
��� ��������	
 ��
������

������ ��� ��������������
�� ����� !"�#$��� %���"��&��

��" '��(��)("*������#� %����#������

+,-. / 0,121-

3�456	�	����7 8����� 9��65
:�5��	4��	 �� 3�456	�� ;<���<�

Video
Image

Head Detector

Motion Detector

Tracker
Active Shape

Tracking
OutputRegion Tracker

=>?@ABBCD AE FGHBAGI J>IKI@CEB LJ BMC HCN>AHC@CEBO JLH BMC DCPHCC LJQLRBLH LJ SMAILOLFMT
UGHRM VWWX

For my parents.

Copyright Notice

The original material presented in this thesis is protected by copyright. The copy-
right is owned by the author, c© Nils T Siebel, 2003. The research work and results
may be used for any non-military, academic research purpose if the source is ade-
quately acknowledged. Any commercial exploitation of the ideas or other material
presented here requires the prior written permission of the author. No part of the
work described here may ever be used for any military purpose, research or not.

The source code of the Reading People Tracker introduced in this thesis has been
published under the GNU Public License (GPL) and is available through the URI
http://www.cvg.cs.rdg.ac.uk/~nts/PeopleTracking/.

v

http://www.cvg.cs.rdg.ac.uk/~nts/PeopleTracking/

Abstract

This thesis describes the design and implementation of a people tracking module
for an integrated visual surveillance system developed as part of the Framework V
project ADVISOR, funded by the European Union. Starting from an earlier people
tracker developed at the Universities of Leeds and Reading over the past 10 years,
appropriate methods have been included and adapted to meet the special needs which
exist in visual surveillance systems. The result is the Reading People Tracker.

The emphasis in this work lies on the completion of the whole task: from image
processing and tracking algorithms through to system design and integration.

The Reading People Tracker uses a combination of four co-operating detection
and tracking modules to track people in camera images. Each of the modules is
of medium to low complexity to ensure realtime performance. The modules are a
Motion Detector, a Region Tracker, a Head Detector and an Active Shape Tracker.
Combining different modules and letting them exchange their results overcomes the
limitations which individual modules have and results in a greater reliability. All
four modules work directly with the image in order to reduce the complexity of the
tracker. Complicated 3D models are avoided. Experiments show that the Reading
People Tracker tracks individuals robustly in the presence of occlusion and low image
quality.

An important aspect of the Reading People Tracker is its maintainability. The
software was re-engineered, making it possible to adapt, extend and improve the soft-
ware with ease. This re-engineering process and its influence on the maintainability
of the people tracker is analysed as a case study.

A second aspect examined in the case study is the software processes which
have been used to maintain the software over its lifetime of 10 years. It is shown
that the diversity of software processes has a significant impact on the quality of
the software. Process diversity is divided into two broad classes, latitudinal and
longitudinal process diversity. The influence of both classes of process diversity on
software quality is examined.

vii

Declarations

I confirm that this is my own work and the use of all material from other sources
has been properly and fully acknowledged.

Part of the work in this thesis has been presented in the following publications:

Computer Vision Publications

[1] Nils T Siebel and Steve Maybank. Fusion of multiple tracking algorithms
for robust people tracking. In Anders Heyden, Gunnar Sparr, Mads Nielsen
and Peter Johansen, editors, Proceedings of the 7th European Conference on
Computer Vision (ECCV 2002), København, Denmark, volume IV, pages 373–
387, May 2002.

[2] Nils T Siebel and Steve Maybank. Real-time tracking of pedestrians and
vehicles. In Proceedings of the 2nd IEEE International Workshop on Perfor-
mance Evaluation of Tracking and Surveillance (PETS’2001), Kauai, USA,
December 2001. CD-ROM proceedings, pages unnumbered.

[3] Nils T Siebel and Steve Maybank. On the use of colour filtering in an in-
tegrated real-time people tracking system. In Paolo Remagnino, Graeme A
Jones, Nikos Paragios and Carlo Regazzoni, editors, Video Based Surveillance
Systems: Computer Vision and Distributed Processing, chapter 14, pages 167–
175. Kluwer Academic Publishers, Boston, USA, 2001.

[4] Nils T Siebel and Steve Maybank. The application of colour filtering to
real-time person tracking. In Proceedings of the 2nd European Workshop
on Advanced Video-Based Surveillance Systems (AVBS’2001), Kingston upon
Thames, UK, pages 227–234, September 2001.

Software Engineering Publications

[5] Nils T Siebel, Steve Cook, Manoranjan Satpathy and Daniel Rodŕıguez. Lat-
itudinal and longitudinal process diversity. Journal of Software Maintenance
and Evolution, 15(1):9–25, January–February 2003.

ix

[6] Manoranjan Satpathy, Nils T Siebel and Daniel Rodŕıguez. Maintenance of
object oriented systems through re-engineering: A case study. In Proceedings
of the IEEE International Conference on Software Maintenance (ICSM 2002),
Montréal, Canada, pages 540–549, October 2002.

Manual of the Reading People Tracker

[7] Tugdual Le Bouffant, Nils T Siebel, Stephen Cook and Steve Maybank. The
Reading People Tracker Version 1.12 Reference Manual. Technical Report
RUCS/2002/TR/11/001/A, Department of Computer Science, The University
of Reading, Reading, UK, November 2002.

Contents

Copyright Notice v

Abstract vii

Declarations ix

Contents xi

1 Introduction 1
1.1 People Tracking for Visual Surveillance 1
1.2 Issues Addressed in this Thesis . 2

1.2.1 New People Tracking Algorithms 3
1.2.2 Software Engineering Aspects 3

1.3 Overview of the Thesis . 4
1.4 Acknowledgements . 5

2 People Tracking 7
2.1 Concepts and Terminology . 7

2.1.1 Two Basic Definitions . 7
2.1.2 Motion Detection . 7
2.1.3 Modelling . 9

2.2 Related Work . 11
2.2.1 Overview and Classification 11
2.2.2 Baumberg’s Leeds People Tracker 12
2.2.3 Haritaoglu’s W4 System . 16
2.2.4 Gavrila’s 3-D Model-based People Tracker 19
2.2.5 Sidenbladh’s 3D People Tracker 21
2.2.6 Conclusions . 23

2.3 Building an Integrated People Tracking Application 23
2.3.1 The ADVISOR Project and its Objectives 23
2.3.2 System Overview . 24

xi

CONTENTS

2.3.3 Development Plan . 26
2.3.4 Data Formats for Communication 27
2.3.5 Building a People Tracking Module for ADVISOR 28

3 Colour Image Filtering for Robust Image Processing 31
3.1 Introduction . 31

3.1.1 The Representation of Colour in Computers 31
3.1.2 Image Generation and Transmission 33
3.1.3 Determining the Effects of Image Noise 35

3.2 Image Noise and Image Filtering . 35
3.2.1 Use of Images Within the People Tracker 35
3.2.2 Filtering Techniques: Creating the Difference Image 37

3.3 Experiments and Results . 39
3.3.1 The Test Data . 39
3.3.2 Local Image Filters Examined Here 40
3.3.3 Method a: Filtering the Difference Image 42
3.3.4 Method b: Differencing the Filtered Images 44

3.4 Discussion . 46

4 The Reading People Tracker 47
4.1 Designing a People Tracker for ADVISOR 47
4.2 The Tracking Algorithm: Overview and Structure 48

4.2.1 Overview and General Features 48
4.2.2 Module 1: The Motion Detector 50
4.2.3 Module 2: The Region Tracker 50
4.2.4 Module 3: The Head Detector 54
4.2.5 Module 4: The Active Shape Tracker 56

4.3 Module Interaction and Other Features 58
4.3.1 Interaction Between Tracking Modules 58
4.3.2 Hypothesis Refinement . 61
4.3.3 Software Engineering Aspects 61

4.4 Demonstration and Discussion . 62
4.4.1 Testing on a London Underground Sequence 62
4.4.2 Analysis . 64
4.4.3 Remaining Problems . 66
4.4.4 Summary . 67

5 Maintainability of the Reading People Tracker 69
5.1 Introduction . 69

5.1.1 Software Maintenance Techniques 69
5.1.2 Related Work . 71

xii

CONTENTS

5.2 The People Tracker and its Maintainability 72
5.2.1 Brief History . 73
5.2.2 Motivation for Re-design . 74

5.3 Approaches Taken for the Re-design 75
5.3.1 Stages of Work . 75
5.3.2 Maintenance Effort . 77
5.3.3 Code Size . 78

5.4 Further Analysis and Discussion . 78
5.4.1 Generated Artefacts of the People Tracker 78
5.4.2 Experience with the Re-engineered software 79
5.4.3 Improved Maintainability . 80
5.4.4 Personnel Factors . 81
5.4.5 Lessons Learned . 82

5.5 Conclusions . 84

6 Process Diversity and its Implications for the People Tracker 85
6.1 Introduction . 85

6.1.1 Concepts and Management of Process Diversity 86
6.1.2 Related Work . 86

6.2 Process Diversity . 87
6.2.1 Latitudinal Process Diversity 88
6.2.2 Longitudinal Process Diversity 89
6.2.3 Evolution-oriented Models of Software Processes 90

6.3 Description of the People Tracker Software 93
6.3.1 Brief History . 94
6.3.2 Current Status and Outlook 95

6.4 Analysis of the Process Diversity for the People Tracker 96
6.4.1 Latitudinal Process Diversity: Diversity between Co-operating

Groups . 96
6.4.2 Longitudinal Process Diversity and Transition between Process

Models . 97
6.4.3 Metrics and Further Analysis 99

6.5 Lessons Learned . 100
6.5.1 Latitudinal Process Diversity 101
6.5.2 Longitudinal Process Diversity 101

6.6 Conclusions . 102

7 Validation of the New People Tracker 105
7.1 Experimental Setup . 105

7.1.1 Test Data . 105
7.1.2 Configuration of the People Tracker 106

xiii

CONTENTS

7.2 Experimental Results . 107
7.3 Summary and Conclusions . 111

7.3.1 Tracking Performance . 111
7.3.2 Processing Speed . 113
7.3.3 Conclusions . 113

8 Conclusions 115
8.1 Summary of Work . 115
8.2 Discussion . 116
8.3 Future Work . 116

List of Figures 119

List of Tables 121

Bibliography 123

Index 133

xiv

Chapter 1

Introduction

1.1 People Tracking for Visual Surveillance

With recent advances of computer technology automated visual surveillance has be-
come a popular area for research and development. Surveillance cameras are installed
in many public areas to improve safety, and computer-based image processing is a
promising means to handle the vast amount of image data generated by large net-
works of cameras. A number of algorithms to track people in camera images can
be found in the literature, yet so far little research has gone into building realtime
visual surveillance systems that integrate such a people tracker.

The task of an integrated surveillance system is to warn an operator when it
detects events which may require human intervention, for example to avoid possible
accidents or vandalism. These warnings can only be reliable if the system can detect
and understand human behaviour, and for this it must locate and track people reli-
ably. Figure 1.1 illustrates this task. Image 1.1(a) has been taken by a surveillance
camera overlooking a ticket office in a London Underground station. Each visible
person in the image has to be detected and given a unique label as in Figure 1.1(b).
A good people tracker always assigns the same label to the same person and thereby
makes long-term tracking information available for subsequent behaviour analysis.

Figure 1.1 also shows some of the difficulties involved in this people tracking task:

• People can occlude each other in the image. e.g. person 1 (marked in yellow)
occludes the person at the rightmost ticket office counter.

• People can have a low contrast to the background so that they cannot be picked
up easily by the system.

• The image quality and lighting conditions (visibility) in the station can be bad.

1

CHAPTER 1. INTRODUCTION

(a) Image from an underground station (b) Identified and tracked people

Figure 1.1: The task of detecting and tracking people

1.2 Issues Addressed in this Thesis

The research presented in this thesis examines the task of designing and implementing
a people tracking module for a particular integrated visual surveillance system called
ADVISOR. ADVISOR has been built by a European project also called ADVISOR1 and
involving three academic and three industrial partners. It was our group’s task to
build a people tracking subsystem for ADVISOR, and the results are presented in
this thesis. The main focus is therefore on suitable people tracking algorithms
and software engineering aspects connected with this task. Figure 1.2 shows an
overview of the ADVISOR system and how the People Tracking subsystem is connected
to other subsystems. More details on the ADVISOR project and system can be found
in Section 2.3.1 below.

Crowd Analysis

Video Capture

Event Database

Behaviour Analysis

People Tracking

User Interface

Figure 1.2: People Tracking as one of six subsystem of ADVISOR

1The project web site is located at http://www-sop.inria.fr/orion/ADVISOR/

2

http://www-sop.inria.fr/orion/ADVISOR/

1.2. ISSUES ADDRESSED IN THIS THESIS

Video
Image

Head Detector

Motion Detector

Tracker
Active Shape

Tracking
OutputRegion Tracker

Figure 1.3: Structure of the Reading People Tracker

1.2.1 New People Tracking Algorithms

In this thesis a new people tracker, called the Reading People Tracker, has been built
and validated. It is designed to track people in image sequences from surveillance
cameras in underground stations. The Reading People Tracker is based on an existing
people tracker, the Leeds People Tracker by Adam Baumberg (see Baumberg, 1995).
This tracker has been extended and re-designed to improve tracking performance
and meet new requirements.

The Reading People Tracker has the following functional features:

• It has been designed to run either as a subsystem of ADVISOR as shown in
Figure 1.2 or as a standalone people tracker.

• It accepts input from multiple video feeds, processing data from all cameras in
parallel.

• It comprises four detection and tracking modules which co-operate to create
the overall tracking output. The modules aid each other to achieve a high level
of tracking robustness and to overcome the limitations of individual modules.
An overview of these modules and their interactions can be found in Figure 1.3.

• It has the ability to filter images in a way which minimises the influence of
image noise and bad image quality on tracking algorithms.

1.2.2 Software Engineering Aspects

One important part of the Reading People Tracker developed for this thesis is an
extension, in functionality and application, of the Leeds People Tracker. This means

3

CHAPTER 1. INTRODUCTION

that a significant part of the software has been maintained for 10 years. During this
time it has undergone major changes as its intended use and desired functionality
changed with different projects and different people working on it. The negative
effects of this on the maintainability of the code were significant, and in its original
state it was not suitable for use within ADVISOR. Therefore the software was com-
pletely re-engineered, yielding a new design. The new software is highly maintainable
and portable, and new functionality and tracking algorithms for ADVISOR have been
added with ease.

The practical work on re-engineering the people tracker is supported by research
into software maintainability and software processes. The main results of the research
are the following:

• A case study of the Reading People Tracker and its recent history shows how
a high level of maintainability was established through re-engineering and re-
design.

• The processes used to build and maintain the people tracker over its life history
have been examined. The influence of these different processes on the software
has been established.

• Based on the examination of these processes a new classification scheme of
process diversity into latitudinal and longitudinal process diversity has been
devised and their influence on the software was determined.

1.3 Overview of the Thesis

Chapter 2 describes the task of people tracking and puts it into the context of the
integrated surveillance system ADVISOR. An overview of the state-of-the-art in people
tracking is given. The remaining chapters describe the original work of this thesis
and are organised as follows.

Chapter 3 examines the use of colour filtering techniques to improve the ro-
bustness of image processing algorithms in the presence of the image noise that
is typical for camera systems in underground stations.

Chapter 4 introduces the Reading People Tracker which was developed for this
thesis, starting from existing people tracking software. Intended for automated
visual surveillance, the algorithms are designed to operate reliably and in re-
altime. A key design aspect for the new people tracker is the combination of
four co-operating detection and tracking modules to achieve robust tracking of
pedestrians. A demonstration of the new people tracker and its key features is
given.

4

1.4. ACKNOWLEDGEMENTS

Chapter 5 presents a case study of the people tracker which focuses on its software
maintainability. It is shown how the software evolved over its lifetime of
10 years and how its maintainability was significantly improved using software
re-engineering techniques.

Chapter 6 examines the influence of software process diversity on the people
tracker over its lifetime. Inspired by this case study a new classification scheme
for process diversity is presented. It distinguishes two broad types of process
diversity, latitudinal and longitudinal process diversity. The influence of both
types on the quality of software is examined.

Chapter 7 demonstrates the applicability of the new Reading People Tracker and
its algorithms by validating it against test data collected from an underground
station in Brussels.

Chapter 8 summarises and discusses the presented work.

1.4 Acknowledgements

First and foremost I wish to thank the people who gave me the chance to work in
this interesting field of research. These are mostly my supervisor Steve Maybank and
my previous teachers. I would not be here, and I could not have done this without
my family and friends to whom I would like to express my utmost gratitude. Many
thanks also to the many nice people in the Department and to our system admin-
istrators (especially Anthony Worrall) for helping to keep me and our computers
happy.

This research was supported by the European Union, grant ADVISOR (IST-1999-
11287), for which I am very grateful. I wish to thank London Underground Ltd, the
Société des Transports Intercommunaux Bruxellois as well as our project partners
Sergio Velastin (Kingston University), Michel Renard (Vigitec, Brussels) and the staff
at Thales Research Ltd for providing video sequences, and our visitors and students
for their valuable coding work. The co-operation of the other project partners (the
ORION group at INRIA Sophia Antipolis, Bull S.A. Les Clayes-sous-Bois), and
many useful discussions with these and other vision researchers are also gratefully
acknowledged.

Many thanks to Hedvig Sidenbladh and Dariu Gavrila for letting me use their
images in Section 2.2.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

People Tracking

In this chapter general People Tracking concepts are explained and an
overview of the state-of-the-art in the area is presented.

2.1 Concepts and Terminology

2.1.1 Two Basic Definitions

In this thesis, a number of computer vision terms will be used which are either not
commonly well-defined or which are sometimes used in different ways by different
people. The following definitions specify how these terms are used.

2.1. Definition (blob): A blob is a connected set of pixels in an image. The pixels
contained in a blob must be locally distinguishable from pixels which are not part of
the blob.

2.2. Definition (region): A region is the rectangular subimage defined by the
minimal enclosing bounding box of an image area containing one or more blobs.

Figure 2.1 shows an example image with three blobs, b1, b2 and b3 and a region r

which contains b1 and b2. Note that according to definition 2.2 a region could contain
only b1, or all three blobs.

2.1.2 Motion Detection

In order to detect moving people or other objects in the image, a motion detector
normally maintains a model of the background, that is, the appearance of the scene
without people in it. Any pixel in the current video image is then classified as
“moving” if it cannot be explained by this model. This results in a binary Motion

7

CHAPTER 2. PEOPLE TRACKING

Blob b3

Blob b1

Region r

Blob b2

Figure 2.1: Example image with three blobs and a region r containing two of the
blobs, b1 and b2.

Image with each pixel classified as either “moving” or “non-moving”. An example
Motion Image is shown in Figure 2.2.

The motion detector obtains the background model by a process which usually
involves processing the previous n video images, n > 0. One example for a back-
ground model is a pixelwise median filter of the video images over time. n is the
run-length of the median filter.

There are a number of other background modelling methods. A very simple one
is a constant image of the scene taken when there were no people in the image. In
some situations such a simple method is not sufficient, e.g. in outdoor scenes where
the lighting conditions change over time, and where the background itself can contain
movement, as it happens with trees in the wind. More complex methods address these
difficulties using elaborate statistical models for each pixel. Widely used examples are
the multi-modal statistical motion detector from MIT which models each pixel with a
mixture of 3 to 5 Gaussian distributions (Stauffer and Grimson, 1999; Stauffer et al.,
1998) and the non-parametric statistical method from the University of Maryland
(Elgammal et al., 2000). These methods have the disadvantage that they require
a significant amount of computational time, which at present limits their use in
realtime systems. Some methods (e.g. Rowe and Blake, 1996) try to overcome this
by carrying out the computationally expensive background modelling process in an
offline training stage. This means, however, that the system cannot adapt to changes
in background or lighting conditions while it is operating.

The output from a motion detector is usually the motion image with classified
pixels, like the one in Figure 2.2. Sometimes the output also includes a list of moving
blobs extracted from this image, and the regions containing them.

8

2.1. CONCEPTS AND TERMINOLOGY

Figure 2.2: Example Motion Image

2.1.3 Modelling

If one is to distinguish people from other, possibly moving, objects in the image
a certain notion of “person” or “non-person” has to be adopted. Usually, this is
done by defining a model of a human being which directly or indirectly describes the
appearance of a person in the image.

A model may be adjustable to the given data (e.g. image measurements) using
model parameters. The following notion of parameterised model will be used in this
thesis.

2.3. Definition (parameterised model): A parameterised model is a function
m together with a parameter space P such that m maps model parameters p ∈ P to
a representation d of data: d = m(p).

The dimensionality of the parameter space P is called the dimensionality of the
model m.

Model Complexity

One important issue when modelling the visual appearance of people or other objects
is the complexity of the model. The two foremost problems are the facts that humans
are complex articulated bodies, and their appearance changes depending on the
camera view and on any occlusions.

Simple models of humans are usually easy to implement and fast enough to be
used in realtime systems. However, they often lack the ability to adapt to the

9

CHAPTER 2. PEOPLE TRACKING

changing visual appearances of humans under changes of posture and viewing angle.
These models might also have difficulties in the presence of occlusion.

More complex models have a greater ability to adapt. This makes them more
general and more powerful, however, the increase in complexity has some disadvan-
tages, too. Apart from being difficult to realise, their computational demands can
make them unsuitable for realtime applications. Moreover, the high dimensionality
of the “state” of the human model produces the need for some means to handle
difficulties like visual ambiguities. For instance, if the tracker models the position
and posture of a person’s hand, this aspect might be undefined when the hand is
occluded. Complex models are also more likely to fail in situations which are not
expected by the system (for example, missing markers on objects, sitting people as
opposed to walking people, change in lighting situations, moving background etc).

These issues make the process of choosing a suitable model an important issue
in the design of a system. The trade-off between the advantages and disadvantages
discussed above is usually decided by the demands of the respective application—
such as speed and detail of required output.

Classification of Human Models

While the level of complexity in human modelling for tracking varies over a wide
range, the methods can be classified into three main categories of increasing model
complexity:

Category 1: Methods using region- or blob-based tracking, sometimes with ad-
ditional classification schemes based on colour, texture or other local image
properties. Sometimes these methods are called “model-free”, although the
computer program used for tracking can be said to implicitly define a model.

Category 2: Methods using a 2D appearance model of a human being. The di-
mensionality “2D” relates to the fact that the model represents the human’s
appearance in the two-dimensional image as opposed to the 3D space it is
moving in.

Category 3: Methods using an articulated 3D model of a human being, that is, a
model of a person in 3D space.

Another aspect which can be modelled is the way in which the appearance of an
object or its representation (e.g. model parameters) vary over time. An example of
a temporal appearance model of a person has been given by Johnson 1998. The
underlying assumption is that the appearance of a moving object varies in a regular
manner over time and can therefore be modelled and predicted from frame to frame.

10

2.2. RELATED WORK

The more complex the model used for people detection and tracking, the better
the system can handle the particular situations for which it is trained. However, with
the level of complexity in the model the complexity of the computational problem
also increases. The use of a 3D model means that the internal representation of the
person cannot be taken from the image because an image only gives two-dimensional
measurements. One approach to solve this problem involves the use of more than one
camera, e.g. a stereo camera system, which in effect approximates 3D measurements
of the person. Other approaches use iterative methods with projection from a 3D
representation of the person onto the 2D image space. This makes the problem highly
nonlinear and thereby often incompletely solvable and computationally expensive. It
should be possible to speed up part of this process by using dedicated video hardware
(e.g. existing 3D accelerated video graphics cards) for the projection 3D → 2D.
However, the nonlinear and complex optimisation problem remains. Currently no
such accelerated tracker exists.

The Reading People Tracker developed in this work is in Category 2.

2.2 Related Work

2.2.1 Overview and Classification

Realtime automated visual surveillance has been a popular area for scientific and
industrial research since it was pioneered by O’Rourke and Badler (1980) and Hogg
(1983). People tracking naturally plays a key role in any visual surveillance system,
and a number of tracking algorithms for different applications have been presented
(Baumberg, 1995; Brémond and Thonnat, 1997; Cai et al., 1995; Gavrila and Davis,
1996; Haritaoglu et al., 2000; Johnson, 1998; Khan et al., 2001; Lipton et al., 1998;
Sidenbladh et al., 2000; Wren et al., 1995).

Using the classification scheme defined in Section 2.1.3 above, the tracking al-
gorithms can again be classified into the three main categories of increasing model
complexity:

Category 1: Methods using region- or blob-based tracking: Brémond and Thonnat
(1997); Cai et al. (1995); Khan et al. (2001); Lipton et al. (1998); Wren et al.
(1995).

Category 2: Methods using a 2D appearance model of a human being: Baumberg
(1995); Haritaoglu et al. (2000); Johnson (1998).

Category 3: Methods using an articulated 3D model of a human being: Gavrila
and Davis (1996); Sidenbladh et al. (2000).

11

CHAPTER 2. PEOPLE TRACKING

Figure 2.3: People tracked by the Leeds People Tracker

In the following, four examples of people trackers drawn from Categories 2 and 3 will
be examined in more detail.

2.2.2 Baumberg’s Leeds People Tracker

Adam Baumberg developed a people tracking system for his PhD at the University
of Leeds under the supervision of Professor David Hogg (Baumberg, 1995). The
tracking system, called the Leeds People Tracker, uses a 2D model of the shape of
the outline of a person in the image. Therefore, it is in Category 2.

Overview of the Method

The people tracking algorithm is based on an active shape model of the contour of a
walking pedestrian. The model is automatically generated in a training stage using
a set of video images containing walking pedestrians (Baumberg and Hogg, 1995).
This model generation involves the analysis of a large number of pedestrian outlines
from training data using Principal Component Analysis, PCA (Gershenfeld, 1999,
sect. 11.14). Figure 2.3 shows an example of tracked pedestrian outlines.

Detection

People detection is done in multiple stages, from low-level to high-level, as shown in
the diagram in Figure 2.4.

12

2.2. RELATED WORK

Motion Detection
using background image

- Shape Initialisation
initial estimate of contour

-
Model Fitting

using local edge search

Figure 2.4: Detection hierarchy within the Leeds People Tracker

Step 1: Motion Detection

The motion detector used in the Leeds People Tracker is the Reading Motion Detec-
tor which was developed within the VIEWS project at the University of Reading1.
It uses a simple image as a background model. The motion image is created by sub-
tracting this background image pixelwise from a given video image and thresholding
the result. A pixel in the background image is updated from the current video image
if its value has been increasing for a number of consecutive frames. The rationale is
that outdoor lighting changes usually create monotonically increasing or decreasing
intensity values. Therefore, alternating changes are ignored. Areas in the image
where people are currently tracked are masked out from motion detection, but not
from background updating. The intention is that motion detection only detects new
objects while old objects continue to be tracked. Depending on the available CPU
time, the motion image can be filtered, e.g. using a spatial median filter.

Step 2: Shape Initialisation

For each new moving region coming from the motion detector that fits certain cri-
teria, for example minimum and maximum size, an instance of the shape model is
generated. It is represented by the control points for the B-spline which models the
person’s outline. This initial shape estimate (represented by model parameters) is
usually obtained by using the trained mean pedestrian shape, scaled to the appropri-
ate size. If camera calibration is available then it is possible to detect those regions
which are too small to be a person. These are treated specially: Two hypotheses are
then tested, either the detected region is the upper part of the person, or it is the
lower part.

Step 3: Model Fitting

In the third and last stage of the people detection process, the current position and
shape estimates are adjusted according to measurements in the image. The algorithm
uses a local edge detection routine which operates in the pixelwise difference image

1The developers were Anthony Worrall (The University of Reading) and John Hyde (The Mar-
coni Co Ltd). The algorithm was developed between 1990 and 1992 (Worrall, 2002).

13

CHAPTER 2. PEOPLE TRACKING

Figure 2.5: Edge search for shape fitting

between the background image and the current video image2. At a varying number
of points around the current shape estimate measurements are made in order to
find the contour of the person in the image. The search is carried out along lines
which are aligned with the Mahalanobis optimal search direction (Baumberg, 1996).
Figure 2.5 illustrates this process showing the original camera image, in this case
with a dark person against a light background.

During this shape fitting process, the system allows for a certain percentage of
the control points not to be matched in the current image. This ensures tracking
when parts of the person are occluded, and the corresponding control points cannot
be matched to edges in the image.

If the PCA model can be fit with a minimum fitness measure, it is decided the
detected moving object in the image is a person. For each detected person in the
image, the parameters for the PCA model, as well as the position of the person in
the image are stored, and used in the tracking part of the code. Moving objects to
which no shape can be fitted are discarded.

Tracking

To track people in subsequent images, the Leeds People Tracker uses a second order
motion model, using a Kalman filter to model the speed and acceleration of a tracked
person and to predict the position in the current frame. The initial positional esti-
mate, together with the current shape parameters, are used as a starting point for

2In the implementation of the Leeds People Tracker, the difference image is not calculated
explicitly, but this is the equivalent operation.

14

2.2. RELATED WORK

determining the position and outline shape in the current frame. Repeated measure-
ments made along the Mahalanobis optimal search direction (Baumberg, 1996) at
the control points of the B-spline are used to find the new position and the outline
of the person in the current image.

Advantages and Disadvantages of the Approach

The Leeds People Tracker has the following strengths:

Robustness: With an adaptive shape model and occlusion reasoning, a good level
of detection and tracking robustness is achieved, as long people are reasonably
separated from each other in the image.

Speed: Baumberg reports that the speed achieved by the tracker varies between
14.75 and 33 frames per second (fps) on an SGI workstation with a 64-bit super-
pipelined RISC CPU (MIPS R4000 clocked at 100 MHz) when using greyscale
images at full PAL resolution (768 × 576 pixels), acquired from an external
connector (Baumberg, 1995, 2002).

For most surveillance applications, this speed is sufficient for realtime oper-
ation, although it is unclear what the speed would be on more economical
hardware using off-the-shelf PCs.

This people tracker and its implementation have been studied and tested in detail
for this thesis. During this work the following disadvantages were discovered:

Limited Generality: The active shape model used in the Leeds People Tracker
only models people’s shapes if they are walking, and if a sufficiently large part
of the body outline is visible. This means that the tracker cannot be used to
detect or track sitting people, and it can have difficulties when tracking groups
of people.

Initialisation of Tracks: When a new moving region is detected by the motion
detector, generally one initial shape estimate is made3. This can create diffi-
culties when two or more people who enter the scene are close in the image.
One initial shape estimate will made in the centre of their common bounding
box. This method can fail to detect any of them, especially if the application
dictates a low frame rate which allows for significant object motion between
individual frames.

3The only exception is the case discussed above, when the region is too small to contain a
person. Then two initialisations are made, assuming the detected region is the upper or lower part
of a person. At most one of the two initialisations is accepted as valid.

15

CHAPTER 2. PEOPLE TRACKING

Occlusion and Low Contrast: The edge detector used in the shape fitting process
relies on finding high contrast edges along the search direction. This fails when
the person is moving in front of a similar-coloured background, resulting in
non-detection (losing track) if a large percentage of edge points is not detected.

Re-gaining Lost Tracks: When a track is lost (e.g. due to occlusion or a person
sitting down) and re-gained at a later stage, there is no mechanism to try to
recognise the track as a re-acquisition of a previous track—neither from position
nor from appearance.

Low Maintainability: The implementation of the Leeds People Tracker (approx.
50,000 lines of C++ code) has a low level of maintainability. These problems
are discussed in Chapter 5. They include dependence on specific hardware
(an expensive SGI workstation), heavy use of global functions (which counters
scalability) and lack of sufficient documentation.

Large Changes in Shape: The frame rate at which the Leeds People Tracker is
run depends on the application and the number of objects in the image. If
the frame rate is low (e.g. 5 fps as in the ADVISOR system), changes in human
posture between consecutive images can be relatively large. This means that
using the shape from the previous frame as an initial guess for the current shape
can be inefficient or “misleading”, resulting in errors detecting the person’s
current shape.

Evaluation

The Leeds People tracker uses a relatively complex system to initiate and accomplish
tracking of a single person, allowing for partial occlusion. This works well if the image
quality is good (for motion and edge detection) and if people are mainly isolated.
However, tracking often fails if people overlap (e.g. go past each other) in the image,
or if their outline shape is in not among those modelled by the active shape model.
Once a track is lost for even one frame, there is no way of recognising the person if
the track is re-acquired later.

2.2.3 Haritaoglu’s W4 System

The W4 tracking and surveillance system is presented in Haritaoglu et al. (2000).
It analyses what people are doing, where and when they do it and who is doing
it. The main idea is to interpret and track silhouettes of foreground blobs using a
feature-based approach. This makes this tracker belong to Category 2.

16

2.2. RELATED WORK

Figure 2.6: The W4 system: Detected body parts for a number of body postures
(image taken from Haritaoglu et al., 2000).

Overview of the Method

The tracking system has a complex structure, involving many different techniques.
The following stages are used during tracking:

Stage 1: Detection

Good motion detection is crucial for this blob-based tracking system. Its background
model uses a bimodal Gaussian model for each pixel. For each frame, pixels are clas-
sified as foreground or background using 2 thresholds, one for detecting “unusually
high” inter-frame change and one for measuring the difference with the learned back-
ground distribution. The resulting foreground blobs are filtered using “region-based
noise cleaning” and morphological filtering (a binary connected-component analysis).

Stage 2: Shape Analysis

Each of the connected blobs is classified into being either a single person, people in
a group or “other”. This classification is based on the projection histograms of the
blob, along and normal to the principal axis of the blob. The classification uses
similarity measures comparing the histograms to trained histograms for single people
and groups.

For single people, the posture is analysed using additional methods to the his-
tograms mentioned above. At the initiation of the track a recursive convex/concave
vertex algorithm (a Graham Scan, see Graham, 1972), is used, and in following

17

CHAPTER 2. PEOPLE TRACKING

frames a corner detection algorithm. If the person is in an upright position, symme-
try and periodicity analyses are used to detect whether the person carries an object.
If they do not, or if the person is not in an upright position, an algorithm to detect
body parts is applied. This determines the position of the head, hands, feet and
the torso of the person as well as 10 more detailed feature positions if they can be
detected from the person’s silhouette. A detected person is classified as standing,
sitting, crawling/bending or lying down, and this classification is used to access a
knowledge database about the positions of body parts of the person. Examples of
detected body parts can be seen in Figure 2.6. The actual detection is based on the
output from the convex/concave vertex or corner detection algorithm. An appear-
ance model is built for each tracked person in order to recognise the person if their
track is lost and re-acquired at a later stage.

For each group of people, the position of each person’s head within the group is
detected if it is exposed (that is, if the head outline is recognisable in the silhouette).
In a second stage, the foreground region containing the group is segmented into sub-
regions representing individuals using the local geometry of the silhouette. If people
join a group, information about their appearance and texture is retained so as to
recognise them once they leave the group.

Objects other than people are tracked, but not further classified.

Stage 3: Tracking

People are tracked using a second order motion model for their position (median
coordinate) and an additional silhouette correlation matching (using the previous
silhouette) using a 5 × 3 set of positional displacements.

Body parts, if detected, are tracked using temporal texture template matching
and a second order motion model for each body part. Correlation techniques are
applied to predict whether body parts will be occluded in the next frame.

Advantages and Disadvantages with this Approach

The people tracker used in W4 has the following strengths:

High Versatility: The way the system models the appearance of a human being
in the image is very general. Haritaoglu et al. (2000) show experiments with
people who assume a number of very different postures. The tracker copes with
these difficulties, correctly labelling head, feet and hand positions.

Integration of Behaviour Analysis: The system is integrated with behaviour
analysis routines to detect simple interactions between people.

18

2.2. RELATED WORK

Speed: W4 runs at a high frame rate of 20–30 Hz on a dual 400 MHz Intel

Pentium II system, although at a relatively low image resolution of only
320 × 240 pixels.

Possible problems with this approach:

Reliance on Good Motion Detection: Since the tracking is based an accurate
measurement of moving blobs, it needs a very good and robust motion detector.
Detection, and therefore tracking fails when there are large shadows, much
noise or large illumination changes. In the latter case the background model is
recalculated to adapt to the new lighting situation (Haritaoglu et al., 2000).

Width of Field of View: The authors recommend at least a size of 75 × 50 pixels
for body part analysis, multiple person tracking and carried object detection.
At an image resolution of 320 × 240 pixels this limits the camera placement
and viewing angle.

Reliance on High Frame Rate: Since tracking runs at near frame rate (20–30 Hz
according to the authors) the system assumes that image changes between
consecutive frames are small. This helps tracking. There is no information
about tracking performance at lower frame rates.

Evaluation

Despite its complex structure, the system tracks people quite efficiently. The reported
frame rate is 20–30 Hz at 320 × 240 pixels resolution when using grey-level video on a
dual 400 MHz Intel Pentium II system. However, time-critical parts of the tracker,
written in C++ and Assembler code, are heavily optimised, using Intel’s Streaming
SIMD Extensions (SSE) processor extension. If the output from motion detection
is sufficiently good, the tracker can detect people, identify body parts of an isolated
person and even find out whether they are carrying an object. It incorporates a
good handling for groups of people, detecting silhouettes of exposed heads within
each group. A database of measurements for each tracked person, created once they
are standing or walking isolated from others helps to identify people if a track is lost
and recovered at a later time.

This tracker does the maximum possible to track people without using an exact,
parameterised 2D or 3D model of their appearance, and this works well.

2.2.4 Gavrila’s 3-D Model-based People Tracker

Dariu Gavrila developed a 3-D model of a person and applied it to people tracking
for his PhD under the supervision of Professor Larry Davis at the University of

19

CHAPTER 2. PEOPLE TRACKING

Figure 2.7: Gavrila’s 3D tracker: Views of recovered torso and head (images taken
from Gavrila and Davis, 1996, used by permission)

Maryland (Gavrila, 1996; Gavrila and Davis, 1996). The tracker uses a 22 DOF model
of a person composed of tapered superquadrics, for example cylinders and ellipsoids.
The shape is described by the joint angles between the superquadrics. Measurements
are taken from 2 calibrated cameras with orthogonal viewing directions (for example,
one looking at the person from the side, one from the front). In each camera view,
segmentation of a 2D shape is done using the output from an edge detector. In the
experiments people wore coloured, tight suits to ease edge detection (see Figure 2.7).
As it uses a 3D model, Gavrila’s tracker is in Category 3.

Overview of the Method

For initialisation of the track, a bootstrapping algorithm calculates the major axis
(in 3D) of a moving blob observed in two camera views. This major axis is used to
generate an initial estimate of the 3D appearance of the person.

In a second stage, and also during tracking, an edge-detection algorithm is used
to create an edge-map of the image. Known edges (from the modelled background
image) are removed, thus discarding most edges not related to the human shape.
The actual model parameters (joint angles) are determined using an iterated search
with projection to each 2D camera view, in a 3-stage process (find torso and head,
find limbs, find arms and legs). To guide the search process, a Chamfer distance
measure (Barrow et al., 1977) with a pre-processed distance lookup table is used.

Evaluation

Gavrila’s tracker performs well, giving good tracking results. However, its special-
isation makes it unsuitable for use in a surveillance application. The tracker relies
heavily on the use of stereo sensor input (two cameras which even have to have
orthogonal views). This renders the method unusable within a large-area surveil-
lance application. Also, the edge detection used for fitting the person model relies

20

2.2. RELATED WORK

Figure 2.8: Sidenbladh’s 3D people tracker: Superimposed model on tracked person
(image taken from Sidenbladh et al., 2000, used by permission)

on reliably detecting edges around body parts. To ensure good edge detection, the
participants wore special coloured suits during the experiments. Occlusion, apart
from modelled occlusion (e.g., self-occlusion), is not handled by the tracker.

The idea to use a Chamfer distance measure seems interesting, and it reportedly
works better for this application than correlation and average contrast because it can
provide more precise off-peak responses for large search areas. It seems well-suited to
match model edges to an edge image, and using a pre-computed lookup table makes
it fast, too.

The execution speed of the tracker is not given. It seems that the tracker was
run offline on digitised sequences, not on live input.

2.2.5 Sidenbladh’s 3D People Tracker

In her PhD work, Hedvig Sidenbladh developed a method for the modelling and
tracking of human motion using a complex articulated 3D model of a person from a
sequence of video images from a single camera (Sidenbladh, 2001; Sidenbladh et al.,
2000). The work was carried out at the Kungliga Tekniska Högskolan (KTH) in
Stockholm and at Brown University (Providence, USA), under the supervision of
Jan-Olof Eklundh, KTH and Michael Black, Brown University. It is in Category 3.

Overview of the Method

Tracking is divided in two parts: Firstly, a probabilistic model is estimated using
data of typical activities obtained from a large set of 3D human motion data. In
a second step, this probabilistic model is used as a prior distribution for Bayesian
propagation using particle filters.

21

CHAPTER 2. PEOPLE TRACKING

The human body is represented as a set of articulated cylinders with 25 DOF,
see Figure 2.8. For repetitive human motion such as walking, motion sequences
are decomposed into a sequence of temporal models known as “motion cycles”. To
build these temporal models, training data is automatically segmented using the
mean and the principal components of the individual cycles in the reference domain
as a probabilistic model. In order to deal with missing information in the motion
time-series and to enforce a smooth transition between different cycles, an iterative
method for data imputation and functional Principal Component Analysis (PCA) is
used, based on periodic regression splines.

The trained temporal model provides a prior probability distribution over human
movements which is used in a Bayesian framework for tracking. A generative model
of image appearance is constructed from warped image patches wrapped around the
cylindrical elements of the body model. It is used to determine the likelihood of
observing modelled image data. The high dimensionality and non-linearity of the
articulated human body model and the ambiguities in matching the generative model
to the image result in a posterior distribution that cannot be represented in closed
form. Therefore, the posterior is represented using a discrete set of samples and
is propagated over time using particle filtering. The learned temporal prior helps
to constrain the sampled posterior to regions of the parameter space with a high
probability of corresponding to human movement.

Evaluation

Sidenbladh’s tracker has been validated by experiments with 175 frames at an image
resolution of 320×240 using 30 frames per second of video (Sidenbladh et al., 2000).
The experiments show that the algorithm tracks human motion reasonably well, see
Figure 2.8. The trained temporal model for a walking cycle is used to constrain the
search for a parameter set in the high-dimensional search space, yet the number of
function evaluations (parameter estimation in 25-dimensional space plus projection
3D → 2D) for each frame, given as 10,000 to 15,000, is still very high.

The high complexity of the model (for example, using warped images for the
cylinder surfaces) makes the algorithm very computationally expensive. One problem
arises when clothes are not very tight, so the shape of the sleeve on the underarm
might look quite different from the predicted shape. One other, major problem is
the immense computational cost involved to match the model against the sensor
data. The reported execution time for each frame on a Sun Ultra 1 workstation
is 5 minutes, sampling around 10,000 states. The tracker is made with applications
within the movie industry in mind. Even if some optimisations were done it does
not seem suitable for surveillance applications.

22

2.3. BUILDING AN INTEGRATED PEOPLE TRACKING APPLICATION

2.2.6 Conclusions

The more detailed the models for people detection and tracking, the better the
system can handle the particular situations for which it is trained. However, systems
in Category 3 with complex 3D models, e.g. Sidenbladh’s 3D People Tracker, are
currently too slow to use in realtime systems. They might also require a special
camera/scene setup, like Gavrila’s 3-D Model-based People Tracker. This is rarely
available in a CCTV environment. This is why most of the methods used for visual
surveillance fall into Categories 1 or 2.

There are different approaches within Category 2 methods which use a model of
the 2D appearance of a human in the image. Baumberg’s Leeds People Tracker uses
a model of the outline shape of a person in the image. This works well as long as
the person is clearly visible and no more than slightly occluded. Haritaoglu et al.’s
W4 system works mainly in a low-resolution motion image. It requires a very robust
and precise motion detector. Given that, it works very well and correctly tracks and
labels people and their body parts. Both of these 2D methods are fast enough for
use in a realtime system.

2.3 Building an Integrated People Tracking

Application

Building a commercial visual surveillance system which includes people tracking and
behaviour analysis is a complex task. This section discusses the general problems
and introduces the solutions which were incorporated into the ADVISOR system.

2.3.1 The ADVISOR Project and its Objectives

Three academic and three industrial partners have worked together in the European
Union’s research project ADVISOR4 to build an integrated realtime surveillance system
for use in underground stations. The time span for the completion of the project was
three years, January 2000–December 2002. The main requirements of the ADVISOR

system are as follows:

1. Track people in camera images from multiple cameras

2. Estimate crowd density and motion

3. Analyse people and crowd behaviours based on these estimates

4Annotated Digital Video for Intelligent Surveillance and Optimised Retrieval, EU project code
IST-1999-11287, project web site http://www-sop.inria.fr/orion/ADVISOR/.

23

http://www-sop.inria.fr/orion/ADVISOR/

CHAPTER 2. PEOPLE TRACKING

4. Generate alarms based on detected dangerous or criminal behaviours and dis-
play these to a human operator within a short time (limited delay)

5. Store all digital video images and event annotations in a database and allow
for searches within this database through a graphical user interface

6. The system has to be a fully integrated unit with a single interface to an
underground station’s camera system.

Below is a list of the six partners with their areas of expertise and main contributions
to the overall system:

1. The Computational Vision Group at The University of Reading has competence
on the visual surveillance of people and vehicles (Remagnino et al., 1997). This
group has developed a People Tracker for ADVISOR which is presented in this
thesis.

2. Sergio Velastin’s group at King’s College London (now at Kingston University)
has worked extensively on crowd monitoring and analysis (Yin et al., 1994).
With this experience, the group has implemented Crowd Density and Motion
Estimation functionalities.

3. The ORION research group at INRIA Sophia Antipolis has expertise on be-
haviour analysis and event detection in surveillance applications (Chleq et al.,
1998). ORION provided the interpretation part in form of a Behaviour Analysis
module.

4. The Belgian company Vigitec are suppliers and maintainers of visual surveil-
lance systems. They have worked together with the ORION group in the past
and now took over Human-Computer Interface (HCI) design and implementa-
tion, as well as establishing contacts with the end users (station operators).

5. The French computer company Bull has expertise in databases and storage
solutions and hence provided a Video and Annotation Database for ADVISOR.

6. The UK based company Thales Research (formerly Racal Research) managed
the project and was responsible for the important task of system integration
as well as the Video Capturing facilities of the ADVISOR system.

2.3.2 System Overview

The system requirements, i.e. the functionality of the ADVISOR system was agreed
before the project had started. It was decided that the system was to be divided into

24

2.3. BUILDING AN INTEGRATED PEOPLE TRACKING APPLICATION

Video & Annotation

Behaviour

Analysis

Video Capture

Motion Detection

Crowd Density &

Motion Estimation

Interface

Human−Computer

Database

Tracking

People

Figure 2.9: Overview of the six subsystem of the ADVISOR system

six subsystems, one for each major functionality. The individual subsystems were to
be connected via 100BaseT Ethernet (up to 100 Mbit/s) so that they can exchange
data. Figure 2.9 shows an overview of these subsystems and the data flow between
them.

Video Capture and Motion Detection: Built by Thales and INRIA, this sub-
system is connected to a video feed from the camera system in the underground
station. It captures the video and sends it to all other machines using IP Mul-
ticast. During the project it was also decided that motion detection also be
done on this computer so that it can be done directly on live images. INRIA
have implemented their motion detector here for this purpose.

People Tracking: The People Tracking subsystem uses the video and motion data
to locate and track all people in the camera images.

Crowd Density and Motion Estimation: The Crowd Analysis subsystem uses
motion estimation hardware to analyse the movement and density of crowds.
Example applications are to detect overcrowding, blockages and reverse move-
ment in one-way corridors.

Behaviour Analysis: Based on both short-term and long-term analysis of the video
annotations generated by People Tracking and Crowd Analysis, events are
recognised and alarms generated by the Behaviour Analysis module. Events
to be recognised are fighting, blocking the way, overcrowding, jumping over
barriers and vandalism against machines.

Human-Computer Interface (HCI): The HCI displays any event detected by
Behaviour Analysis, together with the relevant video images, to the human
operator.

25

CHAPTER 2. PEOPLE TRACKING

Testbed 1, month 15
Individual Modules,

Single Camera

-

Testbed 2, month 27
Integrated System,

Multiple Cameras

-

Demonstrator, month 36
Refined Integrated System,

Final Functionality

Figure 2.10: Incremental stages and requirements within the ADVISOR project

Video and Annotation Database: The Video and Annotation Database stores
all video and annotations generated by the system. It allows to query the
database based on a number of search criteria through the HCI.

Five of the six subsystems communicate with each other over the Ethernet using
the CORBA suite of specifications for communication. The exception is the HCI.
It is written in Microsoft Visual Basic which does not support CORBA. The
connections with the HCI are done using some Microsoft-specific pipes. All other
subsystems are written in C and C++. The system is specified to handle the input
from 4 cameras simultaneously.

2.3.3 Development Plan

It was decided to implement the overall functionality incrementally. An incremental
approach to system development is widely considered to be a good way to build a
system (Moore and Backwith, 1999). One of the benefits is the possibility for bet-
ter risk management through an early assessment of finished parts of the system.
Specified parts of the system can be delivered and tested against Use Cases which
define how a system’s users interact with the system. These incremental Use Cases
are part of a path to the final system and its Use Cases. For example, the software
manufacturer ARTiSAN Software Tools has incorporated the concept of incremen-
tal development into their Real-Time Perspective development model for realtime
systems (Moore and Backwith, 1999). The authors point out the advantages and
practicability of this approach and provide a set of development techniques for its
application to realtime systems.

Figure 2.10 shows the initial plan for the most important ADVISOR incremental
project deliverables. After 15 months, the six individual modules shown in Figure 2.9
were to be tested “offline” in Testbed 1 . “Offline” means that instead of using live
video and annotation input, all input and output data is read from and written to
a local hard disk. This way, the functionality of the individual modules for people
tracking, crowd analysis and behaviour analysis can to be tested without the need to
integrate the system at this stage. The requirements are for a single camera input.
After 27 months, these individual modules had to be fully integrated as subsystems
of the ADVISOR system. Realtime tracking and analysis was to be demonstrated in
Testbed 2 , using simulated live video input from multiple video recorders. Based on

26

2.3. BUILDING AN INTEGRATED PEOPLE TRACKING APPLICATION

the validation of the demonstrated systems final adjustments and improvements were
to be made and presented in the final Demonstrator in month 36. This Demonstrator
was to be presented in an underground station in Barcelona, running on live video
input from 4 cameras.

2.3.4 Data Formats for Communication

The data packets to be exchanged between the six subsystems shown in Figure 2.9
are of two types: images (video and motion images) and textual data, for example
tracking results and event annotations.

The Need for Image Compression

The video images are transmitted in digital form over Ethernet. If this were to be
done without image compression, this would require a high data rate. For example,
transmitting 3 uncompressed video streams at 5 frames/second (fps) and PAL reso-
lution (768× 576 pixels) in 24-bit colour requires a sustained data transmission rate
of

3 ·
5

s
· 768 · 576 pixel ·

3 Byte

pixel
= 19, 440

KByte

s
= 151.875

Mbit

s
. (2.1)

The standard for Ethernet nowadays is 100BaseT, which supports data rates up to
100 Mbit

s
. Experts suggest that in any realtime system, the required load of a link

should not be above 40–50 % of the maximum link speed (see e.g. EventHelix.com Inc,
2000–2002) which gives an availability of 50 Mbit

s
for video plus annotations. This is

far too little, and therefore in our system the video images are compressed before
sending them across the Ethernet network. This compression can take place in
software or hardware (e.g. in an add-on module for the frame grabber card which
digitises the video).

The image compression algorithm used in our system is JPEG (see e.g. Lane,
1991–1995) which reduces the data rate to an acceptable amount. JPEG uses a
discrete cosine transform (DCT) to retain only “essential information” in 8 × 8
blocks of pixels. “Essential information” is defined by a quality factor which is
related to the visual accuracy of the image, and determines the compression ratio—
from about 2 : 1 up to 100 : 1. JPEG compression is called a “lossy” compression
method because it discards information which cannot be restored at a later stage.
One particular problem is that JPEG compression techniques usually sub-sample
and quantise colour information (the 2 “chrominance channels”, denoted CB and
CR, ibid.). The implications of this JPEG compression on image processing routines
will be discussed in Chapter 3.

27

CHAPTER 2. PEOPLE TRACKING

Results and Annotations

It was decided to use XML for all textual data exchange between the subsystems.
XML is a simple, open standard by the Word Wide Web Consortium, W3C, (see
http://www.w3c.org/), which lets two computers exchange any type of data in an
easy way. One of the reasons for choosing XML was the possibility to standardise
an interface through the use of an XML Schema. An XML Schema is a special XML
document which defines how the XML data for a particular data channel will look.
Once an XML Schema is agreed on, both the deliverer and the receiver of XML
data can easily validate whether a given piece of XML data adheres to the agreed
XML Schema. This avoids the dangers of missing data or misinterpretation of data.
A range of tools exist to automatically validate an XML file against a given XML
Schema.

2.3.5 Building a People Tracking Module for ADVISOR

The Computational Vision Group at the University of Reading has built a People
Tracking subsystem for ADVISOR. This thesis presents the research and development
work carried out on the subsystem. The new Reading People Tracker is based on the
Leeds People Tracker introduced in Section 2.2.2. The Leeds People Tracker is robust
and fast and provides a good basis for further development. The original source code
of the tracker was given to the Computational Vision Group by the University of
Leeds when Reading and Leeds were partners in a joint research project (Remagnino
et al., 1997).

While its basic tracking algorithm is very good, the Leeds People Tracker lacked
a number of features which were needed within ADVISOR. The main new requirements
for the People Tracking subsystem were as follows:

• The ADVISOR system requires the People Tracker to operate in realtime on a
standard off-the-shelf hardware PC to enable economical system integration.

• The People Tracker has to run multiple trackers in parallel, for video input
from multiple cameras (original software: one tracker, one camera input).

• The People Tracker has to be fully integrated into the ADVISOR system, ex-
changing data in the agreed formats (XML, JPEG).

• When running as a subsystem of ADVISOR, there is no monitor and keyboard
attached to the People Tracking PC. Therefore all graphical output and all
required user input has to be disabled.

• The People Tracker has to either accept motion detection input from the ex-
ternal Motion Detection module or use its own Motion Detector.

28

http://www.w3c.org/

2.3. BUILDING AN INTEGRATED PEOPLE TRACKING APPLICATION

• Good software documentation.

The following issues made it hard to meet the above requirements.

• The heavy use of global variables and functions in the Leeds People Tracker
meant that multiple cameras could not be used.

• Except a few pages of operating manual, no other documentation was available.

• Although the code was written in C++, it made a limited use of object oriented
features like encapsulation and inheritance.

• There were only few comments in the source code, making the code difficult to
read.

• The names of some of the classes and methods were misleading.

• The code was written for an SGI platform running under IRIX, making use of
hardware- and software-specific functions.

It was therefore decided to re-design the People Tracker and port it to a PC running
GNU/Linux before adding the necessary new functionality for ADVISOR. PCs provide
a good platform for economical system development and deployment, and using
GNU/Linux as an operating system eases the transition from the SGI/IRIX system.

29

CHAPTER 2. PEOPLE TRACKING

30

Chapter 3

Colour Image Filtering
for Robust Image Processing

The People Tracker presented in this work uses a motion detector, and
local edge search in a shape fitting process. This chapter presents exper-
iments which show how image quality influences shape fitting, and how
image filtering techniques can help to overcome these problems.

3.1 Introduction

The images which are used by the People Tracker travel a long way from the point
where they are first taken by a camera. The transmission and digitisation of the
images introduces noise which can influence image processing routines. In order to
apply countermeasures, one has to determine the exact nature of the noise, and then
assess whether and how it can be dealt with. This chapter examines the way noise is
introduced into the images in our surveillance system. Experiments show how image
filtering can minimise the influence of this noise on image processing algorithms.
The results presented here have been published in Siebel and Maybank (2001a) and
Siebel and Maybank (2001b).

3.1.1 The Representation of Colour in Computers

The colour of a picture element (pixel) can be represented within a computer in an
number of ways. Generally, a particular colour is considered to be an element of
a three-dimensional colour space, with each component taking values in the range
0..255. The components are represented by unsigned 8-bit integers. Travis (1991,
chap. 3) defines 8 colour spaces. Among these the following are commonly used:

31

CHAPTER 3. COLOUR IMAGE FILTERING

RGB: The RGB colour space is used by most colour computer displays and most
colour cameras. A colour is represented by red, green and blue components,
corresponding to the relative proportions of the display primaries required to
produce it. Although easy to implement it is nonlinear with visual perception
(Ford and Roberts, 1998).

HSV: The representation of colour in the HSV colour space (similar concepts: HSI ,
HSL) space is a polar coordinate model which is very intuitive for humans. It
consists of splitting the colour into almost “visually orthogonal” hue, saturation
and value (intensity , lightness) components.

If the red, green and blue directions in RGB space are made Euclidian standard
basis vectors then the major diagonal of the unit cube, from black at (0, 0, 0) to
white at (1, 1, 1) forms an achromatic axis or greyscale. If the cube is viewed
along the diagonal from the black corner to the white corner then a hexagon
is seen with hues radiating from the achromatic axis through the centre of
the hexagon. The HSV colour space uses this concept to define a hue angle,
saturation (distance from the achromatic axis) and a third parameter, value,
which broadly corresponds to lightness (Lilley et al., 1993).

YCBCR: The YCBCR colour space is one of a family of luminance-chrominance-
based colour spaces (e.g. YIQ, YUV , YCC). These spaces split a colour into
two main components: luminance, commonly denoted by the symbol Y , is
the perceived brightness, whereas the chrominance is the “colouredness”. The
chrominance itself is decomposed into two sub-components which differ be-
tween the spaces. These spaces are widely used in compression applications,
both digital (e.g. JPEG, MPEG) and analogue (e.g. video transmission us-
ing composite signals). These standards were mainly designed for television
transmission with the intention to provide television signals compatible with
black and white television sets. The CIE1 has published a number of recom-
mendations which define these standards, depending on the hardware (camera,
monitor) used in an application.

The main colour space used within the Reading People Tracker is RGB because this
is the common representation of colour images within a computer. However, there
are also algorithms which make use of other colour spaces, and these have been used
for the experiments described in this chapter.

1Commission Internationale de L’Éclairage

32

3.1. INTRODUCTION

3.1.2 Image Generation and Transmission

Figure 3.1 shows the stages the individual video images go through in the ADVISOR

system, from the moment they are taken by a camera to the moment they arrive as
an uncompressed digital image in the memory accessed by the People Tracker.

Video cameras: The video cameras in the station generate analogue video signals
using a CCD sensor. In digital cameras this signal is digitised before any further
processing is done. At present, most cameras found in underground stations
are analogue, and this is the case examined here.

Analogue cabling: The analogue video signal is transmitted down long analogue
cabling. Nowadays the composite video signals are usually transferred using
optical fibre cables, avoiding electrical interference at this point. However,
some signal degradation remains because a number of signals (often 32 or 64)
are multiplexed using frequency modulation for transmission through a single
fibre channel.

Video matrix switcher: The signals from multiple cameras in the underground
station are usually fed into a video matrix switcher. This switcher allows
images from selected cameras to be displayed to monitors or sent to recording or
processing equipment—in our case the ADVISOR system. Modern video matrix
switchers often allow an image overlay with text, e.g. station identifiers, and
a time display. Image overlays can also be done by a separate module, either
before or after the switcher.

The switching and the addition of text overlays to analogue video signals in-
variably introduce some noise to the signal (and hence the image), although
the noise might be negligible.

Video recording and playback: Video data from the switcher is often recorded
using a video cassette recorder (VCR). Usually the VCR uses a vhs or a s-vhs

format to store the video signal in an analogue form. Both formats subsample
colour information and reduce the resolution of the original signal, significantly
degrading quality of the video images. s-vhs keeps more of the original infor-
mation and hence gives slightly better results.

Digitising the image: Video images are digitised using a frame grabber, usually
a simple add-on card for a computer. It delivers an uncompressed digital
representation of the image into the computer’s memory, or to another add-on
card or module.

JPEG compression: Image compression can take place in software or hardware
(e.g. in an add-on module for the frame grabber itself). The compressed images
are transmitted to image processing computers via 100BaseT Ethernet.

33

CHAPTER 3. COLOUR IMAGE FILTERING

video cameras

analogue video recording

(usually vhs or s−vhs)

(vhs or s−vhs)

video matrix switcher

JPEG compression

JPEG decompression

(in hardware or software)

People Tracking module

(in hardware or software)

analogue cabling

100BaseT Ethernet

control room

option 2: recorded videooption 1: live video feed

analogue video playback

underground station
electrical installation

computer

computer
video capture

people tracking

video recording and

playback facilities

with text / time overlay

frame grabber / digitiser

scene

(fibre or coaxial)

Figure 3.1: The path of an image from the video camera to the tracker

34

3.2. IMAGE NOISE AND IMAGE FILTERING

The image compression algorithm used in our system is JPEG (see e.g. Lane,
1991–1995) which reduces the data rate by a factor between 2 : 1 and 100 : 1,
but also introduces significant image degradation. One particular problem is
that JPEG compression techniques usually sub-sample and quantise colour
information (the 2 “chrominance channels”, denoted CB and CR, ibid.). The
effect of this will be more closely examined below.

Transmission over Ethernet: The digitised and compressed video images are
sent from the video capture computer to the people tracking computer us-
ing 100BaseT Ethernet. The reduction of data size through image compression
makes this possible. Thanks to the digital nature of the transmission, no fur-
ther image noise is introduced at this stage.

JPEG decompression: In order to process the images, they are decompressed
from JPEG to a raw format and made available to the People Tracking mod-
ule. As with compression, image decompression can take place in software or
hardware. No more noise is introduced at this stage.

3.1.3 Determining the Effects of Image Noise

It is easy to assess whether noise is introduced at each of the stages presented above.
It is more difficult to assess the influence of noise on image processing algorithms. For
example, JPEG image compression algorithms are designed to discard some colour
information from the image because this is much less important to the human eye
than brightness information. Depending on the exact implementation of an image
processing algorithm, it might or might not rely on the colour information discarded
by JPEG compression. Therefore, an image can look acceptable to a human eye while
image processing algorithms are seriously affected because they rely on missing or
badly interpolated data.

3.2 Image Noise and Image Filtering

3.2.1 Use of Images Within the People Tracker

Figure 3.2 shows how a video image is used by the People Tracker. The Motion
Detector uses the video image to generate a number of other images. Some of these
are strongly affected by image noise, others are less affected.

• The Background Image is created by filtering the image over time using an
approximation to a median filter. “Outliers” in pixel values are removed. After
the filtering the noise introduced by the cameras and cabling does not influence
the overall Background Image much.

35

CHAPTER 3. COLOUR IMAGE FILTERING

local search
for edges

extracting
moving regions

me[di]an filtering

Background Image

Difference Image

Motion Image

pixelwise differencing

Motion Detector

shape fitting...

tracking...

Active Shape Tracker

Region Tracker
thresholding

Video Image

Figure 3.2: The way a video image is used by the People Tracker

• The Difference Image is a monochromatic (greyscale) image. Its creation in-
volves the pixelwise absolute difference between the Background Image and the
Video Image (see Section 3.2.2 for differencing techniques). For this reason, any
noise in the Video Image is also found in the Difference Image.

• The Motion Image is created by thresholding the Difference Image. Therefore
the influence of the noise on the Motion Image is dependent on the noise
amplitude.

The Difference Image is used by the Active Shape Tracker during the shape fitting
process (see Section 2.2.2 for details). In particular, pairs of pixels on a search line
around the contour are examined to see if there is an edge between them. Figure 3.3
illustrates this local search for edges: The value of a pixel a in the Difference Image
(the right image) is compared to an “inner threshold”. If the value is larger than the
threshold the pixel is considered to be inside the person. Another pixel b’s value is
compared to an “outer threshold”. If it is smaller, b is considered to be outside. This
is done in an optimisation loop for a restricted number of point pairs (a, b). There
is insufficient CPU time to evaluate all pixels along the search line.

The Difference Image is the most relevant image to the People Tracker. Therefore
it is important to find methods to reduce the influence of image noise in this image.
The way in which the Difference Image is used also clearly suggests a measure for
the negative impacts of image noise: A “good” Difference Image is one in which the
people are clear and salient (i.e. light) against a dark background, such that any

36

3.2. IMAGE NOISE AND IMAGE FILTERING

shape fitting (shown in video image)

detail: edge search in difference image

search line

pixel b

pixel a
final edge point

Figure 3.3: Local search for edges along a search line during shape fitting

search for an edge around the contour of a person gives a correct response.

3.2.2 Filtering Techniques: Creating the Difference Image

3.1. Definition (local image filter): A local image filter F is a method that
performs a transformation on an image I1 in order to produce another image I2 of
the same dimensions, I2 = F (I1) such that the value of a pixel at position (x, y) in
the new image I2 only depends on the pixel values in an ε-neighbourhood Nε(x, y)
around pixel position (x, y) in the original image I1.

In applications the ε-neighbourhood Nε(x, y) is usually small compared to the whole
image, e.g. a 3 × 3 pixel window which has (x, y) as its centre. Typical examples
of local image filters are smoothing (blurring), e.g. using a Gaussian kernel, and
changing the brightness of an image, e.g. γ-correction. See Forsyth and Ponce (2003)
for these and other examples.

The operation which creates the Difference Image starts with two RGB colour
images, the Video Image and the Background Image. Each pixel value p = (R, G, B)
in these two colour images, with red, green and blue components is an element of
IR3. The Difference Image is monochromatic, so its pixel values lie in IR. A local
image filter used at this point would therefore have to map an RGB colour image

37

CHAPTER 3. COLOUR IMAGE FILTERING

pixelwise absolute differencing

Greyscale
Video Image

Greyscale
Background Image

Colour
Background Image

Colour
Video Image

Colour
Background Image

Colour
Video Image

Colour
Difference Image

Difference Image
(Greyscale)

Motion Image
(Binary)

Motion Image
(Binary)

Difference Image
(Greyscale)

thresholding thresholding

pixelwise absolute differencing

image filteringimage filtering

image filtering

method a: filtering the difference image method b: differencing the filtered images

Figure 3.4: Alternative methods to produce the Difference Image

onto a greyscale image. We will only consider local image filters where each pixel
value I2(x, y) in the new (filtered) image only depends on the value of pixel I1(x, y)
at the same position in the original image. The local image filter can therefore be
defined by a mapping function f : IR3 → IR which maps pixel values in the original
image to pixel values in the new image:

f : IR3 → IR, I1(x, y) 7→ I2(x, y). (3.1)

The mapping function f uniquely defines a corresponding local image filter F .

The Difference Image can generally be produced in two ways, as illustrated in
Figure 3.4. Method a is to apply the local image filter F to the Colour Difference
Image, obtained by differencing the Colour Video Image and the Colour Background
Image, using absolute differencing in each component of (R, G, B). Given the colour
pixel value (R1, G1, B1) in image I1 and the value (R2, G2, B2) in image I2 the absolute
difference is defined componentwise:

absdiff((R1, G1, B1), (R2, G2, B2)) := (|R1 − R2|, |G1 − G2|, |B1 − B2|). (3.2)

In Method b both the Colour Video Image and the Colour Background Image are
filtered, giving two greyscale images. These are then differenced to generate the
Difference Image. For the generation of the Difference Image, this can be equivalent
to using a camera which supplies greyscale images. This depends on the image filter

38

3.3. EXPERIMENTS AND RESULTS

Figure 3.5: Video image used for colour filtering experiments

which is used. (Note, however, that other parts of the People Tracker still use the
available colour information.)

The Leeds People Tracker uses Method a. Our People Tracker has been equipped
with the option to use either method. Section 3.3 presents results from experiments
with both methods and a number of local image filters, with the aim of finding an
optimal combination of a local image filter and one of the two methods to minimise
the effects of image noise.

3.3 Experiments and Results

3.3.1 The Test Data

The investigations involved a large number of colour filtering techniques and images.
The image in Figure 3.5 was chosen as one of the test images. It is a typical image
and has most of the difficulties which are important for these experiments. Below is
some information on the image.

• Image resolution: PAL (768 × 576 pixels), RGB colour, taken by an interlaced
camera at London Underground’s Liverpool Street station.

• The video signal was transmitted to the control room in analogue form (com-
posite video signal).

39

CHAPTER 3. COLOUR IMAGE FILTERING

Figure 3.6: Chrominance channels CB and CR of the original Video Image (calculated
according to CIE recommendation 601)

• It was recorded on analogue video tape (s-vhs) for algorithm development in
the lab.

• After digitisation in the lab, the individual video images were JPEG com-
pressed, compression ratio approx. 45 : 1.

• Some of the people in the image have a low contrast with the background.
In these circumstances it is particularly important to have a good Difference
Image to ensure that the areas occupied by people show up.

The video image shows compression artefacts from recording and JPEG compression.
For example, the writing in the top left hand corner was originally white, now it is
unevenly coloured, as can be seen in Figure 3.5. Also, the uniformly dark yellow floor
area in the front shows green and red chequered “patches”, a typical effect caused
by spatially resampling colour information into compression blocks.

Figure 3.6 makes the effects of compression clearer by showing the chrominance
channels of the original Video Image. Both components show a low resolution, both
spatially (large blocks of even shades) and precisionwise (few shades of grey). This is
mainly due to analogue video signal compression (using composite video signals) and
to digital image compression (JPEG), used for transmission of video images through
the local computer network.

3.3.2 Local Image Filters Examined Here

Let us recall from Section 3.2.1 that in order to make edge detection more robust
the image needs to be filtered such that people become more salient in the Difference
Image. Local image filters F based on both linear and non-linear mappings f have
been tested. The following mappings will be discussed:

40

3.3. EXPERIMENTS AND RESULTS

Scaled Euclidian Norm

f : (R, G, B) 7→

√

1

3
· ||(R, G, B)||2 =

√

1

3
(R2 + G2 + B2), (3.3)

This is a straightforward and well-known method to map an element of IR3 to IR. The

scaling factor
√

1
3

makes sure that the range of values in the output is the same as in

the input (i.e. 0..255). This mapping is the one used in the Leeds People Tracker2.
However, there is no reason why this mapping should be particularly suitable for
colour images; it would assume isotropic and uniformly distributed noise in the RGB
colour channels which has no natural meaning in the “real world”.

Weighted Sum of (R,G,B)

The linear mapping

f : (R, G, B) 7→ w1R + w2G + w3B with
∑

wi = 1 (3.4)

is the general form of a number of useful mappings. Setting w1 = w2 = w3 = 1
3

yields the arithmetic mean of {R, G, B}. A more natural mapping would be onto
the luminance Y of the pixel, that is, the perceived brightness. This can be done
using the Y projection from CIE recommendation 709, denoted here as Y709 (taken
from Ford and Roberts, 1998):

f : (R, G, B) 7→ Y709(R, G, B) = .2125 R + .7154 G + .0721 B. (3.5)

The CIE has published other recommendations with different weights, depending on
the hardware (camera, monitor) used in an application. However, the weights only
differ slightly. This mapping completely disregards the colour information, which is
an advantage because colour values are spatially sub-sampled and quantised by the
JPEG image compression process.

HSV-based Local Image Filters

Experiments were carried out with the mapping function f projecting (R, G, B) to
the hue, saturation and value components, using an algorithm from Travis (1991,
chap. 3). When differencing the hue components h1 and h2 of two pixels, the mini-
mum angle between the two values is used:

diff(h1, h2) := 2 · min(|h1 − h2|, 255 − |h1 − h2|). (3.6)

2In the implementation of the Leeds People Tracker these values were not calculated explicitly
but this is the equivalent operation.

41

CHAPTER 3. COLOUR IMAGE FILTERING

(a) Video Image (b) Colour Difference

Figure 3.7: Video Image and Colour Difference Image used for Experiments

As with the other mappings, the scaling factor makes sure that the result takes
almost all values in 0..255.

One important aspect to keep in mind when using and differencing HSV images
is the well-definedness of its components. The hue and saturation components are
not well-defined where value is close to 0 or 255 (i.e. for very dark and very bright
pixels).

Figure 7 shows the Video Image and the Colour Difference Image used for the
experiments presented here. In the following all greylevel images will be shown
together with the histogram of their values.

3.3.3 Method a: Filtering the Difference Image

The images in Figure 3.8 show the results for the mapping functions discussed earlier.
The people in the back of the image have been static for a while and are therefore
incorporated into the background. The focus is on the people moving in the fore-
ground. They are are the woman in the white jacket (front right) and the man in
the dark jacket leaving the image towards the right.

The results obtained by the Euclidian norm, arithmetic mean, luminance and
HSV value mappings do not differ significantly. The images generated by the nonlin-
ear HSV hue and saturation mappings, Figures 3.8(d) and 3.8(e), differ considerably
from the other images. This is mainly because the hue and saturation components of
an HSV image are not well-defined for where value is very large or very small—e.g.
in dark regions, of which there are many in the Difference Image. Therefore these
images are not useful for local edge detection. One further reason why these last two
methods fail is the degradation of colour information through image recording and
compression.

42

3.3. EXPERIMENTS AND RESULTS

(a) Euclidian norm (b) Arithmetic mean

(c) Luminance Y709 (d) HSV: hue

(e) HSV: saturation (f) HSV: value

Figure 3.8: Filtering the Colour Difference Image

43

CHAPTER 3. COLOUR IMAGE FILTERING

In the Colour Difference Image, shown in Figure 3.7(b), the woman’s white jacket
appears as dark blue after subtracting out the light yellow background. This creates
difficulties for all local image filters. The HSV value mapping in Figure 3.8(f) and
the Euclidian norm mapping in Figure 3.8(a) perform slightly better than the others.
However, the resulting brightness of the jacket in the Difference Image is in no case
sufficient for robust local edge detection.

As for the person to the right, the main parts of his body, especially the trousers,
have many different shades of grey. Searching for edges around his shape outline is
very sensitive to the edge detection thresholds introduced in Section 3.2.1, and this
can cause difficulties.

3.3.4 Method b: Differencing the Filtered Images

In a second stage of experiments both the Colour Background Image and the Colour
Video Image were filtered using the same mapping function f , and the results were
subtracted. The resulting Difference Images can be found in Figure 3.9.

With this Method b, the HSV hue and saturation components, shown in Fig-
ures 3.9(d) and 3.9(e), are for the most part of the image well-defined and show
more reasonable results than before. This is mainly because they do not operate on
the fairly dark Difference Image. However, they still cannot be used in the People
Tracker.

Of the remaining mappings, luminance and HSV value, Figures 3.9(c) and 3.9(f),
give clearly better results than the Euclidian norm in Figure 3.9(b). Compared to
the results with Method a there is not much change when it comes to the woman’s
coat. Other parts of both people in the front, however, appear much more salient,
standing out clearly against the background. For edge detection this gives a signifi-
cant advantage because it increases robustness by being less dependent on detection
parameters such as threshold values. Looking at the right hand person’s coat and
trousers, these are now more uniformly shaded which means that edge detection is
also less prone to being distracted by edges located inside the body.

The Best Result: Filtering with the luminance Y709 mapping using Method b
gives the best Difference Image for People Tracking—see Figure 3.9(c). Comparing
to the results with Method a, this local image filter also makes background edges
stand out more clearly than in Method a. For global edge detection algorithms this
could create difficulties. Our edge detector, however, only operates locally in the
image so this does not pose a problem.

44

3.3. EXPERIMENTS AND RESULTS

(a) Video Image (b) Euclidian norm

(c) Luminance Y709 (d) HSV: hue

(e) HSV: saturation (f) HSV: value

Figure 3.9: Differencing filtered Video and Background Images

45

CHAPTER 3. COLOUR IMAGE FILTERING

3.4 Discussion

This chapter has presented an approach to improve local edge detection for people
tracking systems in order to increase robustness in the presence of image noise. The
main problem in an integrated system like ours is the noise found in the chrominance
channels of the image which bear all the colour information. This was seen in the
images of the chrominance channels in Figure 3.6 on page 40.

The experiments show that the quality of any colour information in the video
image is degraded to such an extent that it is no longer useful for local edge detection.
Therefore, image differencing methods using only luminance (brightness) information
give better results in local edge detection than methods involving colour information.
Methods which filter out all colour information from the original images before any
processing is done, for example Method b with a luminance Y709 mapping, provide
the highest robustness to noise for using the People Tracker.

It should be noted that even in a system like ours, colour information can still be
of good use for the identification of people once they are tracked.

46

Chapter 4

The Reading People Tracker

In order for an automated visual surveillance system to operate effectively
it must locate and track people reliably and in realtime. The Reading
People Tracker achieves this by combining four detection and tracking
modules, each of medium to low complexity. This chapter presents the
new people tracking algorithms and the detailed structure of the tracker.

4.1 Designing a People Tracker for ADVISOR

This chapter describes the Reading People Tracker which works either standalone or
as a subsystem of the ADVISOR system described in Section 2.3.1. The focus here
is on tracking, specifically on how a number of detection and tracking algorithms can
be combined to achieve robust tracking of people in an indoor environment.

Automated visual surveillance systems have to operate in realtime and with a
minimum of hardware requirements, if the system is to be economical and scalable.
As discussed in Section 2.1.3, this limits the complexity of models that can be used for
detection and tracking. Any attempt at designing a People Tracker for a surveillance
system like ADVISOR therefore has to consider the realtime aspect during algorithm
design.

Figure 4.1 shows the overall system layout, with individual subsystems for track-
ing, detection and analysis of events, together with storage and human-computer
interface subsystems to meet the needs of the surveillance system operators. Each of
these subsystems is designed to run in realtime on off-the-shelf PC hardware, with
the ability to process video input from a number of cameras simultaneously. The
connections between the subsystems are realised by Ethernet. Images are transferred
across the network using JPEG image compression. Other data, such as the output
of the People Tracker and the results of the Behaviour Analysis, are represented in
XML formats defined by a number of XML Schemas (XML Schema, 2001).

47

CHAPTER 4. THE READING PEOPLE TRACKER

Crowd Analysis

Video Capture

Event Database

Behaviour Analysis

People Tracking

User Interface

Figure 4.1: People Tracking as one of six subsystem of ADVISOR

The Reading People Tracker has been designed to run either as a subsystem of
ADVISOR or in standalone mode. For its design four detection and tracking modules
of medium to low complexity have been chosen, improved and combined in a single
tracking system.

Originally based on the Leeds People Tracker introduced in Section 2.2.2, the
most important one of the four modules is a slightly modified version of Adam
Baumberg’s Active Shape Tracker. The people tracker has been modified over time
to increase tracking robustness, and adapted for use in ADVISOR. The tracker was
ported from an SGI platform to a PC running GNU/Linux to facilitate economical
system integration.

The tracking algorithms introduced in this chapter have been published in Siebel
and Maybank (2002).

4.2 The Tracking Algorithm: Overview and

Structure

The People Tracking subsystem is itself comprised of four modules which co-operate
to create the overall tracking output, aiding each other to increase tracking robustness
and to overcome the limitations of individual modules. As the general concepts and
techniques of people tracking have already been described in Section 2.1, the following
passages will focus on those aspects of the tracking algorithms which are special to
this system.

4.2.1 Overview and General Features

Figure 4.2 shows an overview of how the four modules comprise the People Tracker.
Before giving more detail on the individual modules, here is a brief overview of their

48

4.2. THE TRACKING ALGORITHM: OVERVIEW AND STRUCTURE

Video
Image

Head Detector

Motion Detector

Tracker
Active Shape

Tracking
OutputRegion Tracker

Figure 4.2: Overview of the four modules of the Reading People Tracker

functionality:

Motion Detector: This module models the background as an image with no people
in it. The Background Image is subtracted pixelwise from the current video
image and thresholded to yield the binary Motion Image. Regions with de-
tected moving blobs are then extracted and written out as the output from
this module.

Region Tracker: The Regions output by the Motion Detector are tracked over
time by the Region Tracker. This includes region splitting and merging using
predictions from the previous frame.

Head Detector: The Head Detector examines the areas of the binary Motion Im-
age which correspond to moving regions tracked by the Region Tracker. The
topmost points of the blobs in these region images that match certain criteria
for size are output as possible positions of heads in these Regions.

Active Shape Tracker: This module uses an active shape model of 2D pedestrian
outlines in the image to detect and track people. The initialisation of contour
shapes is done from the output by the Region Tracker and the Head Detector.

The main goal of using more than one tracking module is to make up for deficiencies
in the individual modules, thus achieving a better overall tracking performance than
a single module could provide. Of course, when combining the information from
different modules it is important to be aware of the main sources of error for those
modules. If two modules are subject to the same type of error then there is little
benefit in combining the outputs. The new People Tracker has been designed keeping
this aspect in mind, and using the redundancy introduced by the multiplicity of
modules in an optimal manner. These are the main features of the system:

49

CHAPTER 4. THE READING PEOPLE TRACKER

• interaction between modules to avoid non- or mis-detection

• independent prediction in the two tracking modules, for greater robustness

• multiple hypotheses during tracking to recover from lost or mixed-up tracks

• all modules have camera calibration data available for their use

• through the use of software engineering principles for the software design, the
system is scalable and extensible (new modules...) as well as highly maintain-
able and portable.

Each of the modules has access to the output from the modules run previously, and to
the long-term tracking history which includes past and present tracks, together with
the full tracking status (visibility, type of object, whether it is static etc). For each
tracked object, all measurements, tracking hypotheses and predictions generated by
different modules are stored in one place.

The following sections describes the four modules and their interactions in more
detail. While reading through these sections, it might help to refer to Figure 4.4 on
page 53 which details the complete tracking algorithm, and shows how the modules
exchange data.

4.2.2 Module 1: The Motion Detector

Section 2.1.2 has introduced the motion detectors, and their application to detecting
moving regions in the image. The Motion Detector used in this system is the Reading
Motion Detector (see Section 2.2.2) which is also used in the Leeds People Tracker.
The Motion Detector subtracts the background image from the current video image.
Thresholding the resulting Difference Image yields the binary Motion Image from
which moving regions are extracted.

4.2.3 Module 2: The Region Tracker

Figure 4.4 shows how the Region Tracker is connected to the Motion Detector. The
Region Tracker tracks all moving regions detected by the Motion Detector. It uses
a frame-to-frame region matching algorithm in which regions are matched according
to their size and position. The new position of a tracked region in a given image
is predicted using a first-order motion model for their movement in the previous
image. The most important difference of this Region Tracker to existing methods
(e.g. Brémond and Thonnat, 1997) is the temporal integration of static objects into
the background. Further differences exist in the approach used for region split-
ting/merging, the way in which multiple hypotheses are generated and used, and in
the cost function used to compare two regions.

50

4.2. THE TRACKING ALGORITHM: OVERVIEW AND STRUCTURE

time t1 time t2 time t3

Figure 4.3: Problem during motion detection, solved by Region Splitting

The cost function for comparing two regions, e.g. one prediction and one mea-
surement, in the matching process is as follows. Given a predicted region r1 from
the previous frame and a new measurement r2, their matching score is calculated as
a weighted sum of their difference in size and position of their centres in the image.
Let ∆x and ∆y denote the absolute positional difference in x and y direction, ∆w and
∆h the absolute differences in width and height. Then the matching score δ(r1, r2)
for regions r1 and r2 is given as

δ(r1, r2) = α1∆x + α2∆y + α3∆w + α4∆h, (4.1)

Good results have been achieved with α1 = α2 = α4 = 1, α3 = 1.5. The height
of tracked objects is given an increased weight of 1.5 because it is generally more
invariant under change of orientation.

Two special features of the Region Tracker will be explained in more detail:
Region Splitting/Merging and the temporal integration of static regions into the
background.

Region Splitting and Merging

In order to match the moving regions measured in the image by the Motion Detector
to those predicted by the Region Tracker, the predictions for the current frame are
combined to resemble the measured regions. If a combination of predicted regions
matches the measurements, these predictions are adjusted and their track accepted.

This procedure becomes particularly important in cases like the one demonstrated
in Figure 4.3 when one measured region, at time t2, corresponds to two regions which
were predicted at time t1, t1 < t2: Two people, distinct at time t1, come close to each
other a little later, at time t2, and overlap in the Motion Image. As a consequence,

51

CHAPTER 4. THE READING PEOPLE TRACKER

the Motion Detector extracts the two people as one moving region (the grey box in
the middle). When at time t3 the people separate again, the Motion Detector once
more extracts two moving regions. These tracking and identification problems are
overcome by Region Splitting by always trying to split regions into multiple tracked
objects. Through this separation the two people can be tracked individually.

Due to the limited capabilities of our Motion Detector, detected moving regions
are sometimes split in the image even if they are part of the same person. This is
usually either due to partial occlusion or to low contrast of moving pixels with the
background. Small adjacent regions detected by the Motion Detector are therefore
merged before matching them to predicted regions.

Temporal Integration of Static Objects into the Background

One problem when tracking regions in the image is the overlap of two (or more)
blobs arising from different people, as in the example in Figure 4.3. Assume that
one of the corresponding objects is still moving and the other one has become static
only a few frames previously. Then the Background Image usually does not include
either of the two objects because it is not (and should not be) updated that fast.
As a result, the Motion Detector still reports that both objects are moving. If these
objects come close and overlap in the image, they are detected as one moving region
which makes it difficult to maintain the correct identification of both objects. This
can also generate difficulties for the Active Shape Tracker, which uses a pixelwise
difference of Video Image and Background Image during shape fitting, because it has
an incorrect notion of the background.

Static objects can be integrated into the background, thereby enabling correct
detection and identification of objects moving nearby. The Motion Detector updates
the background image periodically with the result that all static objects are eventu-
ally incorporated into the background. However, if static objects are incorporated
too quickly into the background then it might not be possible to identify and track
them when they start moving again. Moreover, there is the danger of detecting a
“negative” of the object which remains stationary for a while and and then later
moves on, because the background model now includes the object.

A simple procedure has been devised and implemented to incorporate static
tracked regions temporarily into the background, thereby

• resulting in much better detection of movement in the vicinity of objects which
have become static only a few frames previously, e.g. movement of people past
stationary people,

• making it possible to restore the “empty” original background at the exact
time a static object starts moving again,

52

4.2. THE TRACKING ALGORITHM: OVERVIEW AND STRUCTURE

Detected
Head Positions

head detection

Head Detector

Tracking
Output

Regions
Predicted

Regions
Static

Unmatched
Pred. Regions

Pred. Regions
Still Unmatched

Tracked Regions
Revised

Identified and
New Regions

Regions
Processed

filtering by age

prediction and

matching

prediction

matching

moving again

Region splitting and merging

Region Tracker

removal if

Background Image

Difference Image

Motion Image

Regions
Detected

filtering and differencing

extracting moving blobs

filtering and thresholding

me[di]an filtering

Motion Detector

incorporation

Hypothesised
Profiles Profiles

Predicted

Revised
Tracked Profiles

New Profiles
Identified and

Pred. Profiles
Unmatched

shape fitting

mean shape

prediction and

filtering by age

or mean shape
outline tracing

for edges
local search

matching and
removing doubles

prediction

Active Shape Tracker

Video Image

Figure 4.4: The Algorithm of the Reading People Tracker

53

CHAPTER 4. THE READING PEOPLE TRACKER

• enabling the identification of the object starting to move again, by keeping a
copy of the necessary data (position, size, identity record).

The areas in the image where static objects have been detected and incorporated into
the background are specially marked so that the background modelling algorithm
does not include these objects into the Background Image.

Multiple Hypotheses For Matching

When matching the moving regions measured by the Motion Detector to those re-
gions predicted by the Region Tracker, multiple hypotheses are used. The predictions
of all currently tracked regions form the first set of hypotheses. As presented above,
these original hypotheses are combined to form new hypotheses which approximate
the measurements. These new hypotheses are marked as being created by splitting
and added to the original hypotheses. If the measurements from the Motion Detector
match a hypothesis which was created by combining predicted regions, these predic-
tions are accepted. However, if an original prediction seems to fit the measurements
better, that one is accepted. Choosing the optimal track uses an adapted version of
the cost function given in (4.1) above,

δp(r1, r2) = α1∆x + α2∆y + α3∆w + α4∆h + p(r1, r2), (4.2)

where p(r1, r2) is a function which yields a penalty for static regions1, 0 otherwise.
Thus a higher cost is given for static objects such that a person walking by a static
person does not get matched to the static person too easily.

4.2.4 Module 3: The Head Detector

The W4 system by Haritaoglu et al. (2000) introduced in Section 2.2.3 looks for
vertical peaks in the motion image to detect heads of moving people. Inspired by
this idea a simple algorithm has been implemented to detect head positions in moving
regions tracked by the Region Tracker. Given a region r, the Head Detector works
as detailed in Algorithm 4.1. The main idea of the algorithm is to create something
similar to a vertical projection histogram of the upper part of every tracked region.
Peaks in this vector of heights v correspond to possible head positions. Isolated pixels
(e.g. noise) and “holes” in the Motion Image are ignored when creating v. While
scanning v for peaks, camera calibration is used to check the size of these peaks.

Figure 4.5 shows the region r outlined in grey with the search area r̃ outlined in
dark red and the detected head position h1 marked in magenta. The set {hi} of head

1At most one of the two regions r1 and r2 is static because one of the regions is a new measure-
ment or other hypothesis.

54

4.2. THE TRACKING ALGORITHM: OVERVIEW AND STRUCTURE

Given: A region r which is tracked by the Region Tracker.

1. Select the upper part of r, r̃.

2. If r̃ is too small to contain a head, stop with no result.

3. Create a vector v of “heights” in the image r̃:

(a) For each column c in r̃, examine the pixel values from the top until reach-
ing a non-isolated pixel which is classified as moving.

(b) The distance of this pixel to the bottom of the image r̃ is stored in v as
the person’s “height” at column c.

4. Scan v for intervals vi ⊂ v with the following properties:

(a) The values within vi do not differ significantly.

(b) The width of vi is a possible width of a head in the image.

(c) The histogram values in v \ vi which are near to vi are significantly lower
than the values inside vi.

5. For each vi found in step 4 define the point hi in the region r̃:

(a) Let the x coordinate be the centre of vi

(b) Let the y coordinate be the mean of the highest and the lowest value in a
small neighbourhood of v around vi.

6. Stop with result head positions {hi}.

Algorithm 4.1: Head Detection

55

CHAPTER 4. THE READING PEOPLE TRACKER

Figure 4.5: Head detected by the Head Detector

positions is stored together with the associated region r for later use by the Active
Shape Tracker.

The algorithm of the Head Detector is optimised for speed not accuracy. It is
much simpler than standard face detection and tracking methods which use more
sophisticated means such as skin colour models (Crowley and Bérard, 1997; Oliver
et al., 1997). The purpose of the Head Detector in our system is to aid in the
initialisation and validation of tracks by the Active Shape Tracker. Wrongly detected
heads (false positives) usually do not influence tracking output because no person
can be detected for this hypothesised head. The detected heads themselves are not
part of the final tracking output; they are just temporary results. Owing to its design
and implementation the Head Detector is very fast, adding no noticeable overhead to
the overall CPU time used by the People Tracker—an important aspect in a realtime
system.

4.2.5 Module 4: The Active Shape Tracker

Moving regions detected and tracked by the Region Tracker are examined more
closely by the fourth module, the Active Shape Tracker. It uses the parameterised
B-spline model of a generic pedestrian outline shape. Most of the functionality de-
veloped in the Leeds People Tracker (see Section 2.2.2) has been preserved in our sys-
tem, while addressing the most important deficiencies, as established in Section 2.2.2.
This was achieved mostly by adding a Region Tracker and a Head Detector to the
system and using their detection and tracking results:

Improved Generality: The model used in the Active Shape Tracker, like the one
in the Leeds People Tracker, is trained to recognise walking pedestrians. When
this assumption on people’s appearance breaks down, e.g. due to occlusion, low

56

4.2. THE TRACKING ALGORITHM: OVERVIEW AND STRUCTURE

contrast in the image or when they sit down, the Region Tracker will try to
keep tracking the person, so the overall track and identity of the person is not
lost.

Better Initialisation of Tracks: The Active Shape Tracker now uses the output
from the Region Tracker and the Head Detector to initialise tracks. This usually
results in multiple hypotheses of outline shapes for the same person which are
compared and matched by an improved matching algorithm. Only the best
hypothesis for each person’s shape is retained.

Handling Occlusion and Low Contrast: In the presence of severe occlusion
and/or low contrast in the image the Active Shape Tracker can either lose
track or fail to initialise a track. In these cases the Region Tracker will still
try to track the person, with the aim of preserving the person’s identity and
long-term tracking history (movement within the station). Once the Active
Shape Tracker is able to take up the track again the full tracking history is
thereby restored.

Handling Lost and Re-gained Tracks: When the Active Shape Tracker loses
track of a person and re-gains it at a later stage, it uses the tracking data
of the Region Tracker if that succeeds in keeping track of the person. Thereby
the correct identity and tracking history is assigned to the re-gained track.
This works in a similar way if the Region Tracker loses track and the Active
Shape Tracker keeps tracking an object.

Additionally, both the Active Shape Tracker and the Region Tracker now keep
predicting the position of a lost track for a very short time after the track is
lost. This makes up for the problem where a track is lost for a frame or two
only, and re-gained afterwards.

Increased Maintainability: The People Tracker has been ported from SGI to an
economical GNU/Linux based PC, and then fully re-engineered. The code is now
highly maintainable, and documented in a 45-page reference manual (Bouffant
et al., 2002). Details of the re-engineering process and new software character-
istics can be found in Chapter 5.

Handling Changes in Shape: This aspect of the Leeds People Tracker has not
been changed in our Active Shape Tracker. However, by using a Region Tracker
in parallel to the Active Shape Tracker the chance to lose a track because the
shape fitting process does not converge has been reduced.

57

CHAPTER 4. THE READING PEOPLE TRACKER

4.3 Module Interaction and Other Features

The work on the Reading People Tracker presented here covers the co-operation
between modules to produce robust people tracking functionality, as well as software
engineering aspects such as system integration and its maintainability characteristics
(e.g. extensibility and scalability). Most of the maintainability issues have been the
subject of two case studies which are presented in chapters 5 and 6. In the following
sections of this chapter, the focus will therefore be on the remaining aspects.

4.3.1 Interaction Between Tracking Modules

Figure 4.6 shows the data flow between the four detection and tracking modules, as
well as the Background Model and the Tracking Status and History database. The
modules are operated in the order:

1. Motion Detector,

2. Region Tracker,

3. Head Detector,

4. Active Shape Tracker.

Each of the modules has access to the output from the modules run previously,
and also to the long-term tracking history which includes past and present tracks,
together with the full tracking status (visibility, type of object, whether it is static
etc). For each tracked object, all measurements, as well as tracking hypotheses and
predictions generated by different modules are stored in a central place. As a result,
a module can access all tracking data generated by other modules for any tracked
object.

Module 1: The Motion Detector.

The Motion Detector uses the background model to detect new objects. With the
help of the Region Tracker static objects are quickly incorporated into the back-
ground, thereby enabling the correct detection of other objects moving in front of
the static objects. The background model is kept up to date by removing objects
from it if they begin to move. This, in turn, helps the Region Tracker to track objects
more reliably by improving the Motion Detector’s measurements.

58

4.3. MODULE INTERACTION AND OTHER FEATURES

Active Shape
Tracker

Motion
Detector

Head
Detector

Tracker
Region Tracking

Output
Video

Background

Model

Tracking

Status & HistoryInput
21

4

3

Figure 4.6: Interaction between tracking modules. The numbers refer to the sequence
in which the modules are operated in the tracking stage.

Module 2: The Region Tracker.

The Region Tracker uses the Tracking Status and History database to track regions
over time. It creates multiple hypotheses of tracks using Region Splitting and Merg-
ing, and keeps track of objects even if they are not visible in some frames. If the
Region Tracker is unsure about a track or it cannot detect an object, it consults
the Active Shape Tracker’s output for that object. If the associated shape model of
a person is successfully tracked, the Region Tracker uses the bounding box of the
tracked shape outline as a new hypothesis for the region’s position and size.

Another way the Region Tracker uses the output of the Active Shape Tracker is
to split up large regions if they contain more than one person. After both the region
and the associated person shape(s) have been tracked, the Region Tracker checks
whether a significant part of the region was not covered by the shape(s) contained
in the region. This situation occurs when two or more people are close together and
detected as one region, for example when they enter the scene in a group, one person
occluding the other. Once the Region Tracker has established that there is more than
one person in the region, the region is divided into two and each subregion tracked
separately in order to establish the tracks of all people within the group. Camera
calibration is used in this process to determine whether the remainder of the region,
after splitting it, is large enough to contain more people, and how many there might
be. In subsequent frames, the Region Tracker uses Region Splitting to correctly split
up the output from the Motion Detector into two or more regions in order to track
every person correctly. These split-up regions are then processed separately by the
Head Detector, and the Active Shape Tracker tries to initialise person outline tracks
in each of them.

59

CHAPTER 4. THE READING PEOPLE TRACKER

Module 3: The Head Detector.

The Head Detector uses the regions detected and tracked by the Region Tracker.
It stores a list of candidate head positions together with the associated regions in
the Tracking Status database. These head positions are mainly used by the Active
Shape Tracker.

Module 4: The Active Shape Tracker.

The Active Shape Tracker has the largest number of inputs from other modules. The
most important support the Active Shape Tracker receives from other modules is in
the initialisation and identification of tracks. The initialisation refers to the process
of estimating the position and size of an outline shape in the image. Once a track
is initialised the Active Shape Tracker uses its own predictions and tracking status,
stored in the central Tracking Status and History database, to keep track of a person.

The initialisation of a track utilises detection results both from the Region Tracker
and the Head Detector. In addition to the initialisation of shapes from tracked
regions, the heads detected in a region are used to determine possible positions of
people. In this process, camera calibration is used to create hypotheses of the most
probable size and position of a person in the image. This initialisation by head
positions is particularly important when there is more than one person in a given
region, e.g. when a group of people is detected as a single moving region.

Additional attempts to initialise tracks are made for regions and already tracked
outline shapes if the Active Shape Tracker detects that a shape is too large or too
small to be a person. This situation can occur when the upper or lower part of the
person is occluded. Using camera calibration, two additional hypotheses are created
for the tracked object to cover the cases that either the lower or the upper part of the
person’s outline is visible. Hypotheses created in this way are added to the tracked
object for post-processing and filtering, described in Section 4.3.2 below.

During the shape fitting process, the Active Shape Tracker also uses the Difference
Image to facilitate local edge search around the current shape. In this way, the Active
Shape Tracker benefits significantly from the temporal integration of static objects
into the background by the Region Tracker, resulting in more accurate tracking
results.

When a new track is initialised by the Active Shape Tracker, it is assigned the
identity of the associated region. This is especially important in cases when a track
is lost by the Active Shape Tracker, e.g. due to occlusion. If the Region Tracker
keeps the track then the Active Shape Tracker can re-establish the identity of the
tracked person when the track is re-gained at a later time.

60

4.3. MODULE INTERACTION AND OTHER FEATURES

4.3.2 Hypothesis Refinement

After running all four detection and tracking modules, the data and tracking hy-
potheses generated by them are further analysed and filtered. The trackers usually
generate more than one hypothesis for each tracked person, and the information
can be of different types (moving region, head position, shape model). In order to
reduce the number of hypotheses, they are first pairwise compared to see whether
they are multiple observations of the same object. Those which are, e.g. multiple
shape models for the same person, are further compared using a track confidence
measure generated by the tracker and the positional uncertainty for the predicted
position. The better one of the two tracks is then accepted as valid and the other
one discarded, whilst making sure that the original identity of the person or object
is carried over to the next frame.

Multiple hypotheses of the same track are kept if they are considered as possibly
valid. Although only the best tracks appear in the tracking output more tracks
are kept in the Tracking Status database, and predictions are made of these by the
associated trackers. This way, a hypothesis not matched in one frame, e.g. in the
event of a partial occlusion or a missed (dropped) frame in the system, is not lost
but may again be matched to measurements and the track re-acquired, at a later
time.

4.3.3 Software Engineering Aspects

The People Tracker presented here is an extension, in functionality and application,
of the Leeds People Tracker introduced in Section 2.2.2. Before adding new modules,
the People Tracker was completely re-engineered, yielding a new design. The new
software is highly maintainable and portable, and a software process for all mainte-
nance work is well defined and documented. The source code now strictly adheres
to the ISO C/C++ standard, compliant with ISO/IEC 9899 (1999), as well as POSIX
1003.1c-1995 (1995) extensions for all multi-threading functionality, making it easily
portable. While the code is being maintained under GNU/Linux, it also compiles
under Microsoft Windows 2000.

Extensibility and scalability were also kept in mind while designing the new
tracker. For instance, all classes handling the data and tracking functionality for one
camera (i.e. one video input) are encapsulated within one Camera class. As a result,
the handling of multiple cameras simply amounts to creating multiple instances of
the Camera class. The original version of the software handled functionality such as
the video input, tracking etc directly in the main() program, and only one video
input was implemented. On a larger level, all instances of the Camera class within
one area of the underground station are contained within one PeopleTracker class.
Hence the system design allows for scaling of the system simply by creating more

61

CHAPTER 4. THE READING PEOPLE TRACKER

then one instance of the PeopleTracker class. This was done to achieve a high level
of scalability, although this functionality is not required at present.

The design of the People Tracker allows for the easy addition of new tracking
modules for extending the tracker or adapting it to new application areas. Existing
tracking modules can be enabled and disabled, depending on the application and
circumstances (e.g. available CPU time).

More software engineering aspects, e.g. the avoidance of global functions and the
use of assertions in the implementation, are covered in Chapter 5.

4.4 Demonstration and Discussion

The tracking algorithms of the Reading People Tracker is demonstrated and discussed
below. The validation of the tracker can be found in Chapter 7.

4.4.1 Testing on a London Underground Sequence

To demonstrate the robustness obtained by combining tracking modules, several
experiments were performed with video sequences from surveillance cameras. A
video sequence from a surveillance camera in a London Underground station has been
chosen for the following demonstration because it has many potential difficulties for
people tracking:

• stationary people waiting in queues at the three counters of the ticket office,

• people who occlude each other as they walk past,

• low contrast of some people to the background,

• people in groups who come close to each other and part again.

The sequence was digitised at full PAL resolution (768 × 576 pixels) at a frame rate
of 5 frames per second (fps). The People Tracker runs in realtime (that is, 5 fps)
with the number of objects shown (up to 9 objects), on a 1 GHz Intel Pentium III

based PC, running under GNU/Linux. The computing time includes software JPEG
decompression of the video input and annotation output in XML, but no display
(this is done by the Human Computer Interface in the ADVISOR system). Screen
output, when enabled during development, approximately doubles the amount of
overall CPU time used by the People Tracker, because no optimisations were applied
to graphics routines.

Figures 4.7 and 4.8 show the tracking output of the tracker. Regions are identified
by their defining bounding boxes, and associated shapes from the Region Tracker are

62

4.4. DEMONSTRATION AND DISCUSSION

(a) Frame 2, Motion Image (b) Frame 2, Video Image

(c) Frame 3 (d) Frame 4

Figure 4.7: Frame 2 (Motion and Video Images); Frames 3 and 4 (Video Images).

drawn in the same colour. In the following it will be examined how the new tracking
modules work in practice.

In the motion image of Frame 2, Figure 4.7(a), some regions contain more than
one person. The problem arises because the people concerned are close together,
and no previous tracking data is available. As a consequence, not all shapes were
initialised correctly by the Active Shape Tracker, as can be seen in the video image,
Figure 4.7(b), where the tracking results are shown. We notice, however, that by
using the Head Detector, one person’s shape was initialised correctly in each of the
two large regions (track 1, yellow box, and track 2, white box).

In the Hypothesis Refinement stage, the Region Tracker tries to separate the
detected person within the large regions from the remainder of the region. Frame 3,
Figure 4.7(c), yields the new track of the person in the middle (track 5, blue box).

63

CHAPTER 4. THE READING PEOPLE TRACKER

In Frame 4, Figure 4.7(d), the track of region and outline shape of person 2
(white) are aligned, enabling the separation from the adjacent person to the left.
The track of the newly detected left hand person is picked up by the Region Tracker
(track 10, light green box) and tracked using Region Splitting. When the Active
Shape Tracker also starts tracking the person a little later, their identity and track
history are already established.

(a) Frame 39 (b) Frame 55

Figure 4.8: Frames 39 and 55 (Video Images).

Frame 39, Figure 4.8(a), a few seconds later, shows that the people at the counter
have been detected as static and temporarily incorporated into the background. This
is indicated by a dashed outline around the static objects. The person at the right
counter cannot be tracked by the Active Shape Tracker because their jacket does not
stand out against the background. However, the Region Tracker keeps track of their
dark trousers until the full outline can be tracked by the Active Shape Tracker.

In Frame 55, Figure 4.8(b), Person 2 (white) has started to move again. Their
image is removed from the background and both Region Tracker and Active Shape
Tracker continue tracking with the correct identity. Meanwhile, a person has walked
past all five static people without their track being lost.

4.4.2 Analysis

In the following analysis the focus will be on the way in which the new tracking
system deals with the most important shortcomings of the original Leeds People
Tracker discussed in Section 2.2.2.

64

4.4. DEMONSTRATION AND DISCUSSION

(a) Initialisation of new tracks in the
Active Shape Tracker

(b) Final tracking output after
hypothesis refinement

Figure 4.9: Initialisation and refined tracks, frame 6

Initialisation of Tracks

Figure 4.9(a) shows the locations in the image where the Active Shape Tracker looks
for people, in order to initialise new tracks. Initial shape estimates are projected onto
the image before the shape fitting process is started. Hypotheses of already tracked
people are also used, but they are not displayed here. Some of the shapes examined
in the initialisation process are very close to each other, and in the shape fitting
process they converge to the same person. In the Hypothesis Refinement stage, only
the strongest hypotheses are kept and the others are abandoned.

Potential head positions as detected by the Head Detector are marked in the
image in red, showing search regions and estimated head positions. It can be seen
that most of the heads are detected, and an active shape model is initialised in the
vicinity of every person in the image.

The bottom left corner of Figure 4.9(a) shows a detected region from the Region
Tracker, in this case the head of a person. The Active Shape Tracker uses camera
calibration to establish that this region is too small to be a person and examines two
hypotheses: either the region constitutes the head of a person or their feet2.

Figure 4.9(b) shows the final tracking output for the same frame shown in Fig-
ure 4.9(a). Seven out of eight people have been correctly detected and are tracked.
At the rightmost counter stands a man whose beige jacket has a particularly low
contrast to the background. Additionally, most of his body outline is occluded by
the person in front of him. This is why the Active Shape Tracker does not find
enough edges during the shape fitting, and consequently does not detect him. The

2This feature was also part of the original Leeds People Tracker.

65

CHAPTER 4. THE READING PEOPLE TRACKER

Region Tracker also cannot pick up the track because due to the low contrast, only
very few pixels of the visible part of the person show up as moving in the Motion
Image.

Dealing with Occlusion and Low Contrast

The new tracking system handles occlusions better than the Leeds People Tracker
in the following ways.

• Static objects are temporarily and quickly incorporated into the background.
This feature of the Region Tracker (and the Motion Detector), as discussed in
Section 4.2.3, helps to avoid problems with people overlapping in the image.
This was seen in Frame 39 above, Figure 4.8(a) on page 64, when a person was
tracked even though they walked past other people who had been stationary
for a very short period of time.

• The tracks of individual people are not lost so frequently because there is
now a Region Tracker linked with the Active Shape Tracker. The two modules
track the person shapes and associated regions independently and their tracking
results are combined. Occlusion still affects the Active Shape Tracker when a
large part of a person’s outline is not detectable. The Region Tracker, due to
its nature, does not observe the outline and so it is less affected by occlusions
of the outline. Region Splitting and Merging also helps the Region Tracker to
avoid problems of occlusion.

Limited Generality

Through the combination of the Region Tracker and the Active Shape Tracker prob-
lems with the Leeds People Tracker’s limited generality are overcome. If the Active
Shape Tracker loses track of a person because their shape cannot be recognised or
explained by the pedestrian shape model, the Region Tracker will keep tracking the
person. The Reading People Tracker is therefore less likely to lose track of a person
e.g. when they sit down or there is low contrast. An example was seen in Frame 39
above, Figure 4.8(a) on page 64, where the Region Tracker tracks the lower part
of a person (trousers) while the upper part is not detectable and the Active Shape
Tracker therefore fails initialise the track.

4.4.3 Remaining Problems

The following situations still pose a problem for the Reading People Tracker:

66

4.4. DEMONSTRATION AND DISCUSSION

Heavy Occlusion: The strategy of the Region Tracker and the Active Shape
Tracker is to separate people who overlap in the image, and track them indi-
vidually. In the presence of crowding or in large groups of people who overlap
in the image this might not be possible.

Lighting Changes: The Motion Detector cannot handle rapid changes in lighting
conditions. While the system is designed to work indoors with constant arti-
ficial lighting, there are some situations in which the level of lighting changes.
For example, when a train arrives in the platform the camera’s automatic gain
control might adjust to the new overall brightness of the scene. Thereby other
objects might appear darker or lighter in the image while they really have not
changed. This problem could be solved by replacing the Motion Detector by a
better one. Currently the restrictions on CPU time are too stringent to allow
for this.

Recognising Re-gained Tracks: If a track is lost and re-gained at a later stage,
only a very simple comparison is done with old tracks to try to identify the
person. Re-identification is based on predicted motion. Therefore it is only
possible if the track has been lost in the past few frames and the person has
not moved irregularly. An appearance-based model of every tracked person
could help to identify people under more complex conditions, e.g. when they
leave the field of view for a while and then come back later.

4.4.4 Summary

The Reading People Tracker has been developed to be part of the integrated visual
surveillance system ADVISOR for operation in underground stations. The People
Tracker is based around an Active Shape Tracker which tracks the 2D outlines of
people in video images. In order to achieve robust tracking of people, a Region
Tracker and a Head Detector were added to the original tracker design. interaction

By combining multiple modules to form one People Tracker, and fusing their out-
put to generate the tracking output, a higher tracking reliability is achieved than any
of the individual trackers can provide on its own. The Region Tracker with its Region
Splitting and Merging, as well as its Temporal Background Integration features plays
an important role, helping when occlusion creates difficulties for the Active Shape
Tracker, and in the identification of tracks for correct long-term tracking. The Head
Detector provides additional measurements to the Active Shape Tracker to aid in
the initialisation of tracks.

This tracking performance is achieved while keeping the hardware requirements
to a minimum; the tracker runs in realtime on off-the-shelf hardware. Its software
structure enables the Reading People Tracker to work with input from multiple
cameras, and to be further extensible and scalable.

67

CHAPTER 4. THE READING PEOPLE TRACKER

The Reading People Tracker will be validated in Chapter 7.

68

Chapter 5

Maintainability of the Reading
People Tracker

Adapting the People Tracker for use within the integrated system
ADVISOR required fundamental changes, due to new requirements and
close integration with other components. This chapter describes the cor-
rective re-engineering measures that rendered the software highly main-
tainable, making the necessary changes possible and easy to carry out.

5.1 Introduction

5.1.1 Software Maintenance Techniques

Software maintenance is the modification of a software product after delivery. It is
classified into four categories (Fenton and Pfleeger, 1996, p. 354–355):

1. Corrective maintenance refers to modifications for correcting problems in an
implementation.

2. Adaptive maintenance refers to modifications for adapting a product to
changed environments, both software and hardware.

3. Perfective maintenance refers to enhancements such as making the product
faster, smaller, better documented, creating a cleaner structure, and adding
new functionalities because of new user requirements.

4. Preventive maintenance involves changes aimed at preventing malfunctions and
improving maintainability of the software.

69

CHAPTER 5. MAINTAINABILITY OF THE RPT

The maintainability of a piece of software is determined not only by the state of its
source code, but by a variety of other factors. In this context it is useful to define
the following term.

5.1. Definition (software artefact): A software artefact is the result of any
activity in the software life-cycle, such as requirements, architecture models, design
specifications, source code and test scripts.

These software artefacts are the determining factors for the maintainability of a
piece of software. Initial design of software should aim at developing a product so that
all necessary software artefacts exist and exhibit a high level of quality. Furthermore,
these artefacts should be consistent. For example, any design specification should
match its implementation. This way, the above categories of maintenance activities
become easy to perform in terms of time and effort—that is, the software has a
high level of maintainability. It often happens, however, that modifications are done
without following proper software engineering principles, with the effect that the
software maintainability decreases. This makes further maintenance more and more
costly in terms of both effort and time.

Consider the example of cohesion and coupling (Fenton and Pfleeger, 1996, p. 309–
317). An ideal implementation should maximise the interaction between various ele-
ments within a class (cohesion) and minimise the interaction across classes (coupling).
However, if too much “patch work” is done on a haphazard basis these characteristics
can easily be lost. As a result, the implementation no longer satisfies the desired
levels of cohesion and coupling. For better maintainability, it is also expected that
the various artefacts of software—from requirement document through to design—
remain consistent in relation to each other. In many cases this consistency between
various artefacts is lost over time because of the bad execution of the maintenance
process.

In such a case, it may become necessary to re-organise the software with the aim
to restore the system’s maintainability. This approach is often called re-engineering
(see, for example, Weide et al., 1995). Re-engineering is characterised by the following
objectives:

• to generate the software artefacts from the implementation and any existing
documents,

• to bring these artefacts into a consistent state, possibly through re-design or re-
specification. The re-design should aim at restoring the quality characteristics
of the software (see ISO/IEC 9126, 1991, for a definition of these); and

• to re-structure the implementation so that it reflects the new design.

70

5.1. INTRODUCTION

Thereby, the system’s maintainability is restored. Re-engineering often involves re-
verse engineering . Reverse engineering is the process of understanding and modifying
software systems. It involves identification of the components of an existing system
and their relationships. Furthermore, it also aims at creating high level descriptions
of various aspects of the existing system (Waters and Chikovsky, 1994; Weide et al.,
1995).

The primary challenge with regards to re-engineering is to understand the ex-
isting software along with its associated artefacts. In order to accomplish this, one
needs two kinds of information: static information and dynamic information. Static
information describes the structure of the software in relation to the source code,
while dynamic information describes its run-time behaviour (Richner and Ducasse,
1999).

Refactoring (Fowler et al., 1999) is one technique to correct design flaws in object
oriented systems. Refactoring operations reorganise a class hierarchy by shifting
responsibility between classes and redistributing instance variables and methods.
Demeyer et al. (2000) discuss heuristics for identifying various types of refactoring
operations applicable to a piece of software. The authors deal with the following
three types of refactoring:

1. splitting methods into smaller chunks to separate common behaviour from the
specialised parts,

2. moving functionality to a newly created sibling class; and

3. insertion/removal of classes from a class hierarchy and redistribution of their
functionalities.

5.1.2 Related Work

A large amount of research has been carried out on software maintenance and reverse
engineering. The following works are relevant to this case study.

Wilde and Huitt (1992) discuss the difficulties that may be encountered in the
maintenance of object-based systems. They note that the property of dynamic
binding—e.g. through virtual classes in C++—provides a large amount of flexibil-
ity from the design point of view. However, it can create difficulties while tracing
the dependencies of a call to a virtual method, because the actual method called may
be one of a number of virtual implementations. Similarly, the use of polymorphism
and inheritance may create an explosion of various dependencies of types class-to-
class, class-to-method, method-to-method, method-to-variable etc. Object oriented
practices encourage using a large number of small methods. Consequently, the code
for a given task can be widely distributed, which makes the program difficult to
understand. Furthermore, locating high level functionalities can be difficult, since a

71

CHAPTER 5. MAINTAINABILITY OF THE RPT

functionality is usually dispersed into various object classes. The authors also rec-
ommend analysis tools which should be provided by a maintenance framework to
address the above issues.

Lientz et al. (1978) surveyed 120 organisations and analysed their maintenance
effort, dividing the effort into the four categories given in 5.1.1. Their observation
is that on average, 17.4 % of the maintenance effort is corrective, 18.2 % is adaptive,
60.3 % is perfective and 4.1 % is preventive.

Domsch and Schach (1999) present a case study in object-oriented maintenance in
which the text-based user interface (UI) of a product which determined the number
of power supplies required for a system configuration, was replaced by a graphical
user interface (GUI). The additional requirements were: (i) the new software must
send relevant graphical outputs to a printer, and (ii) the new product must run on
32-bit Microsoft Windows platforms. The requirements constrained the maintainer
to use Microsoft specific APIs. The software engineer who developed the product was
also the maintainer. The total maintenance effort was 116 man hours, 94.8 % of the
which was perfective (development of the GUI), 3.2 % adaptive and 2 % corrective.

One of the important issues in re-engineering is the detection and location of
design flaws which prevent efficient maintenance and further development of the
system. Marinescu (2001) discusses a metric-based approach to detect such design
flaws. The two most well-known design flaws are god classes and data classes. God
classes tend to centralise the intelligence of the system, while data classes define data
fields but have almost no methods except some accessor methods. Marinescu uses a
metric-based approach for detecting god classes and data classes. A case study was
done on an industrial project of 50,000 lines of C++ code. The approach was highly
effective, although there were design flaws, like duplicated code and the number of
detected bugs in a class, which could not be addressed by his approach. The reason
for this shortcoming is that these flaws cannot be detected by the chosen source code
metrics.

In this chapter, the maintainability of the People Tracker and its evolution are
discussed. An analysis is presented of the way it was re-engineered and the benefits
that were obtained from the re-engineering. The findings have been published in
Satpathy et al. (2002).

5.2 The People Tracker and its Maintainability

The system studied in this chapter is the People Tracking module of the ADVISOR

integrated surveillance system introduced in Section 2.3.1.

72

5.2. THE PEOPLE TRACKER AND ITS MAINTAINABILITY

Crowd Analysis

Video Capture

Event Database

Behaviour Analysis

People Tracking

User Interface

Figure 5.1: Data flow within the ADVISOR integrated system

5.2.1 Brief History

The original People Tracker was written by Adam Baumberg at the University of
Leeds in 1993–1995 using C++ running under IRIX on an SGI. It was a research and
development system and a proof of concept for a PhD thesis (Baumberg, 1995). The
main focus during development was on functionality and experimental features which
represented the state-of-the-art in people tracking at that time. Only very limited
resources were available. A simple process cycle was used for code development. The
only documentation generated was a short programmer’s manual (about 5 pages)
describing how to write an application using the People Tracker software.

In 1995–1998 the code was used in a collaboration between the Universities of
Leeds and Reading. The software was adapted so it could interoperate with a vehicle
tracker which ran on a Sun Microsystems/Solaris platform (Remagnino et al.,
1997). Only little functionality was changed and added during this time and no new
documentation was created. Most of the programming on the People Tracker at that
time was done by the original developer.

Starting in 2000, the People Tracker has been changed for its use within the
ADVISOR integrated system. This new application required a number of major
changes on different levels. The analysis presented here focuses on the changes
carried out within ADVISOR, and especially on how the 1998 version of the People
Tracker had to be adapted to make system integration possible.

Table 5.1 summarises the characteristics of the People Tracker at different stages
of the project, starting in January 2000. These metrics were obtained using the
CCCC (C and C++ Code Counter) tool by Littlefair (2001). The size is given in
Lines of Code (LOC), not counting empty or comment lines. The original version,
as of January 2000, will be referred to as “PT0”.

73

CHAPTER 5. MAINTAINABILITY OF THE RPT

Version LOC classes of which instantiated methods global functions

PT0 (Jan 2000) 19,380 154 71 (46.1 %) 1,690 271

PT1 (Mar 2001) 24,797 191 80 (41.9 %) 1,913 286

PT2 (Sep 2001) 25,306 183 97 (53.0 %) 1,714 25

PT3 (Jun 2002) 16,472 122 82 (67.2 %) 1,231 9

Table 5.1: Measurements for different versions of the Reading People Tracker

5.2.2 Motivation for Re-design

The planned use of the People Tracker within the ADVISOR System introduced many
requirements that could not be met by the original implementation. Most of the new
requirements arose from the fact that the People Tracker would have to be closely
integrated with other system components. Figure 5.1 shows how the People Tracking
module is connected to the other components of the ADVISOR system. The use of the
People Tracker within the ADVISOR system also meant moving it “from the lab to the
real world” which necessitated many additional changes. The main new requirements
for the People Tracker were as follows:

• The People Tracker has to be fully integrated within the ADVISOR system.

• It has to run multiple trackers, for video input from multiple cameras (original
software: one tracker, one camera input).

• The ADVISOR system requires the People Tracker to operate in realtime on a
standard off-the-shelf hardware PC to enable economical system integration.

• Within ADVISOR, the People Tracker has to run autonomously once it has been
set up, without requiring input from an operator.

The status of the existing People Tracker was evaluated in relation to the new require-
ments. It was observed that the system had significant deficiencies which hindered
the implementation of the required new functionality:

• The heavy use of global variables and functions meant that multiple cameras
could not be used.

• Except a few pages of operating manual, no other documentation was available.

• Although the code was written in C++, it made a limited use of object oriented
features like encapsulation and inheritance.

• There were very little comments in the source code, making the code difficult
to read.

74

5.3. APPROACHES TAKEN FOR THE RE-DESIGN

• The names of some of the classes and methods were misleading.

• The code was written for an SGI platform running under IRIX, making use of
hardware- and software-specific functions.

It was therefore decided to re-design the People Tracker.

5.3 Approaches Taken for the Re-design

5.3.1 Stages of Work

Addition of little
Functionality

Reverse Eng. /
Re−engineering

Addition of new
Functionality

Porting to
GNU/Linux

Jun 2002Sep 2001Mar 2001Jan 2000

PT PT PT PT3210

Figure 5.2: Sequence of work carried out during re-design

Figure 5.2 shows the sequence of steps which were followed to re-engineer the
People Tracker. The original People Tracker is marked as “PT0”, which was running
on an SGI platform. In the first phase of the work the software was ported to a PC
running GNU/Linux. The approach taken was “take code and compile”, replacing
the SGI-specific functions (mostly for graphics) in the process. PT0 contained calls
to SGI video hardware and to a mathematical library which did not exist on the PC.
These were replaced by more portable code.

Once the porting was complete, attempts were made to incorporate new func-
tionality to the code. One example was a module to read XML files which adhered
to a given XML Schema (XML Schema, 2001). This functionality was incorporated;
during this time, the full extent of the software’s deficiency became evident. The
decision was made to re-engineer the product before adding any new functionality.
The product at this stage is referred to as “PT1”. Its characteristics are shown in
Table 5.1.

The aim of the re-engineering process was

• to understand the program and the design,

• to find and correct design flaws, and

• to generate all the software engineering artefacts—most importantly, documen-
tation.

75

CHAPTER 5. MAINTAINABILITY OF THE RPT

The class diagram was obtained by using the tool Rational Rose 2000e (2000). The
analysis of the class diagram revealed that many class names did not reflect the
inheritance hierarchy, a number of classes were found to be redundant, and many
classes had duplicated functionality. The following correctional steps were performed:

• Redundant classes were removed.

• Global variables and functions were eliminated and their functionality dis-
tributed into both existing and new classes. Exceptions were global helper
functions like min(), max() etc which were extracted and moved into one C++

module.

• Many refactoring techniques (Demeyer et al., 2000) were applied, such as:

– Filtering out functionality duplicated in similar classes and moving it into
newly created base classes.

– Re-distribution of functionality between classes and logical modules.

– Re-distribution of functionality between methods.

• Meaningful names were given to classes and methods.

• Files were renamed to reflect the names of classes defined in them.

• PT0 contained many class implementations in the header files; they were moved
to the implementation (.cc) files.

• Assertions (Gries, 1981; Hoare, 1969) were introduced at strategic points in the
existing code and in all of the new code, to aid in finding errors in the code at
an early stage.

• From both static analysis and dynamic analysis (Richner and Ducasse, 1999),
a requirement document and the UML artefacts like the Use Case, component,
and package level sequence diagrams (Rumbaugh et al., 1999) were obtained.
The UML diagrams are shown in Figures 5.5 through 5.7.

The product after the re-engineering step is referred to as “PT2”. Its characteristics
can be seen in Table 5.1.

In the final step, the remaining part of the required new functionality was in-
corporated into the re-engineered product. This includes the addition of separate
processing threads for each video input, addressing the synchronisation and timing
requirements etc. A newly created master scheduler manages all processing, in or-
der to guarantee realtime performance with multiple video inputs. Table 5.1 shows
the characteristics of this version, which is referred to as “PT3”. PT3 incorporates

76

5.3. APPROACHES TAKEN FOR THE RE-DESIGN

most of the functionality needed for its use within ADVISOR and improvements to
the people tracking algorithms which make it appropriate for the application. The
module has been validated against test data. Currently (June 2002), the final stage
of system integration is being undertaken.

Stage Porting Little Func. Re-Eng. New Func.
Effort 8 MM 4 MM 8 MM 6 MM

Table 5.2: Distribution of the Maintenance Effort

5.3.2 Maintenance Effort

The maintenance effort1 (in man months) in relation to the various stages in Fig-
ure 5.1 can be found in Table 5.2. Table 5.3 shows the percentage of maintenance
effort by the four maintenance categories (Fenton and Pfleeger, 1996, p. 354–355).
For comparison purposes, the industry average effort observed by Lientz et al. (1978)
is also given. One can infer the following:

• Little corrective effort was necessary as the software was running without show-
ing any significant errors at the start of the project.

• As the software needed to be ported to a different platform, the adaptive effort
is higher than average.

• While the sum of perfective and preventive maintenance effort were found to
be similar to the Lientz et al. (1978) average, there is a clear shift towards
preventive maintenance. The main reason for this is that a lot of effort was put
into improving the maintainability of the software, for instance by incorporating
assertions into the code.

Category Actual Effort Industry Average

Corrective 8 % 17.4 %
Adaptive 31 % 18.2 %
Perfective 38 % 60.3 %
Preventive 23 % 4.1 %

Table 5.3: Maintenance effort by category, compared to the industry average

1Effort from Jan 2000 up to May 2002.

77

CHAPTER 5. MAINTAINABILITY OF THE RPT

5.3.3 Code Size

Figure 5.3 shows the measures of code size as the software passed through the various
stages shown in Figure 5.2. Initially, there was an increase in code size as new
functionality was added to the system from version PT0 to PT1. The re-engineering
phase further increased the code size because of the addition of extra documentation
in the form of comments. Furthermore, some extra classes were generated to form
additional layers between the main program and the classes implementing the people
tracking functionality. These facts are observed by the stretch of curve from PT1 to
PT2. Towards the end of the process there is a sharp decrease in code size because
much unused functionality (dead code) which had been identified and marked as such
during re-engineering was removed. Furthermore, many classes which were created
for experimental purposes were removed. One such example is a class which adds
noise to images to test the performance of algorithms in the presence of image noise.
Since this functionality was not required in the final system, the class was removed.

1 2 3 4 5 6 7 8 9 10 11

version

30000

35000

40000

45000

50000

55000

60000

LO
C

 (w
ith

 c
om

m
en

ts
)

PT

PT

0

PT1

PT2

3

Figure 5.3: Reading People Tracker: Size in Lines of Code over Time

5.4 Further Analysis and Discussion

5.4.1 Generated Artefacts of the People Tracker

As a part of the re-engineering process, various software artefacts were generated from
the code, and upgraded to reflect the latest version of the People Tracker. Most of
the artefacts were manuals or UML diagrams. The initial class diagram which was
obtained using the Rational Rose was the primary source of all activities. Both static
and dynamic analyses were employed to obtain the remaining UML diagrams. They
can be summarised as follows:

78

5.4. FURTHER ANALYSIS AND DISCUSSION

Figure 5.4: Use Case for the People Tracker (in Standalone/Development Mode)

Use Case diagrams There are two Use Case diagrams: one when the People
Tracker works standalone, and the other when the People Tracker works as
a subsystem of the ADVISOR system. The diagrams are shown in Figures 5.4
and 5.5, respectively.

Class Diagram The initial class diagram was upgraded to incorporate the new
class structure and the refactoring and other transformations. The diagram is
not shown here because of its size.

Package Diagram Figure 5.6 shows the package diagram.

Sequence Diagram Figure 5.7 shows the high level sequence diagram of the People
Tracker.

5.4.2 Experience with the Re-engineered software

The re-engineering of the People Tracker made the addition of new functionality
much easier. The following examples illustrate this:

• All classes handling the data and tracking functionality for one camera (i.e.
one video input) were encapsulated within one Camera class. As a result, the
handling of multiple cameras simply amounted to creating multiple instances
of the Camera classes. The original version (PT0) of the software handled func-
tionality such as the video input, tracking etc directly in the main() program,
and only one video input was implemented.

79

CHAPTER 5. MAINTAINABILITY OF THE RPT

Figure 5.5: Use Case for the People Tracker (as a Subsystem of ADVISOR)

• On a larger level, all Camera classes within one area of the underground station
are contained within one PeopleTracker class. Hence the system design allows
for scaling of the system simply by instantiating more than one PeopleTracker
class. This was done keeping the aspect of scalability of the design in mind,
although this functionality is not required at present.

• In the new design, all tracking results are contained within one Results class.
As a consequence, the new requirement to write out the results in XML format
was a very localised operation. Additionally, changing the design to reflect the
new functionality was straightforward.

5.4.3 Improved Maintainability

The re-engineering of the software has improved its maintainability. This is shown
here considering each of the maintainability categories separately.

Corrective Maintenance The software now uses assertions, hence it is easier to
find bugs at an early stage. Also, the new design means that malfunctions of
particular functionalities can now be easily localised and corrected.

Adaptive Maintenance The new software is no longer dependent on any particu-
lar hardware. All code now strictly follows the ISO C/C++ standard, compliant
with ISO/IEC 9899 (1999), as well as POSIX 1003.1c-1995 (1995) extensions
for all multi-threading functionality. As a result, future porting of the People
Tracker should be easy2.

2In fact, this has been proven in April 2000 when the source code was compiled and linked under

80

5.4. FURTHER ANALYSIS AND DISCUSSION

Figure 5.6: Software Packages of the People Tracker

Perfective Maintenance The software is now better documented and it has a
clean structure. Furthermore, all the artefacts of the system are available and
consistent with the source code. Hence, adding new functionality is easier, as
already experienced, and discussed above.

Preventive Maintenance Assertions, which are now used, help to prevent mal-
function of the code by making it easier to locate bugs. Additionally, the re-
engineering and the new design have significantly improved the maintainability
of the software.

5.4.4 Personnel Factors

The skills of the personnel involved in the work described in this chapter are as
follows:

1. The author of this thesis, a PhD student having academic knowledge of software
engineering and object-oriented programming but little experience in software
maintenance. He was the team leader and carried out 60 % of the programming
work himself.

2. A second PhD student having academic knowledge of software engineering,
a moderate level of programming experience and no experience in software
maintenance. He was mainly involved in the porting process and has completed
15 % of the overall work.

Microsoft Windows 2000 within only 12 hours. This compares nicely to the 8 man months it took
to port the software from SGI to GNU/Linux, as reported above, even if you consider that the second
time around staff had had more experience with the software.

81

CHAPTER 5. MAINTAINABILITY OF THE RPT

Figure 5.7: High level Sequence Diagram of the People Tracker within ADVISOR

3. Two undergraduate students having no knowledge of software engineering but
good programming experience. They did 20 % of the task.

4. A senior researcher having no knowledge of software engineering and a moder-
ate level of programming experience. He did 5 % of the work described here.

The lack of maintenance experience of the people involved was a prominent factor
in making the software process inefficient. Instead of making a detailed initial work
schedule, they started to implement new functionality at too early a stage. Only
during this implementation process they concluded that re-engineering of the soft-
ware was unavoidable in order to use it within ADVISOR. If re-engineering had been
done at the beginning of the work, precious time could have been saved.

5.4.5 Lessons Learned

1. Any kind of maintenance activity must be preceded by adequate planning. In
the present case, initially attempts were made to incorporate the new func-
tionality and only when the attempts failed was it decided to re-engineer the
software.

2. Some training should be given to maintainers so that they can recognise un-
maintainable code. In the present case, the maintainers took significant time to
learn about the extent to which the code was not maintainable. At this stage,
some tool support could aid in determining the state of the code. The tool

82

5.4. FURTHER ANALYSIS AND DISCUSSION

could use indicators like the number of global variables and global functions,
cohesion and coupling, amount of documentation etc.

3. Initially, the maintainers felt a strong resistance against re-engineering the
software. Even when they found out that adding new functionality would be
difficult with the current state of the code, they hesitated to re-engineer the
software because it was not a part of their given task. This seems to be a
common problem in software projects: making the best tradeoff between the
short-term benefits of a quick addition of new functionality and the long-term
benefits of re-engineering to obtain a product which is better maintainable.
While developers are more likely to determine the necessity to re-engineer a
product, managers tend to resist it and focus on short-term benefits. Re-
engineering takes up a lot of time and resources in the short term, although in
the long term it might save time due to the increased maintainability.

4. A precise and good process model of the re-engineering process should be in
place before beginning the re-engineering. In the present case, the trial-and-
error approach consumed a lot of precious time.

5. A correct design should be a pre-requisite to implementing new functionality.
Design documents and other artefacts should always remain consistent with
the source code.

6. In the present case, refactoring transformations were applied after locating
problem spots manually. At this stage, tool support should be used to recognise
bad classes (for instance, god classes and data classes, see Marinescu, 2001).

7. Developers should stick to standard languages and avoid language extensions.
Similarly, the product should not depend on specific hardware to run. Where
software- or hardware-specific functions are required, e.g. for optimisation, they
should be isolated and adequately documented so as to ease future porting
operations.

8. It was observed that a different level of domain knowledge was needed for the
different maintenance activities. Domain knowledge was not a pre-requisite for
performing the porting task. As far as re-engineering was concerned, very lit-
tle domain knowledge was required for performing the static analysis, whereas
dynamic analysis required a significant amount of domain knowledge. A moder-
ate level of domain knowledge was necessary when adding new domain specific
functionality.

9. The maintainers of the People Tracker had occasional short discussions (over
lunch table or during coffee break) with experienced software engineers in the

83

CHAPTER 5. MAINTAINABILITY OF THE RPT

University. This guidance increased their awareness of the technical aspects of
software maintenance. Consultation with an experienced software engineer is
therefore highly recommended before and during the maintenance task.

5.5 Conclusions

In this chapter, the People Tracker module of the integrated system ADVISOR has
been the object of a case study. The medium sized People Tracker software was
originally developed in a University environment. The software process yielded a
code with very low level of maintainability. Therefore the software was re-engineered
so that it could be used in the “real world” as a subsystem of ADVISOR. The team
leader of the maintenance operation is the author of this thesis. None of the people
involved in the re-engineering task had any maintenance experience and therefore
the whole process was carried out in a suboptimal manner. The people involved
took occasional help from experienced software engineers who provided important
guidance when it came to software engineering aspects of the work,

The maintainers successfully re-engineered the product and upgraded it with
new functionality. The product has been found to be satisfactory by the project
partners and it is now (June 2002) in the final stage of its integration with the other
subsystems of ADVISOR. Furthermore, the maintainers are satisfied with the work
they have done. The analysis presented here shows that the re-engineering process
has been effective in achieving a high level of maintainability.

The following can be concluded from the observations:

• Tool support or expert advice could aid in determining whether software should
be re-engineered before any other maintenance task is carried out.

• Increasing the maintainability of software by re-engineering techniques can
make the addition of new functionality and porting more efficient, thereby
saving time to accomplish a maintenance task.

• Surprisingly little domain knowledge was necessary for porting or re-
engineering the software. Domain knowledge was needed to extract dynamic
information from the code, and partly to add new functionality. The availabil-
ity of design documents can to a certain extent make up for missing domain
knowledge.

84

Chapter 6

Process Diversity and its
Implications for the People Tracker

When dealing with a piece of software the size and age of the Reading
People Tracker one invariably needs to consider the processes used to
build and maintain it. In this chapter the evolution of the People Tracker
is analysed with respect to the diversity of these processes. The analysis
shows the influence which different contexts, applications and techniques
had on the quality of the processes and on the software itself. A new
classification scheme of process diversity into latitudinal and longitudinal
process diversity is presented which helps to understand the consequences
of process diversity.

6.1 Introduction

It is now widely accepted that most software evolves significantly over its lifetime.
One of the implications of this discovery is that there are relationships between
software processes and software evolution—that is, the way in which software is de-
veloped and maintained may have longterm effects on the software itself. In this
chapter, a particular aspect of this issue is examined, namely the effects of diversity
in these processes on the quality of both software products and processes. The main
contribution is to distinguish between two broad kinds of process diversity; latitu-
dinal and longitudinal process diversity . This classification provides a conceptual
framework for a better understanding of process diversity and thereby helps man-
agers to apply specifically tailored countermeasures to control the negative effects of
a particular type of diversity. These concepts are illustrated in the case of the People
Tracker, and ways are suggested in which they appear to affect both product and
process quality.

85

CHAPTER 6. PROCESS DIVERSITY AND ITS IMPLICATIONS FOR THE PT

6.1.1 Concepts and Management of Process Diversity

6.1. Definition (process): A process is a collection of activities carried out by
people and/or machines that are intended to achieve some desired outcome, are re-
lated to each other in time and have inputs and outputs.

This mostly corresponds to the development processes and some of the supporting
processes as defined by ISO/IEC 12207 (1995). For management purposes, processes
are often recursively decomposed into subprocesses reach what are called atomic
processes. The possible granularity of processes covers a very wide range, from high-
level business processes to finely detailed processes for software maintenance. In
order to understand process diversity, one needs to situate software processes in the
context of larger business processes.

A process is represented by a process model and executed within a process envi-
ronment Doppke et al. (1998). The process environment links together the people ex-
ecuting the process (e.g. managers and software developers) and any domain-specific
tools that may be used. As processes do not have unique representations, and they
can be executed within differing process environments, processes invariably differ. In
this context, process diversity is considered as it occurs when a project is executed
within a different process environment, its impact is studied. This diversity can
happen either concurrently (e.g. in multi-team projects) or when a project encoun-
ters different process environments during its life-cycle. Process diversity can have
negative consequences. Two well-known examples are problems during system inte-
gration (as project partners might follow differing software processes), and problems
arising from software re-use in a new environment.

Diversity in software processes is usually inevitable and managing it can be a
delicate balancing act. Too much process diversity can lead to chaos but too little
may suppress creativity and thus lead to missed opportunities. Whilst day-to-day
process management will be more concerned with deliverables, schedules and bud-
gets, the management of process improvement should periodically review whether a
satisfactory balance between uniformity and diversity in software and other processes
is being achieved. This work supports this aspect of process review and improvement
by proposing a simple high-level model of process diversity that distinguishes two
broad categories which have different sources and impacts.

6.1.2 Related Work

The work described in this chapter is related to two established themes in software
engineering research, namely process improvement and software evolution.

The need for quality improvement and cost reduction in software produc-
tion and maintenance has led to a research emphasis on process improve-
ment. Carnegie Mellon University’s Software Engineering Institute (SEI) has set

86

6.2. PROCESS DIVERSITY

up a dedicated group of Software Process Improvement Networks (SPINs, see
http://www.sei.cmu.edu/collaborating/spins/) with the aim of connecting indi-
viduals involved in improving software engineering practice. Research and case stud-
ies show how much money an improved software process can save a company (Dion,
1993) but also stress the complexities involved in process improvement (Cattaneo
et al., 1995; Herbsleb et al., 1994; Humphrey, 1992; Sharp et al., 1999). A number
of process models and standards have been developed to analyse and improve soft-
ware processes, most prominently the Capability Maturity Model (CMM), but also
ISO standards such as ISO 9000 and ISO 15504 (see Paulk (2001) for a review of
these and other standards). Process improvement is usually carried out using a pro-
cess model, and a measurement framework like the Goal/Question/Metric method
(G/Q/M) (van Solingen and Berghout, 1999).

The identification of software evolution as a research topic originated in Lehman’s
pioneering studies of the long-term development of IBM systems in the 1960s
(Lehman, 1969) which resulted in the formulation of Lehman’s widely respected
“Laws of Software Evolution” and his S-P-E classification of information systems
(Lehman, 1980; Lehman et al., 1997) which will be addressed in more detail in Sec-
tion 6.2.3. Since then, the field has gradually broadened as software engineering
researchers have studied relationships between software evolution and other topics,
and deepened as various aspects have been studied in detail. Nevertheless, many
of the core concepts and approaches that are currently used can be traced back to
Lehman’s work.

The research presented in this chapter has been published in Siebel et al. (2003).

6.2 Process Diversity

Diversity in software processes can occur on many different scales, and its impact
on product and process quality can also cover a wide range. In order to understand
the likely impact of particular examples of diversity, it is helpful to distinguish two
high-level categories:

Latitudinal process diversity: This category describes the kind of variation that
occurs when diverse processes operate concurrently within the same project.
This is often observed in multi-team projects (Herbsleb and Grinter, 1999).

Longitudinal process diversity: This is the variation that occurs in software pro-
cesses over time. An example which is often observed is the transition from
development to maintenance phases in a project.

Thus latitudinal and longitudinal process diversity are not properties of individ-
ual processes; they are properties of the system (in this case, a software development

87

http://www.sei.cmu.edu/collaborating/spins/

CHAPTER 6. PROCESS DIVERSITY AND ITS IMPLICATIONS FOR THE PT

or maintenance system) that provides the context for processes—the process envi-
ronment. Consequently, these properties may be of greatest interest to people who
are responsible for managing, designing or improving processes, rather than directly
executing them.

These high level categories of process diversity need to be distinguished from
finer-grained categories. In particular, it is important to distinguish between process
diversity as an emergent property of a system for developing or maintaining software
(which is the subject of this work), and the intentional introduction of diversity
as a software engineering technique—as in, for example, N -Version Programming
(Avizienis, 1985).

6.2.1 Latitudinal Process Diversity

The term latitudinal process diversity refers to the phenomenon of diverse software
processes operating concurrently. This type of process diversity is often found in
projects that span company boundaries. It has its most severe impacts when software
from several project partners is integrated together (Herbsleb and Grinter, 1999).
This section proposes a model for understanding its main dimensions. The model is
intended to describe diversity in a neutral way, but the underlying assumption is that
some latitudinal process diversity can be creative (or at least harmless) but too much
diversity can be harmful (or at least distracting). This may be too simplistic; it may
be the case that, for example, the approach to managing diversity is as important as
the extent of diversity but one cannot draw sound conclusions about this from a single
case study. This is a research area where software engineering should perhaps seek
more insights from disciplines such as occupational psychology, social anthropology
and management where issues of work group formation, culture and interaction have
been studied.

Role Differentiation

In the simplest kind of software project, the roles of customer, developer and user
are subsumed in a single person. However, as projects increase in complexity, these
roles tend to differentiate in two ways:

1. The various functional roles (customer, developer, maintainer etc.) become
more distinct and behave as separate stakeholders in the system, each one
having characteristic objectives, concerns and priorities.

The recent IEEE Standard on software architecture descriptions, IEEE Std-
1471-2000 (2000), reflects this idea by stating that any viewpoint of a software
system is addressed to one particular stakeholder of the system. Therefore

88

6.2. PROCESS DIVERSITY

any viewpoint may cover only a small subset of the concerns identified in the
architectural description of the system.

2. Particular roles become shared by individuals, teams or organisations, who may
have different notions about how the role should be carried out.

Both kinds of differentiation can lead to latitudinal process diversity. At any moment,
the various units (individuals, teams, departments) within an organisation may be
involved in:

• performing different processes (because the units occupy different roles, e.g.
maintainer, product-line architect, customer); and/or,

• performing the same process in different ways (because the units have differ-
ent cultural or professional approaches to their roles, e.g. programmers and
technical writers producing system documentation).

The findings by Bianchi et al. (2001) show that increasing the number of staff mem-
bers increases the risk of defects and hence rework. This, in turn, generates a greater
gap between expected and real staff requirements. The study also confirms that in
distributed processes there is a greater need for communication among the working
members than in colocated processes.

Cultural Diversity

As an engineering product, software is affected by the environment in which it is
produced. A variety of sociological factors (e.g. the socio-cultural backgrounds of
team members, the structure and business practices of organisations) may lead to
differences in the processes teams use to produce software—see Carmel (1999) for
examples. Thus cultural diversity of various kinds can lead to latitudinal diversity in
software processes. This becomes most apparent in multi-team projects where pieces
of software from different teams need to be integrated into one system.

6.2.2 Longitudinal Process Diversity

The relationship between process diversity and software evolution can be seen most
clearly in the longitudinal case. A fundamental kind of longitudinal process diversity
occurs when software is required to evolve. For example, a program may be originally
developed as a proof-of-concept for some abstract computation with essentially static
requirements. Subsequently, the program may be integrated into an information
system that supports an evolving business process. This brings the program within
the influences of a more dynamically evolving system, and its software process may
need to be adapted accordingly.

89

CHAPTER 6. PROCESS DIVERSITY AND ITS IMPLICATIONS FOR THE PT

The concept of longitudinal process diversity implies a long-term viewpoint on
software processes. In this view, the detailed definitions of individual steps in a
software process are less important than the overall scope and configuration of the
process considered as a system. Over the long term, factors such as the sources of
change to the software product and the nature of the feedback paths in the process
become more influential; these are also important factors in software evolution (Chat-
ters et al., 2000). Conversely, factors such as the choice of programming language
or the use of specific software engineering techniques, like design reviews or code
inspections, become less influential. Thus a longitudinal process diversity viewpoint
has strong similarities with, and complements, a software evolution viewpoint. They
share many concerns (e.g. system maintainability) and modelling techniques (e.g.
system dynamics) but differ in whether the focus is on the process or its product.

6.2.3 Evolution-oriented Models of Software Processes

The relationship between longitudinal process diversity and software evolution will
be illustrated using two software process stereotypes that are distinguished by their
propensity for software evolution. Stereotype 1 models a process that is appropriate
for software with a low propensity for evolution, Stereotype 2 one for software with
a high propensity for evolution. These two represent the extremes of the range that
is likely to be found in practice. Longitudinal process diversity can be understood
as movement within this range during the lifetime of a software product.

Both stereotypes use the systemic viewpoint described in Section 6.2.2 to situate
the engineering process of maintaining software in a broader context. Consequently,
most of the details (and diversity) of software engineering techniques have been
subsumed into a single node Generic Software Change Process. This is a generic
placeholder; it represents a software change process in relation to any life-cycle model,
e.g. the Waterfall model or agile processes like XP (Beck, 1999). The main features
of these process models are illustrated by schematic process diagrams in which the
boxes represent (sub)processes and the arrows represent information flow between
them. The starting point for all maintenance activities which originate from outside
sources have also been combined into a single node Assess Impact of Exogenous
Changes. Exogenous changes include regulatory, technological and market-driven
changes. The diagrams are intended to highlight the distinguishing characteristics
of each model and not to be complete specifications of software processes.

Stereotype 1: Low Propensity for Software Evolution

The process model shown in Figure 6.1 is intended for software products with a low
propensity for evolution. Their functional requirements are likely to evolve slowly, if
at all. In terms of Lehman’s S-P-E taxonomy, they fall into the S-type (Specified) and

90

6.2. PROCESS DIVERSITY

Changes

Requirements

Functional

Analyse
Define Abstract

Computation

Define Abstract

Computing Platform

Assess Impact of
Exogenous

Analyse
Non−functional
Requirements

Deploy

Release

Generic
Software Change

Process

Figure 6.1: Software Process Model, Stereotype 1—Low Propensity for Evolution

P-type (Problem-solving) categories. Implementations of P-type software may need
to be adapted occasionally to take account of changes in their technical environments.
In the case of an S-type program, by definition, its requirements provide a complete
description of the problem to be solved and its implementation does not require any
design compromises. Consequently, there are no strong pressures for such programs
to evolve. For a P-type program, the first condition is slightly relaxed; its functional
requirements may be an abstraction (which can be redefined) from the problem to
be solved, but the problem itself is static. A P-type program has significant non-
functional requirements that must be reconciled with the functional requirements by
the program’s design. Changes in the technical environment can require the program
to be adapted. For example, if a manufacturer stops supporting particular hardware
or compilers, a program which depends on them may have to be ported to a new
platform if it is not to become unusable. Conversely, when new technical capabilities
become available, they can trigger a reconsideration of design compromises, and
possibly a redefinition of the problem abstraction (but not the problem itself) that
is represented by the functional requirements.

Stereotype 2: High Propensity for Software Evolution

When software is embedded in an information system that supports a business (or
social) process, its software process inevitably becomes more complex than the model
in Stereotype 1. Parnas (1994) has used the notion of software aging to characterise
the additional pressures that affect software and software processes in this situation.

One approach to understanding these differences in process can be found in

91

CHAPTER 6. PROCESS DIVERSITY AND ITS IMPLICATIONS FOR THE PT

Changes

Business Process and

Co−evolution of

Information System

Assess Impact of
Exogenous

Requirements

Functional

Analyse

Information

System Usage

Analyse
Re−engineering
Requirements

Release

Deploy

Analyse
Non−functional
Requirements

Generic

Process
Software Change

System Change

Case for Information
Evaluate Business

Figure 6.2: Software Process Model, Stereotype 2—High Propensity for Evolution

Lehman’s “Laws of Software Evolution” (Lehman et al., 1997) and the studies that
he conducted within the Feedback, Evolution And Software Technology (FEAST)
projects (e.g. Chatters et al., 2000). Figure 6.2 shows Stereotype 2, which is a model
of the software process that elaborates Stereotype 1 to take account of the findings
from Lehman’s work that are most relevant to longitudinal process diversity. The
software process modelled in Stereotype 2 is intended for programs which fit into
Lehman’s E-type (Embedded or Evolving) category (Lehman, 1980). The increase
in complexity in this model compared to Stereotype 1 arises from three principal
characteristics of E-type programs:

1. Both initial development and subsequent changes to the software are affected
by an evolving business case which determines both the functional requirements
and constrains the choice of computing platform. The business case can change
at any time for reasons that are ultimately open-ended. Consequently, it is no
longer relevant to distinguish between the parts of the model that are or are
not subject to evolution.

2. The usage of the system produces business benefits. If the system is successful,
this will tend to stimulate co-evolution (Warboys et al., 2000) of the information
system and the business process. This will often result in unanticipated changes
in the system’s requirements via a revised business case.

For example, a successful stock control system may create opportunities for,
say, just-in-time ordering or the development of an “extranet” with trusted
trading partners.

92

6.3. DESCRIPTION OF THE PEOPLE TRACKER SOFTWARE

Crowd Analysis

Video Capture

Event Database

Behaviour Analysis

People Tracking

User Interface

Figure 6.3: People Tracking as one of six subsystems of ADVISOR

3. One of the side-effects of the increased propensity for evolution is that period-
ically it may be necessary for the business case to include some re-engineering
of the information system (Waters and Chikovsky, 1994; Weide et al., 1995).
This path through the process model is shown with dashed lines and boxes in
Figure 6.2. Periodic re-engineering becomes necessary because the co-evolution
of the business process and the information system tends to result in continual
additions of functionality to the system. Consequently, the software tends to
grow both in size and complexity unless work is done to counteract this growth.
The increased size and complexity of the software tends to reduce the produc-
tivity of the maintenance effort. If the re-engineering work is postponed for
too long, there will be an increased risk that maintenance productivity would
decline to a level where the business case cannot be satisfied any longer.

Latitudinal process diversity is less closely related to software evolution than the
longitudinal kind is. Nevertheless, there is an implicit connection between these
concepts. The efficient operation of the processes modelled in Stereotypes 1 and 2
depends in part on the quality of communication between the human participants
in the process. It is a plausible conjecture that high levels of latitudinal process
diversity will tend to undermine the quality of these interactions.

The following sections discuss the Reading People Tracker as an example case
which exhibits both latitudinal and longitudinal process diversity, and where the
corresponding difficulties can be clearly observed.

6.3 Description of the People Tracker Software

The software package studied here is the People Tracker as a subsystem of the inte-
grated surveillance system ADVISOR (Figure 6.3). ADVISOR is being built as part of

93

CHAPTER 6. PROCESS DIVERSITY AND ITS IMPLICATIONS FOR THE PT

Porting to Linux Re−Engineering New Functionality System Integration

Initial Development

Phase 1

Integration with RVT

Phase 2

ADVISOR

Phase 3

Figure 6.4: Main development and maintenance phases of the Reading People Tracker

a European research project involving three academic and three industrial partners.
The task of the People Tracking subsystem is to automatically analyse images from
one or more camera inputs. A stream of video images is continuously fed to the
system, and the subsystem has to detect all the people in the image and track them
in realtime.

6.3.1 Brief History

The evolution of the People Tracker can be divided into three main phases, extending
over 10 years. Figure 6.4 shows an overview of these phases.

Phase 1: Initial Development (1993–1995)

The original People Tracker was written at the University of Leeds in 1993–1995
using C++ running under IRIX on an SGI. It was a research and development system
and a proof of concept for a PhD thesis (Baumberg, 1995). The main focus during
development was on functionality and experimental features which represented the
state-of-the-art in people tracking. Only very limited resources were available for
the design and maintenance of image processing libraries developed and used within
project. For code development a simple process cycle was used to develop the soft-
ware. The only documentation generated was a short programmer’s manual (about
5 pages) describing how to write an application using the People Tracker software.

Phase 2: Integration with a Vehicle Tracker (1995–1998)

In 1995–1998 the code was used in a collaboration between the Universities of Leeds
and Reading. The software was changed to interoperate with the Reading Vehicle
Tracker (RVT) which ran on a Sun Microsystems/Solaris platform (Remagnino
et al., 1997). Little functionality was changed or added during this time and no
new documentation was created. Most of the functional changes made to the People
Tracker during this phase were carried out by its original developer.

94

6.3. DESCRIPTION OF THE PEOPLE TRACKER SOFTWARE

Phase 3: Re-design and Integration into the ADVISOR System (2000–2002)

Since 2000, the People Tracker has been adapted for use within the ADVISOR system
shown in Figure 6.3. As discussed in Chapter 5, its planned use within ADVISOR

carried many requirements the original implementation could not meet. Hence, after
porting it from SGI to a GNU/Linux PC, it was decided to re-engineer the software.
After the re-engineering step new functionality was incorporated into the software
and missing software artefacts were generated. Among these is a comprehensive
manual (Bouffant et al., 2002) which documents the new software process which is
now to be followed for all maintenance work. As the last step within Phase 3, the
People Tracker was integrated into ADVISOR.

6.3.2 Current Status and Outlook

An important result of the re-engineering and documentation process is a new soft-
ware process which is now in place. This documented software process defines

• detailed coding standards, including design patterns (Fowler et al., 1999)

• configuration management (includes the use of CVS for concurrent version man-
agement)

• a number of “HowTos” which document how to implement new classes for the
most important functionalities (e.g. acquiring images, tracking).

One can compare the software process followed in Phase 1 with the one defined
by CMM (Paulk et al., 1993) in “Level 1” while some Key Process Areas are now
comparable to those in CMM “Level 3”. The current (June 2002) status of the
People Tracker can be summarised as follows:

• The software is fully operational with all necessary functionality implemented.

• It can run either in standalone mode or integrated within ADVISOR.

• The re-engineered People Tracker exhibits a high level of maintainability and
all software artefacts are consistent with the implementation.

• The code is being maintained under GNU/Linux. For integration purposes
within the ADVISOR project, releases of the People Tracker subsystem have
been successfully compiled and integrated under Microsoft Windows 2000.

The testing phase for the Tracker running in standalone mode has been successfully
completed. The testing phase for its use in the integrated system is in progress.
Within a few months from now, a prototype of the ADVISOR system will be tested in

95

CHAPTER 6. PROCESS DIVERSITY AND ITS IMPLICATIONS FOR THE PT

Academic Individual A:

Standalone Development

Academic Group D:

Creation of Subsystem 1

Industrial Partner C:

Supply of Input, Integration

Subsystem 2 using 1’s Output

Academic Partner E:

Adaptation and Integration

Academic Individuals A and B:

Longitudinal Process Diversity

La
tit

ud
in

al
 P

ro
ce

ss
 D

iv
er

si
ty

Time

Figure 6.5: Latitudinal and Longitudinal Process Diversity

underground stations in Brussels and Barcelona. There are a number of proposals
for extending the use of the tracking system. An example is to use it to monitor the
activity of a species of rare bat (Mitchell-Jones, 2002).

6.4 Analysis of the Process Diversity for the

People Tracker

Over the 10 years that the People Tracker software has been maintained and used,
a wide range of software processes has been employed. In the following sections,
this phenomenon is examined in more detail, differentiating between the latitudinal
process diversity experienced during Phase 3 and the longitudinal process diversity
occurring over all three phases. The relationships between the phases of the Peo-
ple Tracker’s history and its latitudinal and longitudinal process diversity are sum-
marised in Figure 6.5. An analysis shows whether and how the impact of process
diversity on the project differs with its type, latitudinal or longitudinal.

6.4.1 Latitudinal Process Diversity: Diversity between
Co-operating Groups

The use of the People Tracker within the ADVISOR project led to increased latitudinal
process diversity in Phase 3, compared with Phases 1 and 2. The principal change
was that the academic maintainers, denoted by D in Figure 6.5, had to co-operate
with the industrial partner C, and also with an academic partner E from a different
country. This meant more actors with distinct roles, as well as different (kinds of)

96

6.4. ANALYSIS OF THE PROCESS DIVERSITY FOR THE PT

organisations sharing roles, as discussed in Section 6.2.1. The following description
will concentrate on these three out of the six groups within ADVISOR as the others
do not directly interface with the People Tracking subsystem (cf. Figure 6.3).

In the collaboration with the industrial partner C, the maintainers of the People
Tracker and their partners experienced many “cultural” differences. For example,
there were differences in the partners’ approaches to the use of standards and choices
of tools and platforms. The new People Tracker subsystem was maintained under
GNU/Linux on a PC platform. Academic group D adhered to the ISO C/C++ standard,
compliant with ISO/IEC 9899 (1999), to maximise portability. Towards the end of
the development, all the design and the implementation were consistent with each
other. The documentation, a programmer’s manual and a user’s manual, were typeset
using LATEX. The module developed by industrial partner C, on the other hand, was
developed under Microsoft Windows 2000 using Microsoft Visual C++. There
was no plan to use their modules on different platforms within this project, and
hence their implementation makes use of Microsoft Windows-specific functions, ren-
dering it not easily portable. Their interface and other documents were written using
Microsoft Word which could not easily be read by academic group D.

A consequence of these differences occurred when the People Tracker code, main-
tained under GNU/Linux, had to be compiled with Microsoft Visual C++. It be-
came clear that Microsoft Visual C++ could not compile the ISO C code as its
compiler is not compatible with that standard. The resolution of this incompatibil-
ity required resources that neither partner had budgeted for.

As for the roles of involved people, industrial partner C was not only responsible
for the system integration but were also the project leaders. This creates a situation
of un-even partners, something which is unusual for academic groups and hence
required adaptation on both sides.

6.4.2 Longitudinal Process Diversity and Transition be-
tween Process Models

As the People Tracker evolved through the three phases described above, its process
model changed accordingly. During Phase 1 the process was similar to Stereotype 1
while during Phase 3 it more closely resembled Stereotype 2.

During Phase 1, the main design and programming work was carried out by an
academic individual. The goal was to develop a people tracking application which
would exceed existing applications in performance. The People Tracker uses a large
image processing library which forms an essential part of the software. This library
had to be written in parallel to the main code development. During the process
cycle testing and development were closely connected, and both were in the hands
of a single person. Therefore there were only very limited resources available to

97

CHAPTER 6. PROCESS DIVERSITY AND ITS IMPLICATIONS FOR THE PT

develop and maintain the image processing library. Within other projects in the
same research group image processing algorithms had already been implemented.
However, no code was shared between projects which meant that these algorithms
had to be implemented from scratch. Being an academic research project, there were
also few fixed deadlines for the delivery of code. This meant that all parts of the
code could be freely changed at any given time, and many modules were actually
changed or re-written many times before the final delivery. Once the software and
the PhD thesis were delivered, no functional changes needed to be carried out.

Phase 2 brought only a slight change in the software process. The system was
adapted to incorporate a few new requirements, and the interaction with the vehicle
tracker module was very loose—the two programs were not even compiled together.
The original developer of the software from Phase 1 was involved and carried out
many of the functional changes. This reduced the necessity for a change of processes
from Phase 1 to Phase 2 as the necessary knowledge about the system was available
without the creation of documentation etc.

None of the people involved in Phases 1 and 2 participated in Phase 3. This
resulted in Phase 3 being completely de-coupled from Phases 1 and 2, the only
linking element over time being the source code. Since there was practically no
documentation available for the software, the design methodologies employed during
the process were necessarily different from the ones employed before.

The following new requirements necessitated the creation of a process cycle which
is close to Stereotype 2 (compare Figure 6.2):

• close integration with another ADVISOR module (compiled together) required
interaction with project partners; interfaces needed to be agreed and delivery
deadlines had to be kept.

• the significant functional changes necessitated re-engineering analysis and
changes through refactoring and re-design. For example, one new requirement
was that more than one camera could be used. The use of global variables in
the Phase 2 code made this impossible.

• the People Tracker subsystem had to be de-coupled from software- and
hardware-dependent functions, like SGI hardware graphics routines, so that
it could be maintained under GNU/Linux but used (within ADVISOR) under
Microsoft Windows.

• a strict project schedule with deliverables and milestones was introduced.
Based on deliverables and ADVISOR steering committee decisions, software re-
quirements were changed which meant that also a further feedback loop was in
place.

98

6.4. ANALYSIS OF THE PROCESS DIVERSITY FOR THE PT

Version LOC classes of which instantiated methods global functions

pre-Phase 2 20,454 154 71 (46.1 %) 1,695 271

post-Phase 2 19,380 154 71 (46.1 %) 1,690 271

Phase 3, a 24,797 191 80 (41.9 %) 1,913 286

Phase 3, b 25,306 183 97 (53.0 %) 1,714 25

Phase 3, c 23,581 178 85 (47.8 %) 1,664 24

end Phase 3 16,472 122 82 (67.2 %) 1,231 9

Table 6.1: Measurements of the People Tracker over Time

• the planned use of the People Tracker for related, but different applications
(like tracking bats, see Mitchell-Jones, 2002) or scaling of the system for larger
applications inspired the generalisation of tracking concepts within the soft-
ware, keeping in mind possible future uses.

6.4.3 Metrics and Further Analysis

Table 6.1 shows a brief summary of the characteristics of the People Tracker at
different stages of its lifetime. The metrics were obtained using the CCCC (C and
C++ Code Counter) tool by Littlefair (2001), which is based on the metrics proposed
by Chidamber and Kemerer (1994). The size is given in Lines of Code (LOC), not
counting empty or comment lines.

Code Size The code size as well as the number of classes and methods has varied
considerably. Up to the first stage within Phase 3, functionality was simply
added without removing much unused functionality. Nevertheless, very lit-
tle code was added during Phase 2 when the People Tracker was changed to
interoperate with the Reading Vehicle Tracker.

When the re-engineering stage within Phase 3 started, there was also little
change in code size. The explanation the developers gave is that at this stage,
unused functionality was identified and marked as such. However, until the
end of Phase 3, while new functionality for ADVISOR was added, most of the
unused legacy functionality was kept in case it would be needed again. When
it was finally removed in the last version examined here, one can see the sharp
decrease in code size.

Global Functions The original code contained a large number of global functions.
This number was substantially reduced during the re-engineering stage and
again when most of the unused functionality was removed.

From our experience of Phase 3, one can infer several connections between the
process changes described earlier and the product characteristics described above:

99

CHAPTER 6. PROCESS DIVERSITY AND ITS IMPLICATIONS FOR THE PT

• The new software process, being closer to Stereotype 2, includes a new design
strategy, which observes more dependencies and also considers possible future
uses of the software. For example, one of its effects is the reduction of global
functions to a minimum.

• One result of the re-engineering step in Phase 3 is that the size of the code was
reduced and the proportion of used functionality increased. This can be seen in
the percentage of instantiated classes given in Table 6.1. While in the original
version of the software only 46.1 % of the defined classes were instantiated, this
percentage has now gone up to 67.2 %. The reduction in redundancy directly
improves software maintainability.

• The generated software artefacts and the re-designed code structure make it
easier to understand and change the software. The current maintainers have
already noticed the change as they compared the way in which students ap-
proached the unknown code when they started to work on the project, before
and after the re-engineering process.

6.5 Lessons Learned

The proposed distinction between latitudinal and longitudinal process diversity is in-
tended to help software managers analyse process diversity by providing a conceptual
framework. Using this framework, corrective or preventive measures can be related
to a particular type of process diversity. In this sense, our classification modularises
process diversity.

In process assessment and improvement, e.g. using G/Q/M (van Solingen and
Berghout, 1999), it is of great importance to have a detailed analysis of the process.
Such knowledge decreases the semantic gap between the high level G/Q/M goals
and the questions which need to be asked in building the “G/Q/M tree” (which is a
directed acyclic graph). Process improvement may be done to control the negative
aspects of process diversity. In this case, our classification framework can help in
G/Q/M analysis by relating a G/Q/M goal to an improvement action.

A process is executed within a process environment. The environment should pro-
vide mechanisms to address the issues related to process diversity. Our classification
can provide additional insight into such mechanisms.

In the following, some of the actions are outlined which can be taken to counteract
the negative impacts of each type of process diversity.

100

6.5. LESSONS LEARNED

6.5.1 Latitudinal Process Diversity

Whenever partners interact, it is important to build a good co-operative atmosphere
where partners can work together as a “virtual team”, joined by common goals (Wells
and Harrison, 2001). Participating teams should spend time at the beginning of a
project to understand each other’s processes, vocabulary, tools and perspective. For
example, one development team could participate in seminars or workshops spon-
sored by the other team. This will also help to break down barriers stemming from
cultural differences, creating a better working environment.

Interface issues should be identified and resolved at the beginning of a project
rather than reactively as problems arise. Anderson et al. (2001) have proposed a
similar idea for handling usability aspects at the start of a project. These issues
include not only the functional interfaces required by the software system but also
the in-process interfaces between project partners (e.g. for exchanging documents).
Shared commitments to using open standards like HTML and XML for data exchange
can help both cross-cultural and cross-platform document exchanges.

It is very important that partners be flexible about the detailed definition of
processes and should try to tolerate minor differences. For example, one partner’s
processes cannot usually be imposed on another partner without creating problems.
One way to achieve the necessary flexibility could be a periodic review process for
processes, which should include a method for reaching consensus. This should be
compounded by a constant high level of communication, as recommended by Herbsleb
and Grinter (1999).

6.5.2 Longitudinal Process Diversity

When developing software, one should be aware that in the future, it might be re-
used in different projects and contexts. In order to minimise problems stemming
from longitudinal process diversity the following points should be kept in mind:

Scalability: this mostly affects the software design process. Aim for a good object-
oriented structure, avoiding global functions.

Portability: use of ISO and other standards and minimise the use of non-portable
soft- and hardware functions.

Generality: use as few prior assumptions on input and output data as possible, and
use abstract concepts during design (e.g. when programming a People Tracker,
find a layer of abstraction for tracking methods—the system might be used to
track animals in the future).

Interoperability: use open standards (e.g. XML) for data exchange. This reduces
platform dependencies for data, documents and configuration information.

101

CHAPTER 6. PROCESS DIVERSITY AND ITS IMPLICATIONS FOR THE PT

Maintainability: probably the most important point, and connected to several of
the above. The following measures are recommended to attain a high level of
maintainability:

• carefully choose, document and follow a suitable software process to
achieve a high software process consistency over time.

• create all software artefacts (e.g. programmer’s and user manuals) and
keep them synchronised with the implementation.

• do refactoring (Demeyer et al., 2000) “on the fly”. This can involve in-
cremental reverse engineering using design patterns (Fowler et al., 1999).

• use metrics periodically to monitor design quality.

In order to avoid problems arising from longitudinal process diversity it is particularly
important allocate enough resources for software quality and related tasks.

6.6 Conclusions

In a piece of software the size and age of the Reading People Tracker process diversity
can easily occur. This is especially so in academic software projects where software
processes are usually not well defined and therefore vary with the different people
and different research projects a piece of software might be developed and used in.
Process diversity thus covers a wide field, occurring in many situations and forms.

A way has been presented to classify process diversity into longitudinal and lat-
itudinal categories. By studying the case of the Reading People Tracker project
which exhibits both types of process diversity, it has been shown how the effects
on the quality of products and processes differ with the type of process diversity
encountered.

The effects of longitudinal process diversity are most relevant where software
components or products are reused within significantly different processes. This
implies that software engineers should try to anticipate the possibility of component
reuse within different processes, even when the detailed form of reuse cannot be
predicted.

The effects of latitudinal process diversity are likely to be felt most strongly where
“virtual teams” are created for a specific project, especially if the participants are
drawn from contrasting traditions of software development and other processes.

It is hoped that understanding the differences between these kinds of process di-
versity will help software engineers and project managers to assess their implications
for process and product quality, and their impact on risk management in projects.
Furthermore, relating process diversity to broader concepts of software evolution

102

6.6. CONCLUSIONS

provides a linkage between fine-grained process improvements and larger-scale, or-
ganisational models of the co-evolution of software and business processes.

103

CHAPTER 6. PROCESS DIVERSITY AND ITS IMPLICATIONS FOR THE PT

104

Chapter 7

Validation of the New People
Tracker

In this chapter the Reading People Tracker is validated using test data
from a surveillance camera in an underground station. It is demonstrated
that robust realtime tracking of people can be achieved with the new
tracking system using standard PC hardware.

After demonstrating the functionality of the Reading People Tracker in Section 4.4
it will now be validated to determine whether it is suitable for robust long-term
tracking of people in an underground station.

7.1 Experimental Setup

7.1.1 Test Data

The video sequence used for these experiments was collected at the YZER under-
ground station in Brussels. The feed from the analogue video camera was recorded
on analogue s-vhs video tape and subsequentially digitised at the original PAL res-
olution of 768 × 576 pixels. Digitisation was done at a frame rate of 5 frames per
second (fps). The 1350 frames of the sequence, ranging from numbered frames 280
to 1629, are therefore equivalent to 4:30 minutes of video. The digitised images
were compressed using JPEG image compression at a compression ratio of approxi-
mately 13 : 1 (file size 34 KB). Camera 02, which was used in these experiments, is a
monochromatic (greyscale) camera at a low height from the ground viewing platform
2. There is a time overlay in the top left corner of the video image. Figure 7.1 shows
an image from the video sequence.

The camera was calibrated using 3D point measurements from images with a per-
son holding a measuring rod. From this a 3× 4 projection matrix P was determined

105

CHAPTER 7. VALIDATION OF THE NEW PEOPLE TRACKER

Figure 7.1: View from the YZER station surveillance camera 02

which translates homogeneous world coordinates to homogeneous image coordinates.
Thus for a point (x, y, z) in world coordinates with a corresponding image point (u, v)
the equation





u

v

1



 = P ·









x

y

z

1









(7.1)

holds up to scale. The general accuracy of the calibration data is fair while naturally
large inaccuracies occur in areas near the scene’s vanishing point in the image.

7.1.2 Configuration of the People Tracker

The Reading People Tracker was run with all four modules enabled: Motion De-
tector, Region Tracker, Head Detector and Active Shape Tracker. After adjusting
the configuration parameters to the sequence the tracker was run in batch mode (no
user input, no screen output). Video images with overlayed results, an XML file with
tracking output and additional text output were written to hard disk.

In the given video sequence, the image quality is not very good and in some areas
of the image the contrast of people against the background is very low. Therefore
the Motion Image was processed before extracting moving regions from it. The filter
that was used is a simple dilation filter (Kasturi and Trivedi, 1990) which fills holes

106

7.2. EXPERIMENTAL RESULTS

in the motion image which are up to 1 pixel in size. Thus blobs which are very close
together are connected and extracted in one moving area.

The model depth (PCA dimension) used for the Active Shape Tracker is 10,
catmeaning that only the first 10 PCA modes for the 64-dimensional shape model
are varied to fit the contour shape to measurements in the image1.

7.2 Experimental Results

Figures 7.2 and 7.3 show key frames from three important passages of the sequence.
These key tracking events will be briefly explained here. Section 7.3 below will
summarise the results.

In the video images shown in the Figures 7.2 and 7.3 tracking results have been
visualised by drawing the bounding boxes of every region tracked by the Region
Tracker and by drawing the contour of the person tracked by the Active Shape
Tracker. When objects are drawn in the same colour, their identification record is
the same. The output from the Head Detector is used to initialise shapes in the
Active Shape Tracker, but the detected heads are not drawn here.

Frames shown in Figure 7.2, page 108:

Frame 283 One person, “A”, is standing at the far end of the platform. Although
still very small in the image, person A, marked in yellow, is picked up by both
Region Tracker and Active Shape Tracker. The Active Shape is initialised
from the Region Tracker and Head Detection output. Thus the two tracks get
assigned the same identity by the two trackers, but they are tracked separately.

Frame 490 Person A has come closer to the camera. It can now be seen how the
Active Shape Tracker approximates the person’s outline in the image. While
the person’s general appearance is modelled well, the model does not explain
the bag carried by the person and the fact that he is leaning slightly to the
right.

Frame 706 Person A has walked back to the far end of the platform. Meanwhile,
a second person, “B”, has entered the scene from the front, turning around to
sit down on a bench close to the camera. Only the upper part of his body can
be seen, and the Active Shape Tracker cannot initialise a shape. However, the
Region Tracker keeps track of the person (marked by a green bounding box).

1The results do not depend much on the model depth; using a maximum model depth of 5 yields
very similar results.

107

CHAPTER 7. VALIDATION OF THE NEW PEOPLE TRACKER

(a) Frame 283 (b) Frame 490

(c) Frame 706 (d) Frame 933

(e) Frame 960 (f) Frame 970

(g) Frame 986, Motion
Image

(h) Frame 986

Figure 7.2: Frames 283 through 986 (time: 0:00 to 2:20.6 minutes)

108

7.2. EXPERIMENTAL RESULTS

Frame 933 At this point, person A has moved so far away from the camera that the
motion image does not show him clearly. Consequently the Region Tracker does
not have a measurement for this frame. However, the Active Shape Tracker
keeps tracking the person, and the Region Tracker uses part of the output from
the Active Shape Tracker (the bounding box of the contour) to adjust and keep
the track.

Frame 960 2:15 minutes into the sequence a woman, person “C”, enters the scene
from the front. Her head is tracked by the Region Tracker, drawn in red. The
Active Shape Tracker fails to initialise the track because only a small part of
her outline is visible at this stage.

Frame 970 A few frames later, the Active Shape Tracker has picked up the track of
person C, assigning to it the identity and tracking history of the corresponding
region which has been tracked by the Region Tracker for a while.

Frame 986 At this point in time, the three people come so close in the image that
they are extracted as one large region from the Motion Image. As a result,
the track of the sitting person, B, is not detectable for a short period of time.
Persons A and C are still tracked. The reason why only two of the tracks are
recovered is that the Region Splitting feature in the Region Tracker currently
only handles the case of splitting a region into two, not more.

Frames shown in Figure 7.3, page 110:

Frame 994 After a few frames, person B is detected by the Motion Detector again,
and the Region Tracker takes over the track. It realises that this is the same
person seen previously and consequently assigns the same identity and tracking
history. This is possible because person B’s track was only lost for a few frames,
and the person has not moved much in the meantime. Person C is still tracked
well while person A is too much occluded to be detected at this time.

Frame 1010 The Region Tracker has again taken up track of person A. Thereby
all people are tracked again with their original identities.

Frame 1039 Person C sits down on a bench. The Active Shape Tracker is not
trained to recognise this deformation of a person’s outline and thus has dif-
ficulties to detect the correct outline. The current shape estimate, although
not backed up by many image measurements, is drawn here to illustrate this.
The Region Tracker keeps tracking person C even when seated since it is not
specialised to track objects with particular appearances only.

109

CHAPTER 7. VALIDATION OF THE NEW PEOPLE TRACKER

(a) Frame 994 (b) Frame 1010

(c) Frame 1039 (d) Frame 1191

(e) Frame 1193 (f) Frame 1243

(g) Frame 1325 (h) Frame 1326

Figure 7.3: Frames 994 through 1326 (time: 3:18.8 to 4:25.2 minutes)

110

7.3. SUMMARY AND CONCLUSIONS

Frame 1191 Person A has come even closer to person C in the image and partly
occludes C. The Active Shape Tracker’s estimate of C’s contour therefore de-
grades further. The upper part of C’s body is now estimated to be a small
person standing on the bench.

Frame 1193 When the occlusion of person C is maximal she is not detected and
the track lost for a short time. The other people are tracked fine.

Frame 1243 As all people are again separate in the image the tracks are resumed
with correct identities. Person A is walking toward the camera and as he gets
closer some inaccuracies of the model (e.g. the head) again become apparent.
However, the track is closely maintained by the Active Shape Tracker. Person C
is still seated. The Region Tracker shows a correct track of C while the Active
Shape Tracker again exhibits the inadequacy of its shape model for sitting
people.

Frame 1325 Person A has left the scene. At this point in time the video signal is
affected by some noise which causes the lower image to be distorted. Conse-
quentially person B is not detected for one frame.

Frame 1326 The track of person B is again taken up with the correct identity.

7.3 Summary and Conclusions

7.3.1 Tracking Performance

The results show a good overall performance of the Reading People Tracker. Over
4:30 minutes all people have been tracked with correct identities, resulting in long-
time tracking output which can be used for behaviour analysis.

Figure 7.4 shows detailed statistics on the performance of the Region Tracker
(RT) and the Active Shape Tracker (AST). Separate graphs for each person show
when the person was tracked by each of the trackers. The axes are scaled to show the
time when the person in question is visible in the image. This also means that the
frame numbers are not aligned between the three graphs. Short annotations in the
graphs point out the reasons why tracking fails in a few situations; these situations
were described in more detail above.

Several times during the sequence, the Region Tracker kept tracking a person
when the Active Shape Tracker failed. This happened in circumstances where the
active shape model had to cope with people’s shapes it had not been trained to
recognise (e.g. people sitting down) or when insufficient part of a person’s outline
was visible. The Active Shape Tracker itself aided the Region Tracker in situations
where the Motion Detector could not extract clear moving images of people. In these

111

CHAPTER 7. VALIDATION OF THE NEW PEOPLE TRACKER

300 400 500 600 700 800 900 1000 1100 1200 1300
Frame

AST tracking

AST failure

RT tracking

RT failure

Tracking Statistics for Person 1
Region Tracker (RT) and Active Shape Tracker (AST)

(person too small in Motion Image)

(occlusion with person 3)

700 800 900 1000 1100 1200 1300 1400 1500 1600
Frame

AST tracking

AST failure

RT tracking

RT failure

Tracking Statistics for Person 2
Region Tracker (RT) and Active Shape Tracker (AST)

(occlusion with person 3) (image corrupted)

(only head of person is visible)

1000 1100 1200 1300 1400 1500 1600
Frame

AST tracking

AST failure

RT tracking

RT failure

Tracking Statistics for Person 3
Region Tracker (RT) and Active Shape Tracker (AST)

(occlusion with person 1)

(occlusion with person 1)

(bad matches due to person sitting down)

Figure 7.4: Performance of Region Tracker and Active Shape Tracker

112

7.3. SUMMARY AND CONCLUSIONS

situations the Region Tracker has used the output from the Active Shape Tracker
(bounding box of current shape estimate) for tracking, if available. In Figure 7.4 this
is still marked as “RT failure”.

The combined tracker has tracked all people reliably. In some situations tracks
were lost for a few frames by one or even both of the individual trackers. However,
all these tracks were re-established at a later stage by at least one of the trackers.

It can also be observed that it clearly helps to keep predicting a track for a
few frames when it is not detectable. Once the track is re-gained the identity and
tracking history can thus be established. This was helpful in a few cases especially
when there is occlusion or a corrupted image.

7.3.2 Processing Speed

In the experiment described above the processing speed was 4.34 frames per second
(fps). The processing includes reading video images in JPEG format from hard
disk and uncompressing them using a standard system library. Tracking results
were written out in XML format, but no images were displayed to screen. The image
dimensions were the standard PAL format (768×576 pixels). The tracker was run on
a PC equipped with two CPUs, each one a 1 GHz Pentium III, running GNU/Linux

version 2.4.19. Although two CPUs are installed in the system, essentially only one of
them was used, and the other one was 99 % idle. While the Reading People Tracker
is multi-threaded it uses one processing thread per camera. In the experiment only
one camera was used and therefore in this situation multi-threading did not have a
substantial effect.

One of the reasons why the target frame rate of 5 fps was not achieved is that the
Motion Image was post-processed with a dilation filter. This was necessary because
of low contrast of the people to the background in some areas of the image. When
disabling motion image dilation the frame rate increases to 5.49 fps which is more
than sufficient.

In the ADVISOR system, the image dimensions are reduced to a quarter of the
above size in pixels—that is, 384×288 pixels. Most of the CPU time is used for image
processing operations which are done for every pixel. Using these reduced image
sizes therefore significantly increases processing speed. This has been confirmed in
separate experiments.

7.3.3 Conclusions

It has been shown that the Reading People Tracker can successfully track people
in camera images over an extended period of time. The combination of a Region
Tracker with an Active Shape Tracker introduces a redundancy which more than
once prevented track loss in difficult situations, e.g. occlusion.

113

CHAPTER 7. VALIDATION OF THE NEW PEOPLE TRACKER

The experiment has also shown that processing speed depends on image qual-
ity. Low image quality and low contrast necessitate post-processing of images with
image filters. These image filters increase tracking robustness but also slow down
processing. This is particularly significant when images with large dimensions are
used because these operations are done for every pixel in the image.

114

Chapter 8

Conclusions

8.1 Summary of Work

The work presented in this thesis was concerned with building a people tracking ap-
plication for automated visual surveillance of an underground station. The Reading
People Tracker which has been designed and implemented for this purpose solves the
task of tracking people reliably and in realtime. The new people tracker has been
integrated into the automated visual surveillance system ADVISOR for which it has
been adapted and extended from an existing tracker, the Leeds People Tracker by
Adam Baumberg.

In Chapter 3 a method is introduced to filter video images in a way which
minimises the influence of image noise and bad image quality on people tracking al-
gorithms. Tests on images with typical image noise from an underground surveillance
system show how edge contrast has been increased by the proposed method.

Chapter 4 describes the tracking algorithms used in the Reading People Tracker.
The task of people tracking is carried out by four detection and tracking modules: a
Motion Detector, a Region Tracker, a Head Detector and an Active Shape Tracker.
Their combination and co-operation introduces redundancy and thereby a greater
robustness and generality of the tracker. The new algorithms have been shown to
aid tracking in a demonstration of the new features and co-operation techniques.

An important aspect of the Reading People Tracker is the maintainability of
its software. Using software re-engineering techniques the tracker was made highly
maintainable, making it possible to adapt, extend and improve the software with ease.
In Chapter 5 this re-engineering process and its influence on the maintainability of
the people tracker was studied from a software engineering perspective.

Chapter 6 investigates the software engineering aspect of the Reading People
Tracker in more detail. It focuses on the software processes which have been used
to maintain the software over its lifetime of 10 years. It was shown that not only

115

CHAPTER 8. CONCLUSIONS

the quality of a software process but also the diversity of software processes has a
significant impact on software. A new classification scheme for process diversity into
two broad types, latitudinal and longitudinal process diversity was presented. The
influence of both types on the quality of software was examined.

In Chapter 7 the Reading People Tracker was validated against test data col-
lected from an underground station in Brussels. The experimental results shows that
the new Reading People Tracker is suitable for tracking people over a long period of
time in a robust and reliable manner.

8.2 Discussion

The Reading People Tracker which has been developed in this thesis uses a combina-
tion of four co-operating detection and tracking modules to track people in camera
images. Each of the modules is of medium to low complexity. The approach of
combining multiple algorithms and letting them exchange their results succeeds in
overcoming some limitations which individual modules have. At the same time, the
negative aspects of more complex algorithms like full 3D models of human beings
are avoided. The overall people tracker has been shown to track individuals robustly
in the presence of occlusion and low image quality.

Existing problems for the tracker are situations in which the background model
fails, and strong occlusion. The first problem occurs when there are fast lighting
changes, e.g. when there are clouds in the sky in outdoor surveillance scenes. Indoors
this can happen when a train arrives and the camera’s automatic gain control (AGC)
adjusts to the new overall brightness of the image. The second problem, occlusion,
becomes apparent when groups of people are tracked. The strategy of the tracker is
to separate individuals within a group using Head Detection and the Active Shape
Model, and subsequentially Region Splitting. When these measures fail, the group
is only tracked as a single moving object by the Region Tracker.

8.3 Future Work

By carefully designing the structure and implementation of the Reading People
Tracker the software has been made highly maintainable. It can easily be scaled,
extended and otherwise adapted for different tracking tasks in future projects. One
example would be the addition or replacement of a detection or tracking module.
Documentation is available on how to understand the design of the people tracker
and then carry out these tasks (Bouffant et al., 2002). There follows are a few
suggestions for future changes and additions.

Future applications of the Reading People Tracker may require a different Motion

116

8.3. FUTURE WORK

Detector. This is particularly important if the tracker is to be used in an outdoor
surveillance situation. In Section 2.1.2, motion detection techniques with more so-
phisticated background models have been introduced. A trade-off has to be made
between performance and processing speed since these complex motion detectors are
very CPU intensive.

This thesis has not tried to solve the problem of tracking dense groups of people—
that is, groups where there is heavy occlusion between people. For the ADVISOR

system this problem is not so important as most events that are to be detected (e.g.
vandalism) involve only a few people and do not usually take place when many of
the people are around.

The design of the Reading People Tracker allows many detection and parameters
to be changed and “tuned” to a particular situation or scene. The total number of
configuration options is 115, although about a third of these options are file names
and other options which are not concerned with tracking. The number of tracking
parameters which have been modified for the test runs presented in this thesis does
not exceed 10. It would be an interesting project to find out which parameters can be
left constant and which can be derived from other parameters. This would have to be
done with a special statistical tool which runs the tracker automatically with varying
parameters. It also necessitates the availability and use of “ground truth”—that is,
known tracking results—for a large set of video sequences.

117

CHAPTER 8. CONCLUSIONS

118

List of Figures

1.1 The task of detecting and tracking people 2
1.2 People Tracking as one of six subsystem of ADVISOR 2
1.3 Structure of the Reading People Tracker 3

2.1 Example image with three blobs and a region 8
2.2 Example Motion Image . 9
2.3 People tracked by the Leeds People Tracker 12
2.4 Detection hierarchy within the Leeds People Tracker 13
2.5 Edge search for shape fitting . 14
2.6 The W4 system: Detected body parts 17
2.7 Gavrila’s 3D tracker: Views of recovered torso and head 20
2.8 Sidenbladh’s 3D people tracker: Superimposed model on tracked person 21
2.9 Overview of the six subsystem of the ADVISOR system 25
2.10 Incremental stages and requirements within the ADVISOR project . . . 26

3.1 The path of an image from the video camera to the tracker 34
3.2 The way a video image is used by the People Tracker 36
3.3 Local search for edges during shape fitting 37
3.4 Alternative methods to produce the Difference Image 38
3.5 Video image used for colour filtering experiments 39
3.6 Chrominance channels CB and CR of the original Video Image 40
3.7 Video Image and Colour Difference Image used for Experiments . . . 42
3.8 Filtering the Colour Difference Image 43
3.9 Differencing filtered Video and Background Images 45

4.1 People Tracking as one of six subsystem of ADVISOR 48
4.2 Overview of the four modules of the Reading People Tracker 49
4.3 Problem during motion detection, solved by Region Splitting 51
4.4 The Algorithm of the Reading People Tracker 53
4.5 Head detected by the Head Detector 56
4.6 Interaction between tracking modules 59
4.7 Frame 2 (Motion and Video Images); Frames 3 and 4 (Video Images). 63

119

LIST OF FIGURES

4.8 Frames 39 and 55 (Video Images). 64
4.9 Initialisation and refined tracks, frame 6 65

5.1 Data flow within the ADVISOR integrated system 73
5.2 Sequence of work carried out during re-design 75
5.3 Reading People Tracker: Size in Lines of Code over Time 78
5.4 Use Case for the People Tracker (in Standalone/Development Mode) 79
5.5 Use Case for the People Tracker (as a Subsystem of ADVISOR) 80
5.6 Software Packages of the People Tracker 81
5.7 High level Sequence Diagram of the People Tracker within ADVISOR . 82

6.1 Software Process Model, Stereotype 1—Low Propensity for Evolution 91
6.2 Software Process Model, Stereotype 2—High Propensity for Evolution 92
6.3 People Tracking as one of six subsystems of ADVISOR 93
6.4 Main development and maintenance phases of the Reading People

Tracker . 94
6.5 Latitudinal and Longitudinal Process Diversity 96

7.1 View from the YZER station surveillance camera 02 106
7.2 Frames 283 through 986 (time: 0:00 to 2:20.6 minutes) 108
7.3 Frames 994 through 1326 (time: 3:18.8 to 4:25.2 minutes) 110
7.4 Performance of Region Tracker and Active Shape Tracker 112

120

List of Tables

5.1 Measurements for different versions of the Reading People Tracker . . 74
5.2 Distribution of the Maintenance Effort 77
5.3 Maintenance effort by category, compared to the industry average . . 77

6.1 Measurements of the People Tracker over Time 99

121

LIST OF TABLES

122

Bibliography

Jean Anderson, Francie Fleek, Kathi Garrity and Fred Drake. Integrating us-
ability techniques into software development. IEEE Software, 18(1):46–53, Jan-
uary/February 2001.

Algirdas Avizienis. The N-version approach to fault-tolerant software. IEEE Trans-
actions on Software Engineering, 11(12):1491–1501, December 1985.

Harry G Barrow, Jay M Tenenbaum, Robert C Bolles and Helen C Wolf. Parametric
correspondence and Chamfer matching: Two new techniques for image matching.
In Proceedings of the 5th International Joint Conference on Artificial Intelligence,
pages 659–663, 1977.

Adam M Baumberg. Learning Deformable Models for Tracking Human Motion. PhD
thesis, School of Computer Studies, University of Leeds, Leeds, UK, October 1995.
ftp://ftp.comp.leeds.ac.uk/comp/doc/theses/baumberg.ps.gz.

Adam M Baumberg. Hierarchical shape fitting using an iterated linear filter. In Pro-
ceedings of the Seventh British Machine Vision Conference (BMVC96), pages 313–
322. BMVA Press, 1996. http://www.bmva.ac.uk/bmvc/1996/baumberg_1.ps.gz.

Adam M Baumberg. Personal communication, November 2002.

Adam M Baumberg and David Hogg. An adaptive eigenshape model. In Proceedings
of the Sixth British Machine Vision Conference (BMVC95), volume 1, pages 87–96,
1995. http://www.scs.leeds.ac.uk/vision/proj/amb/Postscript/bmvc2.ps.Z.

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading, USA, 1999.

Alessandro Bianchi, Danilo Caivano, Filippo Lanubile, Francesco Rago and Giuseppe
Visaggio. Distributed and colocated projects: A comparison. In Proocedings of the
7th Workshop on Empirical Studies of Software Maintenance (WESS01), pages
65–69, 2001.

123

ftp://ftp.comp.leeds.ac.uk/comp/doc/theses/baumberg.ps.gz
http://www.bmva.ac.uk/bmvc/1996/baumbergchar 95
elax 1.ps.gz
http://www.scs.leeds.ac.uk/vision/proj/amb/Postscript/bmvc2.ps.Z

BIBLIOGRAPHY

Tugdual Le Bouffant, Nils T Siebel, Stephen Cook and Steve Maybank. The
Reading People Tracker version 1.12: Reference manual. Technical Report
RUCS/2002/TR/11/001/A, Computational Vision Group, Department of Com-
puter Science, The University of Reading, Reading, UK, November 2002.

François Brémond and Monique Thonnat. Tracking multiple non-rigid objects in
a cluttered scene. In Proceedings of the 10th Scandinavian Conference on Image
Analysis (SCIA ’97), Lappeenranta, Finland, volume 2, pages 643–650, June 1997.
http://www-sop.inria.fr/orion/Publications/Articles/PostScript/SCIA97.ps.

Qin Cai, Amar Mitiche and J K Aggarwal. Tracking human motion in an indoor envi-
ronment. In Proceedings of the 2nd International Conference on Image Processing
(ICIP’95), pages 215–218, 1995.

Erran Carmel. Global Software Teams: Collaborating Across Borders and Time
Zones. Prentice Hall, New Jersey, USA, 1st edition, 1999.

Fabiano Cattaneo, Alfonso Fuggetta and Luigi Lavazza. An experience in process
assessment. In Proceedings of the 17th International Conference on Software En-
gineering (ICSE-17), Seattle, USA, pages 115–121, April 1995.

Brian W Chatters, Meir M Lehman, Juan F Ramil and Paul Wernick. Modelling a
software evolution process: A long-term case study. Software Process Improvement
and Practice, 5(2–3):91–102, June–September 2000.

Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

Nicolas Chleq, François Brémond and Monique Thonnat. Image understanding for
prevention of vandalism in metro stations. In Carlo S. Regazzoni, Gianni Fabri and
Gianni Vernazza, editors, Advanced Video-based Surveillance Systems, volume 488
of The Kluwer International Series in Engineering and Computer Science, chapter
3.2, pages 106–116. Kluwer Academic Publishers, Boston, USA, November 1998.

James L Crowley and François Bérard. Multi-modal tracking of faces
for video communications. In Proceedings of the Conference on Com-
puter Vision and Pattern Recognition (CVPR’97), pages 640–645, 1997.
http://iihm.imag.fr/publs/1997/CVPR97_MMTracking.ps.gz.

Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz. Finding refactorings via
change metrics. In Proceedings of the 2000 ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA 2000),
pages 166–177, October 2000.

124

http://www-sop.inria.fr/orion/Publications/Articles/PostScript/SCIA97.ps
http://iihm.imag.fr/publs/1997/CVPR97char 95
elax MMTracking.ps.gz

BIBLIOGRAPHY

Raymond Dion. Process improvement and the corporate balance sheet. IEEE Soft-
ware, 10(4):28–35, July/August 1993.

Matthew Lee Domsch and Stephen R Schach. A case study in object-oriented main-
tenance. In Proceedings of the 1999 International Conference of Software Mainte-
nance (ICSM ’99), Oxford, UK, pages 346–352, August 1999.

John C Doppke, Dennis Heimbigner and Alexander L Wolf. Software process mod-
eling and execution within virtual environments. ACM Transactions on Software
Engineering and Methodology (TOSEM), 7(1):1–40, January 1998.

Ahmed Elgammal, David Harwood and Larry Davis. Non-parametric model for
background subtraction. In David Vernon, editor, 6th European Conference on
Computer Vision (ECCV 2000), Dublin, Ireland, pages 751–767. Springer Verlag,
2000.

Norman E Fenton and Shari Lawrence Pfleeger. Software Metrics. PWS Publishing
Company, Boston, USA, 2nd edition, 1996.

Adrian Ford and Alan Roberts. Colour space conversions. Available at
http://www.inforamp.net/~poynton/PDFs/coloureq.pdf, August 1998.

David A Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice
Hall, New Jersey, USA, 2003.

Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley, Reading, USA,
1999.

Dariu M Gavrila. Vision-based 3D Tracking of Humans in Action. PhD thesis,
Department of Computer Science, University of Maryland, College Park, USA,
1996. http://www.gavrila.net/Publications/thesis_ps.zip.

Dariu M Gavrila and Larry S Davis. Tracking of humans in action: A 3-D model-
based approach. In ARPA Image Understanding Workshop, Palm Springs, USA,
pages 737–746, February 1996. http://www.gavrila.net/iuw.ps.Z.

Neil A Gershenfeld. The Nature of Mathematical Modeling. Cambridge University
Press, Cambridge, UK, 1999.

Ronald L Graham. An efficient algorithm for determining the convex hull of a finite
planar set. Information Processing Letters, 1(4):132–133, June 1972.

David Gries. The Science of Programming. Springer-Verlag, New York, USA, 1981.

125

http://www.inforamp.net/char 126
elax poynton/PDFs/coloureq.pdf
http://www.gavrila.net/Publications/thesischar 95
elax ps.zip
http://www.gavrila.net/iuw.ps.Z

BIBLIOGRAPHY

Ismail Haritaoglu, David Harwood and Larry S Davis. W4: Real-time surveillance
of people and their actions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):809–830, August 2000.

James Herbsleb, Anita Carleton, James Rozum, Jane Siegel and David Zubro. Bene-
fits of CMM-based software process improvement: Initial results. Technical Report
CMU/SEI-94-TR-013, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, USA, August 1994.

James D Herbsleb and Rebecca E Grinter. Splitting the organization and integrating
the code: Conway’s law revisited. In Proceedings of the 21st International Confer-
ence on Software Engineering (ICSE 1999), Los Angeles, USA, pages 85–95, May
1999.

Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, October 1969.

David Hogg. Model-based vision: A program to see a walking person. Image and
Vision Computing, 1(1):5–20, February 1983.

Watts Humphrey. Introduction to software process improvement. Technical Report
CMU/SEI-94-TR-007, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, USA, August 1992. Revised version, August 1993.

IEEE Std-1471-2000(2000). IEEE Std-1471-2000: Recommended Practice for Ar-
chitectural Description of Software Intensive Systems. IEEE Computer Society,
Piscataway, USA, 2000.

POSIX 1003.1c-1995(1995). IEEE POSIX 1003.1c-1995. IEEE Standards Associa-
tion, 1995.

ISO/IEC 9126(1991). ISO/IEC 9126. International Organization for Standardiza-
tion, Geneva, Switzerland, 1991.

ISO/IEC 12207(1995). ISO: Information Technology—Software Life Cycle Processes.
ISO/IEC 12207:1995. International Organization for Standardization, Geneva,
Switzerland, 1995.

ISO/IEC 9899(1999). ISO: Programming languages—C. ISO/IEC 9899:1999(E).
International Organization for Standardization, Geneva, Switzerland, 1999.
http://www.dkuug.dk/JTC1/SC22/WG14.

Neil Johnson. Learning Object Behaviour Models. PhD thesis, School
of Computer Studies, University of Leeds, Leeds, UK, September 1998.
http://www.scs.leeds.ac.uk/neilj/ps/thesis.ps.gz.

126

http://www.dkuug.dk/JTC1/SC22/WG14
http://www.scs.leeds.ac.uk/neilj/ps/thesis.ps.gz

BIBLIOGRAPHY

Rangachar Kasturi and Mohan M Trivedi, editors. Image Analysis Applications.
Number 24 in Optical Engineering. Marcel Dekker, New York, USA, 1990.

Sohaib Khan, Omar Javed, Zeeshan Rasheed and Mubarak Shah. Human tracking
in multiple cameras. In Proceedings of the 8th IEEE International Conference
on Computer Vision (ICCV 2001), Vancouver, Canada, July 9–12, 2001, pages
331–336, July 2001. http://www.cs.ucf.edu/~vision/ln2Vis5/handoff-iccv.pdf.

Thomas G Lane. IJG JPEG Library: System Architecture. Independent JPEG
Group, 1991–1995. Part of the Independent JPEG Group’s JPEG software docu-
mentation, see http://www.ijg.org/.

Meir M Lehman. The programming process. IBM Research Report RC 2722, IBM
Research Center, Yorktown Heights, USA, 1969.

Meir M Lehman. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9):1060–1076, September 1980.

Meir M Lehman, Dewayne E Perry, Juan F Ramil, W ladys law M Turski and Paul
Wernick. Metrics and laws of software evolution—the nineties view. In Proceedings
of the Fourth International Conference on Software Metrics (Metrics 97), pages
20–32, November 1997.

Bennet P Lientz, E Burton Swanson and G E Tompkins. Characteristics of applica-
tion software. Communications of the ACM, 21(6):466–471, June 1978.

Chris Lilley, Fenqiang Lin, W T Hewitt and T L J Howard. ITTI computer graphics
and visualization—Colour in computer graphics. Student notes, Computer Graph-
ics Unit, Manchester Computing Centre, University of Manchester, Manchester,
UK, December 1993.

Alan J Lipton, Hironobu Fujiyoshi and Raju S Patil. Moving target classification
and tracking from real-time video. In Proceedings of the DARPA Image Under-
standing Workshop (IUW’98), Monterey, USA, pages 129–136, November 1998.
http://www.cs.cmu.edu/~vsam/Papers/wacv98_tracking.ps.gz.

Tim Littlefair. An Investigation into the Use of Software Code Metrics in the Indus-
trial Software Development Environment. PhD thesis, Faculty of Communications,
Health and Science, Edith Cowan University, Perth, Australia, 2001.

Radu Marinescu. Detecting design flaws via metrics in object-oriented systems. In
Proceedings of the 39th International Conference and Exhibition on Technology
of Object-Oriented Language and System (TOOLS USA 2001), pages 173–182,
July/August 2001.

127

http://www.cs.ucf.edu/char 126
elax vision/ln2Vis5/handoff-iccv.pdf
http://www.ijg.org/
http://www.cs.cmu.edu/char 126
elax vsam/Papers/wacv98char 95
elax tracking.ps.gz

BIBLIOGRAPHY

EventHelix.com Inc. Issues in realtime system de-
sign. Article in an online collection, 2000–2002.
http://www.eventhelix.com/RealtimeMantra/IssuesInRealtimeSystemDesign.htm.
Visited on Sat Nov 9 19:37:58 GMT 2002.

A J Mitchell-Jones. Personal communication, February 2002.

Alan Moore and Tony Backwith. Development tools for real-
time systems. Real-Time Magazine, 7(1):33–37, Quarter 1 1999.
http://www.realtime-info.com/magazine/99q1/1999q1_p033.pdf.

Nuria Oliver, Alex P Pentland and François Bérard. Lafter: Lips and
face real time tracker. In Proceedings of the Conference on Com-
puter Vision and Pattern Recognition (CVPR’97), pages 123–129, 1997.
http://iihm.imag.fr/publs/1997/CVPR97_LAFTER.ps.gz.

Joseph O’Rourke and Norman Badler. Model-based image analysis of human mo-
tion using constraint propagation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2(6):522–536, November 1980.

David Lorge Parnas. Software aging. In Proceedings of the 16th International Con-
ference on Software Engineering (ICSE-16), Sorrento, Italy, pages 279–287, May
1994. Invited Plenary Talk.

Mark C Paulk. Models and standards for software process assessment and improve-
ment. In Robin B Hunter and Richard H Thayer, editors, Software Process Im-
provement, chapter 1, pages 1–36. IEEE Press, Piscataway, USA, November 2001.

Mark C Paulk, Bill Curtis, Mary Beth Chrissis and Charles V Weber. Capability
maturity model, version 1.1. IEEE Software, 10(4):18–27, July 1993.

Rational Rose 2000e(2000). Rational Rose 2000e. Rational Software Corporation,
Cupertino, USA, 2000.

Paolo Remagnino, Adam M Baumberg, Tom Grove, Tieniu Tan, David Hogg, Keith
Baker and Anthony Worrall. An integrated traffic and pedestrian model-based
vision system. In Adrian Clark, editor, Proceedings of the Eighth British Machine
Vision Conference (BMVC97), pages 380–389. BMVA Press, 1997.

Tamar Richner and Stéphane Ducasse. Recovering high-level views of object-oriented
applications from static and dynamic information. In Proceedings of the 1999 In-
ternational Conference of Software Maintenance (ICSM ’99), pages 13–22, August
1999.

128

http://www.eventhelix.com/RealtimeMantra/IssuesInRealtimeSystemDesign.htm
http://www.realtime-info.com/magazine/99q1/1999q1char 95
elax p033.pdf
http://iihm.imag.fr/publs/1997/CVPR97char 95
elax LAFTER.ps.gz

BIBLIOGRAPHY

Simon Rowe and Andrew Blake. Statistical mosaics for tracking. Image and Vision
Computing, 14(8):549–564, August 1996.

James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, Reading, USA, 1999.

Manoranjan Satpathy, Nils T Siebel and Daniel Rodŕıguez. Maintenance of object
oriented systems through re-engineering: A case study. In Proceedings of the
IEEE International Conference on Software Maintenance (ICSM 2002), Montréal,
Canada, pages 540–549, October 2002.

Helen Sharp, Mark Woodman, Fiona Hovenden and Hugh Robinson. The role of
‘culture’ in successful software process improvement. In Proceedings of the 25th
Euromicro Conference (EUROMICRO ’99), Milano, Italy, volume 2, pages 2170–
2176, September 1999.

Hedvig Sidenbladh. Probabilistic Tracking and Reconstruction of 3D Human Motion
in Monocular Video Sequences. PhD thesis, Institutionen för Numerisk analys och
datalogi, Kungliga Tekniska Högskolan (KTH), Stockholm, Sweden, November
2001. http://www.nada.kth.se/~hedvig/publications/thesis.pdf.

Hedvig Sidenbladh, Michael J Black and David J Fleet. Stochastic tracking of 3D hu-
man figures using 2D image motion. In David Vernon, editor, 6th European Confer-
ence on Computer Vision (ECCV 2000), Dublin, Ireland, pages 702–718. Springer
Verlag, 2000. http://www.cs.brown.edu/people/black/Papers/eccv00.ps.gz.

Nils T Siebel, Steve Cook, Manoranjan Satpathy and Daniel Rodŕıguez. Latitudinal
and longitudinal process diversity. Journal of Software Maintenance and Evolution,
15(1):9–25, January–February 2003.

Nils T Siebel and Steve Maybank. The application of colour filtering to real-time
person tracking. In Proceedings of the 2nd European Workshop on Advanced Video-
Based Surveillance Systems (AVBS’2001), Kingston upon Thames, UK, pages 227–
234, September 2001a.

Nils T Siebel and Steve Maybank. On the use of colour filtering in an integrated real-
time people tracking system. In Paolo Remagnino, Graeme A Jones, Nikos Para-
gios and Carlo Regazzoni, editors, Video Based Surveillance Systems: Computer
Vision and Distributed Processing, chapter 14, pages 167–175. Kluwer Academic
Publishers, Boston, USA, 2001b.

Nils T Siebel and Steve Maybank. Real-time tracking of pedestrians and vehicles. In
Proceedings of the 2nd IEEE International Workshop on Performance Evaluation

129

http://www.nada.kth.se/char 126
elax hedvig/publications/thesis.pdf
http://www.cs.brown.edu/people/black/Papers/eccv00.ps.gz

BIBLIOGRAPHY

of Tracking and Surveillance (PETS’2001), Kauai, USA, December 2001c. CD-
ROM proceedings.

Nils T Siebel and Steve Maybank. Fusion of multiple tracking algorithms for robust
people tracking. In Anders Heyden, Gunnar Sparr, Mads Nielsen and Peter Jo-
hansen, editors, Proceedings of the 7th European Conference on Computer Vision
(ECCV 2002), København, Denmark, volume IV, pages 373–387, May 2002.

Chris Stauffer and W Eric L Grimson. Adaptive background mixture models for
real-time tracking. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’99), Fort Collins, USA, volume 2, pages 246–252,
1999.

Chris Stauffer, W Eric L Grimson, Raquel Romano and Lily Lee. Using adaptive
tracking to classify and monitor activities in a site. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’98), Santa Bar-
bara, USA, volume 1, pages 22–29, June 1998.

David Travis. Effective Color Displays—Theory and Practice. Academic Press, Lon-
don, UK, 1991.

Rini van Solingen and Egon Berghout. The Goal/Question/Metric Method. McGraw-
Hill, London, UK, 1999.

Brian C Warboys, R Mark Greenwood and Peter Kawalek. Modelling the co-
evolution of business processes and IT systems. In Peter Henderson, editor, Sys-
tems Engineering for Business Process Change: Collected Papers from the EPSRC
Research Programme, pages 10–23. Springer Verlag, London, UK, 2000.

Richard C Waters and Elliot Chikovsky. Reverse engineering progress along many
dimensions. Communications of the ACM, 37(5):23–24, May 1994.

Bruce W Weide, Wayne D Heym and Joseph E Hollingsworth. Reverse engineering
of legacy code exposed. In Proceedings of the 17th International Conference on
Software Engineering (ICSE-17), Seattle, USA, pages 327–331, April 1995.

Moira Wells and Rachel Harrison. The liminal moment. Understanding distributed
communication and business processes. In Proceedings of the Conference on Empir-
ical Assessment in Software Engineering (EASE 2001), 2001. Pages unnumbered.

Norman Wilde and Ross Huitt. Maintenance support for object oriented programs.
IEEE Transactions on Software Engineering, 18(12):1038–1044, December 1992.

XML Schema(2001). XML Schema Part 0: Primer. W3C Recommendation. World
Wide Web Consortium (W3C), 2001. http://www.w3.org/TR/xmlschema-0/.

130

http://www.w3.org/TR/xmlschema-0/

BIBLIOGRAPHY

Anthony Worrall. Personal communication, October 2002.

Christopher Wren, Ali Azarbayejani, Trevor Darrell and Alex Pent-
land. Pfinder: Real-time tracking of the human body. Technical Re-
port 353, MIT Media Laboratory Perceptual Computing Section, 1995.
http://www-white.media.mit.edu/vismod/publications/techdir/TR-353.ps.Z,
also published in IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 19(7):780–785, July 1997.

Jia Hong Yin, Sergio A Velastin and Anthony C Davies. Measurement of crowd
density using image processing. In M J J Holt, Colin F N Cowan, Peter M Grant
and William A Sandham, editors, Proceedings of the VII. European Signal Pro-
cessing Conference (EUSIPCO-94), Edinburgh, UK, volume III, pages 1397–1400,
September 1994.

131

http://www-white.media.mit.edu/vismod/publications/techdir/TR-353.ps.Z

BIBLIOGRAPHY

132

Index

N -Version Programming, 88

active shape model, 12
ADVISOR, vii, 2–5, 16, 23–26, 28, 29,

33, 47, 48, 62, 67, 69, 72–74,
77, 79, 80, 82, 84, 93, 95–99,
113, 115, 117

agile processes, 90
ARTiSAN Software Tools, 26

B-spline, 13, 15, 56
Background Image, 35
background model, 8
Baumberg, Adam, 12
Black, Michael, 21
blob, 7, 8
blue, 32
Bull, 24

Capability Maturity Model, 87
CCCC, 73, 99
Chamfer, 20, 21
chrominance, 32, 32, 40, 46
CIE, 32, 41
CMM, 87, 95
Colour space

HSV, 32
RGB, 32
YCBCR, 32

colour space, 31
composite, 32
CORBA, 26

data classes, 72
Davis, Larry, 16, 19

DCT, 27
Demonstrator, 27
Difference Image, 36
dynamic analysis, 76
dynamic information, 71, 71

E-type, 92
Eklundh, Jan-Olof, 21

FEAST, 92

G/Q/M, 87
Gavrila, Dariu, 19
Goal/Question/Metric method, 87
god classes, 72
Graham Scan, 17
green, 32
greyscale, 32

Haritaoglu, Ismail, 16
Harwood, David, 16
Hogg, David, 12
HSI, 32
HSL, 32
hue, 32, 32, 41, 42, 44

Intel, 19, 62
intensity, 32

JPEG, 27, 32

latitudinal process diversity, 88
Leeds People Tracker, 3, 12, 15, 16, 23,

28, 29, 39, 41, 48, 50, 56, 57,
61, 64, 66, 115

lightness, 32

133

INDEX

local image filter, 37
London Underground Ltd, 5
luminance, 32, 32, 41

Mahalanobis optimal search direction,
14, 15

maintenance,
see software maintenance

maintenance effort, 72
mapping function, 38
median filter, 8
Microsoft, 26
model, 9

classification of human models, 10–
11

complexity, 9–10
dimensionality, 9
parameterised, 9, 9

Motion Detection, 7–8
motion detector, 50
Motion Image, 8, 36
motion image, 8
MPEG, 32

P-type, 91
PCA, 12
process, 86
process diversity, 86

latitudinal, 85
longitudinal, 85

process environment, 86, 88
process model, 86

Racal Research, 24
re-engineering, 70
Reading Motion Detector, 13, 50
Reading Vehicle Tracker, 94
Real-Time Perspective, 26
red, 32
refactoring, 71
region, 7, 8
reverse engineering, 71, 71

run-length, 8

S-P-E, 87, 90
S-type, 90, 91
saturation, 32, 32, 41, 42, 44
SGI, 15, 16, 29, 48, 57, 73, 75, 81, 94,

95, 98
Sidenbladh, Hedvig, 21
Société des Transports Intercommu-

naux Bruxellois, 5
software aging, 91
software artefact, 70
Software maintenance

adaptive, 69
corrective, 69
perfective, 69
preventive, 69

SPIN, 87
SSE, 19
static analysis, 76
static information, 71, 71
Streaming SIMD Extensions,

see SSE
Sun Microsystems, 73, 94

Testbed 1, 26
Testbed 2, 26
Thales Research, 24
Thales Research Ltd, 5

Use Case, 26

value, 32, 32, 41, 42, 44
video matrix switcher, 33
VIEWS, 13
Vigitec, 5, 24

W4, 16, 18, 19, 23, 54
W3C, 28
Waterfall model, 90
Word Wide Web Consortium, 28

XML, 28, 28, 62

134

INDEX

XML Schema, 28, 28, 47, 75
XP, 90

YCC, 32
YIQ, 32
YUV, 32

135

	Copyright Notice
	Abstract
	Declarations
	Contents
	Introduction
	People Tracking for Visual Surveillance
	Issues Addressed in this Thesis
	New People Tracking Algorithms
	Software Engineering Aspects

	Overview of the Thesis
	Acknowledgements

	People Tracking
	Concepts and Terminology
	Two Basic Definitions
	Motion Detection
	Modelling

	Related Work
	Overview and Classification
	Baumberg's Leeds People Tracker
	Haritaoglu's W4 System
	Gavrila's 3-D Model-based People Tracker
	Sidenbladh's 3D People Tracker
	Conclusions

	Building an Integrated People Tracking Application
	The ADVISOR Project and its Objectives
	System Overview
	Development Plan
	Data Formats for Communication
	Building a People Tracking Module for ADVISOR

	Colour Image Filtering for Robust Image Processing
	Introduction
	The Representation of Colour in Computers
	Image Generation and Transmission
	Determining the Effects of Image Noise

	Image Noise and Image Filtering
	Use of Images Within the People Tracker
	Filtering Techniques: Creating the Difference Image

	Experiments and Results
	The Test Data
	Local Image Filters Examined Here
	Method a: Filtering the Difference Image
	Method b: Differencing the Filtered Images

	Discussion

	The Reading People Tracker
	Designing a People Tracker for ADVISOR
	The Tracking Algorithm: Overview and Structure
	Overview and General Features
	Module 1: The Motion Detector
	Module 2: The Region Tracker
	Module 3: The Head Detector
	Module 4: The Active Shape Tracker

	Module Interaction and Other Features
	Interaction Between Tracking Modules
	Hypothesis Refinement
	Software Engineering Aspects

	Demonstration and Discussion
	Testing on a London Underground Sequence
	Analysis
	Remaining Problems
	Summary

	Maintainability of the Reading People Tracker
	Introduction
	Software Maintenance Techniques
	Related Work

	The People Tracker and its Maintainability
	Brief History
	Motivation for Re-design

	Approaches Taken for the Re-design
	Stages of Work
	Maintenance Effort
	Code Size

	Further Analysis and Discussion
	Generated Artefacts of the People Tracker
	Experience with the Re-engineered software
	Improved Maintainability
	Personnel Factors
	Lessons Learned

	Conclusions

	Process Diversity and its Implications for the People Tracker
	Introduction
	Concepts and Management of Process Diversity
	Related Work

	Process Diversity
	Latitudinal Process Diversity
	Longitudinal Process Diversity
	Evolution-oriented Models of Software Processes

	Description of the People Tracker Software
	Brief History
	Current Status and Outlook

	Analysis of the Process Diversity for the People Tracker
	Latitudinal Process Diversity: Diversity between Co-operating Groups
	Longitudinal Process Diversity and Transition between Process Models
	Metrics and Further Analysis

	Lessons Learned
	Latitudinal Process Diversity
	Longitudinal Process Diversity

	Conclusions

	Validation of the New People Tracker
	Experimental Setup
	Test Data
	Configuration of the People Tracker

	Experimental Results
	Summary and Conclusions
	Tracking Performance
	Processing Speed
	Conclusions

	Conclusions
	Summary of Work
	Discussion
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Index

