled by

the Eigenvalues. The contour of the ellipse corresponds to

identical values of the cost function c. In this situation the

absolute value method, “abs” in the diagram, would set

p2 := 0. OBD would set p1 := 0, thereby reducing the

change to c(p′) in comparison. OBS would also set p1 := 0

but also increase p2 slightly to further reduce the influence

on c(p′).
Kavzoğlu and Mather have shown that, just as one would

expect, OBS preforms better than OBD, which in turn pre-

forms better than “abs” [12]. However, a remaining problem

is the necessity to estimate the diagonal of Hc(p) (OBD)

or even the complete matrix Hc(p)−1 (OBS), which can be

computationally very expensive unless the network is small.

C. Evolutionary Ways of Creating Neural Networks

Up to the late 90s only small neural networks have been

evolved by evolutionary algorithms [17]. According to Yao,

a main reason is the difficulty of evaluating the exact fitness

(negative cost) of a newly found structure: In order to fully

evaluate a structure one needs to find the optimal (or, some

near-optimal) parameters for it. However, the search for good

parameters for a given structure has a high computational

complexity unless the problem is very simple (ibid.).

Most approaches evolve the structure and parameters of the

neural networks simultaneously. Examples are EPNet [18],

GNARL [19] and NEAT [20]. EPNet uses a modified back-

propagation algorithm for parameter optimisation (a local

method). Mutation operators for searching the space of

neural structures are addition and deletion of neurons and

connections (no crossover is used). EPNet has a tendency to

remove connections/nodes rather than to add new ones. This

is done to counteract “bloat” (i.e. ever growing networks with

only little fitness improvement; called “survival of the fattest”

in [21]). GNARL also does not use crossover during struc-

tural mutation. However, it uses an evolutionary algorithm

for parameter optimisation. Both parametrical and structural

mutation use a “temperature” measure to determine whether

large or small random modifications should be applied—a

concept known from simulated annealing [22]. In order to

calculate the current temperature, the algorithm needs some

knowledge about the “ideal solution” to the problem, e.g. the

best fitness expected to be reached.

NEAT, unlike EPNet and GNARL, uses a crossover

operator that allows to produce valid offspring from two

given neural networks. It works by first aligning similar

or equal subnetworks and then exchanging differing parts.

Like GNARL, NEAT uses evolutionary algorithms for both

parametrical and structural mutation. However, the proba-

bilities and standard deviations used for random mutation

are constant over time. NEAT also incorporates the concept

of speciation, i.e. separated sub-populations that aim at

cultivating and preserving diversity in the population [21].

III. LEARNING NEURAL NETWORKS WITH EANT2

A. The Algorithm

EANT2, “Evolutionary Acquisition of Neural Topologies

Version 2”, is an evolutionary reinforcement learning system

that realises neural network learning with evolutionary al-

gorithms both for the structural and the parametrical part.

It is based on the previous method EANT [23] but uses

different algorithms for structural mutation and parameter

(a) Original neural network (b) Network in tree format

(c) Corresponding Linear Genome

Fig. 2. An example of encoding a neural network using a linear genome

optimisation [24]. EANT2 represents neural networks and

their parameters in a compact genetic encoding, the “linear

genome”. It encodes the topology of the network implicitly

by the order of its elements (genes). The following basic

gene types exist: neurons, network inputs, biases and forward

connections. There are also “irregular” connections between

neural genes which we call “jumper connections”. Jumper

genes can encode either forward or recurrent connections.

Figure 2 shows an example encoding of a neural network

using a linear genome. The figures show (a) the neural

network to be encoded. It has one forward and one recurrent

jumper connection; (b) the neural network interpreted as a

tree structure; and (c) the linear genome encoding the neural

network. In the linear genome, N stands for a neuron, I for

an input to the neural network, JF for a forward jumper

connection, and JR for a recurrent jumper connection. The

numbers beside N represent the global identification numbers

of the neurons, x and y are the inputs coded by input genes.

A linear genome can be interpreted as a tree based program

if one considers all the inputs to the network and all jumper

connections as terminals.

Linear genomes can be evaluated, without decoding, sim-

ilar to the way mathematical expressions in postfix notation

are evaluated. For example, a neuron gene is followed by

its input genes. In order to evaluate it, one can traverse the

linear genome from back to front, pushing inputs onto a

stack. When encountering a neuron gene one pops as many

genes from the stack as there are inputs to the neuron, using

their values as input values. The resulting evaluated neuron is

again pushed onto the stack, enabling this subnetwork to be

used as an input to another neuron. Connection (“jumper”)

genes make it possible for neuron outputs to be used as input

to more than one neuron, see JF3 in the example above.

Together with bias neurons the linear genome can encode

any neural network in a very compact format; its length is

equal to the number of synaptic network weights.

The steps of our algorithm, shown in Figure 3, are ex-

fitness

OK?

Yes

No
Remove duplicate structures

mutation (crossover optional)

Generate new population by

Start

End

(by rank; structures only)

Select seed individuals

Create initial population (structures)

(optimise parameters with CMA−ES)

Structural Exploitation

Structural Exploration

Fig. 3. The original EANT2 algorithm.

plained in detail below.

Initialisation: EANT2 usually starts with minimal initial

structures. A minimal network has no hidden layers or

recurrent connections, only 1 neuron per output, connected to

some or all inputs. EANT2 gradually develops these simple

initial structures further using the structural and parametrical

evolutionary algorithms discussed below. On a larger scale

new neural structures are added to a current generation of

networks. We call this “structural exploration”. On a smaller

scale the current structures are optimised by changing their

parameters: “structural exploitation”.

Structural Exploitation: At this stage the structures in the

current EANT2 population are exploited by optimising their

parameters. Parametrical mutation is realised using CMA-ES

(“Covariance Matrix Adaptation Evolution Strategy”) [25].

CMA-ES is a variant of Evolution Strategies that avoids

random adaptation of strategy parameters. Instead, the search

area spanned by the mutation strategy parameters, expressed

by a covariance matrix, is adapted at each step depending on

the current population. CMA-ES uses sophisticated methods

to avoid problems like premature convergence and is known

for fast convergence to good solutions even with multi-modal

and non-separable functions in high-dimensional spaces

(ibid.). It has been first successfully applied to reinforcement

learning of neural network weights by Igel [26].

Selection: The selection operator determines which pop-

ulation members are carried on from one generation to the

next. Our selection in the outer, structural exploration loop is

rank-based and “greedy”, preferring individuals that have a

larger fitness. In order to maintain diversity in the population,

it also compares individuals by structure, ignoring their pa-

rameters. The operator makes sure that not more than 1 copy

of an individual and not more than 2 similar individuals are

kept in the population. “Similar” in this case means that a

structure was derived from an another one by only changing

connections, not adding neurons.

Structural Exploration: In this step new structures are

generated and added to the population. This is achieved

by applying the following structural mutation operators

to the existing structures: Adding or removing a random

Fig. 4. Size development, EANT2 without pruning.

subnetwork, adding or removing a random connection and

adding a random bias. New hidden neurons are connected to

approx. 50 % of inputs; the exact percentage and selection

of inputs are random.

B. Comparison with Other Methods

EANT2 is closely related to the methods described in

the related work section above. One main difference is

the clear separation of structural exploration and structural

exploitation. By this we try to make sure a new structural

element is tested (“exploited”) as much as possible before

a decision is made to discard it or keep it, or before other

structural modifications are applied. Another main difference

is the use of CMA-ES in the parameter optimisation. Further

differences of EANT2 to other recent methods, e.g. NEAT,

are a small number of user-defined algorithm parameters

(the method should be as universal as possible) and the

explicit way of preserving diversity in the population (unlike

speciation).

In the past we have compared EANT2 with NEAT by

applying both algorithms to the same problem [7]. The test

environment was a visual servoing task run in a simulation.

Both methods were to develop neural networks to control a

robot in 3 degrees of freedom in order to align its gripper

to an object. The robot movement was determined based on

10 image measurements, so the networks had 10 inputs and 3

outputs. The results showed that NEAT had more problems

than EANT2 finding good parameters for given networks.

EANT2 was at a clear advantage in this comparison. More

details can be found in [7].

IV. OUR APPROACH TO NEURAL NETWORK PRUNING

During our experiments with EANT2 we often encoun-

tered difficult numerical conditions during parameter optimi-

sation. This was mainly due to redundancy in the input data

(10 inputs describe an essentially 4-dimensional problem)1

but also due to parallel data flow in the network, which both

lead to ill-conditioning.

1A transformation of the input data, e.g. by PCA, would defy our goal to
develop a method that can work with the task’s natural problem formulation.

Generate and evaluate samples

Initialise distribution parameters

point where conn. weight is 0

Recentre distribution around

Identify candidate connection

End
fitness

OK?

No

Yes

Remove

Connection

Undo

Recentring

fitness

worse?

YesNo

Start

(minimal networks)

Initialise structures

Update distribution estimate

Evaluate possibility for pruning

Remove duplicate structures

(by rank; structures only)

Select seed individuals

mutation (crossover optional)

Generate new population by

stop Yes

No

criteria?

Yestry

pruning?

No

Structural ExplorationStructural Exploitation Network Pruning

Fig. 5. The new EANT2 algorithm with pruning during structural exploitation (i.e. neural network parameter optimisation).

In long-term experiments with EANT2 it could also be

seen that the size slowly decreases over long time spans,

see Figure 4. What happened is that from time to time

neurons with a few connections were added so that the size

of the best performing network increased. In most other

EANT2 generations, however, connections were removed by

random mutation, and the smaller network selected by the

evolutionary algorithm if the fitness stayed the same. The

slowly decreasing network sizes in the plot indicate that

many redundant connections were present, and removed in

this manner. Random removal of connections decreases the

number of network parameters and thus makes the their

optimisation easier (compare “curse of dimensionality”).

However, it is inefficient as it takes a lot of time.

In order to reduce the problem dimension more quickly

and at the same time alleviate the numerical difficulties we

developed a derandomised pruning module for EANT2.

A. Main Idea

The reasoning behind our pruning strategy is similar to the

OBS method above. The Hessian matrix of the cost function,

Hc(p), expresses the significance of the parameters p for the

task. However, the calculation of Hc(p) is impossible in a

reinforcement learning scenario, and its approximation by

finite differences is computationally expensive—especially

so in our robot learning case where an evaluation of the cost

function requires the simulation of 1023 robot movements.

Our advantage is that in our structural exploitation, we use

CMA-ES [25] for the optimisation of the parameters. CMA-

ES adapts a covariance matrix C of the parameters, which

represents the local structure of the search space. When this

adaptation converges, the matrix approximates the inverse

Hessian matrix Hc(p)−1 well (up to a constant factor) (ibid.).

The main idea for pruning is that when parameters are

correlated (i.e. their covariance is large), one of them can be

removed. For example, if pi and pj are highly correlated but

uncorrelated to other parameters, pi can be locally changed

such that a correctly correlated change in pj cancels the

influence of pi’s change on the cost/fitness function. This is

valid in the area around the current mean parameter vector

m where C describes the structure of the search space well.

If this area includes the ith (or jth) axis then the parameter

pi (or pj) can be set to 0—and hence, removed. The same

argument is valid if more than two parameters are involved.

B. Implementation

1) Detecting Convergence: Before using measurements

from the covariance matrix C to detect the significance of

the network parameters p one needs to make sure that the

underlying assumptions for the abovementioned reasoning

are true:

1) c(p + δ) ≈ c(p) + 1
2δT Hc(p)δ for small δ and

2) C ≈ Hc(p)−1.

We know that the first assumption is valid close to a

local optimum of the cost function [15]. This is where the

second assumption is also valid [25]2. In order to detect

this closeness to a local optimum we use a method already

implemented in CMA-ES: the internal convergence detection

(which analyses the evolution path) calculated for the adap-

tation of the step size σ. σ is used to scale the covariance

matrix so as to speed up the movement in search space far

away from the optimum and slow it down in its vicinity.

New individuals (candidate solutions for parameters p) are

generated by sampling from the normal distribution

p ∼ N (m,σ2C) (4)

where m is the mean of the current population.

2In fact, our experiments showed that C ≈ Hc(p)−1 is valid much earlier
during the adaptation of C.

(a) Before pruning (b) After pruning

Fig. 6. Structural changes to a network by pruning

Our experiments have confirmed that monitoring the de-

velopment of the value of σ is indeed a good way to detect

convergence. In practise the development of σ is slightly

smoothed over time by updating a running mean σ̄k in the

kth iteration as follows:

σ̄k := λσk + (1 − λ)σ̄k−1 (5)

with a value of γ ∈ [.025; .01], smoothing more strongly

when the dimension of p is large.

Using σ̄k, we initiate a pruning attempt when σ̄k reaches

a local minimum, i.e. it has decreased for a number of

iterations (e.g., 250) and then increases again.

2) Identifying Candidate Connections for Pruning: In

order to examine the significance of parameters (to find

one which is not significant) we use the components of the

Eigendecomposition of C, which are already available due

to the way C is adapted:

C = BD2BT , B = (bij)i,j=1,...,l
, D = (dij)i,j=1,...,l

,

(6)

where D is a diagonal matrix holding the square roots of the

Eigenvalues of C and l is the dimension of the parameter

space as above.

Let m be again the mean of the current distribution and

let vj be C’s jth principal axis, vj := bjdjj where bj shall

denote the jth column of B. Then for each parameter index i

and each axis j we calculate the scaling factor sij by which

vj would need to be scaled so that m + sijvj reaches the

hyperplane where pi = 0. These values are given by

sij = −
mi

bijdjj

(7)

since then m̃i = mi − sij · bijdjj = 0 for m̃ := m + sij · vj .

Among these we select indices i⋆ and j⋆ that correspond

to the smallest factor |sij |,

(i⋆, j⋆) ∈ argmin
(i,j)∈[1,...,l]2

|sij | (8)

and shift the parameters in space by setting m := m̃⋆ with

m̃⋆ := m + si⋆j⋆ · vj⋆ .

3) Evaluation of the new Structure: It is to be expected

that the value of the cost function will change (probably, in-

crease) when the parameters are shifted in space by si⋆j⋆vj⋆ .

This is checked by calculating the new value of the cost

function ẽ and comparing it to the original value e. The shift

(and thereby, the removal of connection i⋆) is accepted if the

cost is increased by less than 0.1 %, i.e. iff ẽ < 1.001 e.

The structure of the new algorithm is shown in Figure 5, as

an expanded and amended version of the diagram in Figure 3

above.

V. MAIN RESULTS

A. Initial Experiments

In our initial experiments we examined the change of the

numerical condition of the covariance matrix by the removal

of connections, since it was one of our goals to improve

it. We started with a structure of size 38 and pruned with

our algorithm, which removed 8 connections, see Figure 6,

without changing the fitness significantly.

Then both networks were initialised with random param-

eters before optimising it with our structural exploitation.

This time no further pruning was applied. Figure 7 shows

the development of the condition of the covariance matrix

over time, for these two networks. It can be seen that the

condition of the original network reaches 1.8e+17 at which

point the condition was limited to avoid numerical problems.

The condition of the pruned individual, on the other hand,

did not exceed 9e+13.

0 5000 10000 15000
CMA-ES generation

1×10
2

1×10
4

1×10
6

1×10
8

1×10
10

1×10
12

1×10
14

1×10
16

1×10
18

c
o

n
d

it
io

n
 o

f
c
o

v
a

ri
a

n
c
e

 m
a

tr
ix

pruned network

original network

Fig. 7. Development of condition, original and pruned network

B. 3 DOF Visual Servoing

After these encouraging initial experiments we started

our main experiments, where EANT2 was asked to develop

robot controllers, sometimes with pruning enabled, some-

times disabled. The networks needed to steer a robot arm in

3 degrees of freedom based on 10-dimensional image data,

which means the networks had 10 in- and 3 outputs. More

details on the test setup can be found in [7]. We made 5 runs

each with pruning enabled and disabled.

Figure 8 shows the development of the fitness value

(negative visual error after robot movement) and the network

size of the best individual over time. It can be seen that

the fitness reached by both variants of EANT2 after 15

generations is very similar, and within the natural variation

one expects with an evolutionary algorithm. On average, the

fitness in generation 15 was -0.227654 with pruning and

-0.226681 without. It is also apparent that the runs with

pruning tend to reach their final fitness value more quickly.

The plots of the sizes of the neural networks vary over

time since in each generation the size of the best individual

(selected by fitness) is plotted, and this selection may cause

some jitter in the values. Nevertheless it is very clear that

pruning significantly reduced the size of the networks; the

mean sizes in generation 15 were 59.8 with pruning and

73.6 without pruning—an average of size reduction of 23 %.

VI. CONCLUSIONS

The goal was to develop a method for neural network

pruning that would work with our evolutionary reinforcement

learning method EANT2. Standard methods like Optimal

Brain Damage and Optimal Brain Surgeon do not work in

reinforcement learning setups, and an approximation of the

Hessian matrix of the cost function would be too computa-

tionally expensive.

Our approach uses measurements from the covariance

matrix which is part of CMA-ES, the evolutionary algorithm

that optimises the network parameters. We detect at which

time the covariance matrix converges against the inverse of

the Hessian and the optimiser is also at a local minimum.

In this situation we can use the existing Eigendecomposition

of the covariance matrix to predict for each parameter how

much its removal would influence the cost function. The

connection with the smallest influence is then removed

by shifting all parameters in the search space such that

their mean lies on the hyperplane where the parameter is

0. Then the corresponding connection is removed. If this

shift influences the cost significantly this change is reverted,

otherwise it is kept.

Initial tests of the new method show that pruning removes

several connections of given networks that were developed

by EANT2 without pruning. At the same time the condition

of the covariance matrix is also significantly reduced, which

makes the parameter optimisation numerically more stable.

For the main tests EANT2 was given the task of learning

a robot controller with 10 network inputs and 3 outputs.

It could be seen that the pruning-enabled EANT2 creates

networks that have up to a quarter fewer connections, while

having on average the same fitness values as their non-

pruning counterparts.

To conclude, our experiments have shown that the new

pruning module for EANT2 helps to generate compact neural

networks that show the same performance as the networks

created by the standard EANT2 while improving the numer-

ical conditions during parameter optimisation.

REFERENCES

[1] G. Cybenko, “Approximation by superposition of sigmoidal functions,”
Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–
314, December 1989.

[2] A. Beltratti, S. Margarita, and P. Terna, Neural Networks for Economic

and Financial Modelling. London, UK: International Thomson
Computer Press, 1996.

[3] W. R. Hutchison and K. R. Stephens, “The airline marketing tac-
tician (AMT): A commercial application of adaptive networking,”
in Proceedings of the 1st IEEE International Conference on Neural

Networks, San Diego, USA, vol. 2, 1987, pp. 753–756.
[4] A.-P. Refenes, Ed., Neural Networks in the Capital Markets. New

York, Chichester, USA: John Wiley & Sons, 1995.
[5] C. Robert, C.-D. Arreto, J. Azerad, and J.-F. Gaudy, “Bibliometric

overview of the utilization of artificial neural networks in medicine
and biology,” Scientometrics, vol. 59, no. 1, pp. 117–130, 2004.

[6] R. R. Trippi and E. Turban, Eds., Neural Networks in Finance and

Investing. Chicago, USA: Probus Publishing Co., 1993.
[7] N. T. Siebel and G. Sommer, “Evolutionary reinforcement learning of

artificial neural networks,” International Journal of Hybrid Intelligent

Systems, vol. 4, no. 3, pp. 171–183, October 2007.
[8] ——, “Learning defect classifiers for visual inspection images by

neuro-evolution using weakly labelled training data,” in Proceedings of

the IEEE Congress on Evolutionary Computation (CEC 2008), Hong

Kong, China, June 2008, pp. 3926–3932.
[9] N. T. Siebel, S. Grünewald, and G. Sommer, “Creating edge detectors

by evolutionary reinforcement learning,” in Proceedings of the IEEE

Congress on Evolutionary Computation (CEC 2008), Hong Kong,

China, June 2008, pp. 3552–3559.
[10] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford,

UK: Oxford University Press, 1995.
[11] W. S. Sarle, “Ill-conditioning in neural networks,”

Website, SAS Institute Inc., Cary, USA, September 1999,
ftp://ftp.sas.com/pub/neural/illcond/illcond.html.

[12] T. Kavzoğlu and P. M. Mather, “Assessing artificial neural network
pruning algorithms,” in Proceedings of the 24th Annual Conference

and Exhibition of the Remote Sensing Society (RSS 1998), Greenwich,
UK, 1998, pp. 603–609.

0 5 10 15
EANT2 generation

-0.40

-0.38

-0.36

-0.34

-0.32

-0.30

-0.28

-0.26

-0.24

-0.22

-0.20
b

e
s
t

fi
tn

e
s
s
 v

a
lu

e

without pruning

with pruning

(a) Fitness development (b) Size development

Fig. 8. Comparison of 5 EANT2 runs each with/without pruning: development of fitness and size over EANT2 generation

[13] R. E. Bellman, Adaptive Control Processes. Princeton, USA: Prince-
ton University Press, 1961.

[14] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Proceedings of the 1990 Conference on Advances in Neural Informa-

tion Processing Systems (NIPS 1990), 1990, pp. 598–605.
[15] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming,

3rd ed. Springer Verlag, 2008.
[16] B. Hassibi and D. G. Stork, “Second order derivatives for network

pruning: Optimal brain surgeon,” in Proceedings of the 1993 Confer-

ence on Advances in Neural Information Processing Systems (NIPS

1993), 1993, pp. 164–171.
[17] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,

vol. 87, no. 9, pp. 1423–1447, September 1999.
[18] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial

neural networks,” IEEE Transactions on Neural Networks, vol. 8, no. 3,
pp. 694–713, May 1997.

[19] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary al-
gorithm that constructs recurrent neural networks,” IEEE Transactions

on Neural Networks, vol. 5, no. 1, pp. 54–65, 1994.
[20] K. O. Stanley and R. P. Miikkulainen, “Evolving neural networks

through augmenting topologies,” Evolutionary Computation, vol. 10,
no. 2, pp. 99–127, 2002.

[21] Á. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Germany: Springer Verlag, 2003.

[22] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[23] Y. Kassahun and G. Sommer, “Efficient reinforcement learning through
evolutionary acquisition of neural topologies,” in Proceedings of the

13th European Symposium on Artificial Neural Networks (ESANN

2005), Bruges, Belgium, April 2005, pp. 259–266.
[24] N. T. Siebel and Y. Kassahun, “Learning neural networks for visual

servoing using evolutionary methods,” in Proceedings of the 6th Inter-

national Conference on Hybrid Intelligent Systems (HIS’06), Auckland,

New Zealand, December 2006, p. 6 (4 pages).
[25] N. Hansen and A. Ostermeier, “Completely derandomized self-

adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[26] C. Igel, “Neuroevolution for reinforcement learning using evolution
strategies,” in Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 2003). IEEE Press, 2003, pp. 2588–2595.

