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Abstract

Assertions had their origin in program verification. For the
systems developed in industry, construction of assertions
and their use in achieving and proving program correct-
ness is a near-impossible task. However, they can be used
to show that some key properties are satisfied during pro-
gram execution. In this paper we first present a survey of
the special roles that assertions can play in object oriented
software construction. We then analyse such assertions by
relating them to the Case Study of an automatic surveillance
system. In particular, we address the following two issues:

• What types of assertions can be used most effectively
in the context of object oriented software? How can
you discover them and where should they be placed?

• During maintenance, both the design and the software
are continuously changed. These changes can mean
that the original assertions, if present, are no longer
valid for the new software. Can we automatically de-
rive assertions for the changed software?

Keywords. Assertions; Software Maintenance; Object Ori-
ented Systems; Case Study

1. Introduction

Assertions are formal constraints on software system be-
haviour which are inserted as annotations in the source
program text. They had their origin in program verifica-
tion [4, 9]. Program correctness is usually defined in rela-
tion to a specification and assertions can encode the seman-
tic properties of a specification. Using assertions to show
program correctness is in general a non-trivial task and
therefore it is hardly followed in practice. However, many

key properties of a program can still be encoded in a simple
assertion language. In such a scenario, if a program exe-
cutes without any assertion violation, it can give some con-
fidence about the program’s correctness. As Meyer says:
an imperfect solution is better than none [15]. In a sense,
assertions test a program without using any test data.

Assertions are Boolean expressions which evaluate to
true when the program state satisfies the desired constraints.
If an assertion evaluates to false then it means that the pro-
gram has entered into an inconsistent state and hereafter the
program behaviour cannot be relied upon. Assertions thus
provide a powerful tool mechanism for automatic run-time
detection of software faults during development, testing and
maintenance. They succinctly and unambiguously specify
important properties (mostly safety properties) of a program
in a way which is easily understandable. In addition, as-
sertions are expected not to produce any side effect on the
program state.

Assertions are widely used in the software industry to-
day, primarily to detect, diagnose and classify programming
errors during testing. They are sometimes kept in product
code to forestall the danger of crashes, and to analyse them
when crashes occur. They are beginning to be used by com-
pilers as hints to improve optimisation. Assertions are usu-
ally compiled differently for test runs and for code that is
shipped to the customer. In ship code, the assertions are of-
ten omitted to avoid the run time penalty and the confusion
that would follow from an error diagnostic or a checkpoint
dump in view of the customer [10].

In this paper we discuss the use of assertions in the con-
text of object oriented (OO) software; especially, their roles
in software maintenance. We first analyse the assertions
added during the re-engineering of a medium sized system
written in C++. During the course of its evolution it was re-
engineered to improve its maintainability [19]. Developers
used assertions at this stage with the intention of making de-
bugging easier, and also while performing unit testing dur-



ing the reverse engineering process. While assertions were
used to get tangible benefits, at that stage the developers did
not have sufficient knowledge of the special roles that asser-
tions could play in OO software. The following questions
arose from their experience.

• What are the categories of assertions which could be
used in OO software? How to discover them and where
to place them? In the first part of the paper we present
a survey of these issues and analyse them in the context
of our case study.

• The system studied here was continually undergo-
ing thorough design changes and therefore the code
needed to be refactored and adapted. In this process,
even if assertions are present in the code they may no
longer be consistent with the next version of the code
obtained through refactoring. So the natural question
was: How can old assertions be adapted so they would
be consistent with the changed code (or design). This
issue is also analysed in the context of our case study.

1.1. Realisation of Assertions

Some programming languages like Eiffel [15] and
the latest releases of Java provide assertions as language
features while some others like C and C++ provide asser-
tions as language extensions. C and C++ provide a sim-
ple assertion facility in the form of a predefined macro
called assert(bool expression) defined in the file
<cassert>. If the Boolean expression given as an ar-
gument to assert evaluates to false then the program
aborts. The failure of an assertion usually triggers a dump
of the program state which can be analysed to discover the
source of the error(s). The Boolean expression within the
assertion may involve function calls; care must taken that
such function calls do not produce any side effect on the
program state. When an assertion evaluates to false the
program aborts. Some authors (e.g. [11, 17]) have used spe-
cial annotations to specify assertions in a virtual language
which is pre-compiled by a pre-processor to generate appro-
priate statements in the underlying language. The translated
statements may have local variables which do not modify
the intended program state. This makes the assertions more
expressive.

The system of our case study was developed in C++. In
the following discussion we will therefore use C++ syntax.

1.2. Compile time assertions

The assertions of the above types are sometimes called
run time assertions because they are evaluated at run time.
However, certain properties can be tested during compila-
tion through the use of compile time assertions.

Compile time assertions are checked at compile time; vi-
olation of such an assertion results in a compilation error.
This type of condition checking is usually implemented us-
ing macros. A typical application is for checks involving the
sizeof operator. In the following popular example, the
macro COMP_ASSERT can check at compile time whether
two variables have the same (storage) size:

#define COMP ASSERT(x) extern dummy[(x) ? 1 :−1]
COMP ASSERT(sizeof(x) == sizeof(y));

The use of the const keyword in C++ can also be
viewed as a compile time assertion. It can be used to specify
that a particular variable (e.g. a call-by-reference parameter
to a method) may not be changed by the method. A method
may also be declared as const, meaning that it may not
change the object’s state. A compiler can determine the
breach of constness properties and generate an error.

The organisation of the paper is as follows. Section 2 dis-
cusses the related work. Section 3 makes a survey of asser-
tions in the context of OO systems, and the ones that were
used in the system that was examined. Section 4 presents
the object of our case study. We discuss what types of as-
sertions were used in that software and their benefit. Sec-
tion 5 discusses how assertions of a system can be adapted
in face of design changes. Section 6 discusses the lessons
learnt from this case study. Section 7 concludes the paper.

2. Related Work

Assertions had their origin in program verification [4, 9].
The axiom system developed by Hoare [9] uses assertions
to show the correctness of Algol-like programs. Dijkstra’s
Weakest Precondition (WP) semantics views program de-
sign as a goal-oriented activity [7]. The requirement of a
program can be stated as an assertion, and thereafter the use
of the WP semantics could help program designers to con-
struct in a systematic manner not only the program but the
intermediate assertions.

Voas discusses the use of assertions for enhancing the
effectiveness of testing for OO systems [24]. He points out
that factors like information hiding and data encapsulation
have a tendency to mask errors which in turn makes OO
program testing less effective; such errors can be unmasked
by injecting assertions at appropriate places.

The work of Korel and Al-Yami describes two kinds of
assertions: Boolean and executable [11]. Boolean asser-
tions are made out of expressions. Executable assertions
have local variables which can be assigned values. They
are like functions in a programming language returning
Boolean values. The authors have used these two kinds of
assertions for mechanical generation of test data.

Shimeall and Leveson have carried out empirical studies
to compare various fault tolerant and fault elimination tech-



niques [22]. In their experiments run-time assertions were
used. The authors observed that such assertions mostly
detected faults relating to parameter reversal, substitution,
over-restriction, loop conditions and data structures. Asser-
tions did not detect faults like missing path, missing func-
tionality, incorrect formula, operation ordering faults etc.
The assertions used detected many faults which were not
detected by other techniques (code reading, structural test-
ing etc).

Rosenblum classifies assertions (in the context of main-
tenance and testing of systems developed in C) into two
main categories: (a) Specification of function interfaces and
(b) Specification of function bodies [17]. The constraints
belonging to the first category take a black-box view of the
function and they are specified independently of the func-
tion implementations. In contrast, assertions of the second
category take a white-box view. Rosenblum’s classification
scheme does not include assertions like loop invariants. He
has also observed that there is no clear correlation between
the location of a fault and the location of the assertion that
revealed it.

Hiller has used executable assertions for error detection
and recovery in case of embedded systems [8]. In such
systems, the internal signals need to satisfy several for-
mal constraints; these are tested through executable asser-
tions. An error is detected if any of these constraints is vi-
olated. The proposed error recovery mechanism forces an
erroneous signal into its valid domain by assigning it a best
effort value according to the parameters determined by the
classification of the signal—a technique otherwise known
as forced validity.

Meyer has developed the notion of Design by Contract
in the context of OO software construction [15]. Every
method has a precondition and a postcondition. These are
expected to be satisfied at function entry and exit, respec-
tively. Assertions can check such conditions. The design by
contract principle states that the job of precondition check-
ing must be done by the client code (except in some special
circumstances like when input is supplied by a human user
or it comes from an external system) and a method must
check its postcondition before transferring control to the
client code. This division of labour between the client and
the server methods is the basic idea behind the design by
contract principle.

3. A Survey of Assertions in OO Software

Assertions are meant to encode the key properties of OO
programs. These can be classified into two categories: (i)
intra-class properties and (ii) inter-class properties. Intra-
class properties are expected to hold within a class, whereas
inter-class properties are expected to hold when two classes
interact through inheritance, method calls or aggregation.

3.1. Intra-class properties

Class Invariants (CIs)

Behind every class there is an underlying abstract data type
(ADT) [15]. An ADT consists of (a) the name of the ADT
which may have parameters, (b) a set of functions with
their signatures, (c) a set of axioms to restrict the behaviour
of functions and (d) preconditions on the functions. A
class is an implementation of the underlying ADT; its func-
tions become class methods, function preconditions become
method preconditions and axioms become class invariants.
Class invariants also include the implementation invariants;
for instance, an ADT representing a stack may not have a
stack size but its implementation has a size restriction on the
size of the stack. The constructor is supposed to establish
the class invariants; these are expected to hold thereafter be-
fore and after every other method invocation. Therefore, an
assertion can be placed as a postcondition of the constructor
to indicate that the initialization satisfies the class invariant.
Further, similar assertions may be placed as precondition or
postcondition of other class methods.

Method preconditions

Depending on the need, an assertion can be placed at a func-
tion entry that the entry point satisfies the class invariant. A
precondition can also show the validity of or dependency
between input arguments. In particular, such assertions can
show:

• consistency between function arguments. For ex-
ample, a method add_vector(A, B, Result)

could have an assertion of the form
A.get_dimension() == B.get_dimension().

• appropriate bounds on input values. These include
constraints such as (i) subrange restriction, (ii) a
pointer variable not being NULL, or (iii) a string ar-
gument having a terminator character.

• validity of the context in which the function is called.
For instance, a function is to be called only when
the global constraint, say initialised == true,
holds.

Postconditions

An assertion may be placed to show that the class invariant
holds at a function exit. In addition, assertions at function
exit points can show:

• dependency of return values on function arguments.
As an example, after the execution of swap(x,y), it
can be checked that the values of x and y were indeed
swapped.



• effect of the call on the class state. For ex-
ample, at the exit point of a call to the method
delete_record(record), an assertion can verify
that the record has indeed been deleted.

• a call not having any undesirable side-effect on the
class state. As an example, an assertion can show that
a call does not modify a certain class variable.

• validity of return values. For example, assertions can
check (i) a return pointer not being NULL, or (ii) a
string variable having a terminator character etc.

Assertions within function bodies

Besides preconditions and postconditions, a function body
needs to preserve some important semantic properties. A
function body may contain a long sequence of control state-
ments which are likely to introduce faults. We summarise
some important properties within a function body which can
be encoded in the form of assertions.

• Strengthening of condition in the else part
(default case) of an if statement (switch
statement): Let us assume, in an if statement, the
condition is (x > 100). It means that the else part
is executed whenever the condition (x <= 100)
holds. In such a case, we can strengthen the condition
in the else part by an assertion depending on the
context.

• Consistency of related data: Some sort of consistency
relation may exist between two data; whenever one
variable’s value is within some range the other vari-
able’s value can be expected to be in some other range.
Such consistency can be checked at various points in-
side a function body.

• Loop invariants: These are the constraints which must
be true before and after every loop iteration, and they
can be encoded as assertions. However, in practice,
they are less often used [15, 17].

• Loop variants: This is a non-negative variable whose
value decreases with each iteration. Such a constraint
can be encoded as an assertion whose purpose is to
show loop termination.

• Array index invariants: Assertions can ensure prior to
an array access that the index lies within allowable lim-
its. It is often recommended that these should not be
deactivated in the code even after delivery.

• Assertions for reliability: To ensure that a key func-
tion works correctly, sometimes it is not enough to
rely on the outcome of a single algorithm. As an ex-
ample, speed is critical in the page layout code of the

Microsoft Word and therefore it is written in assem-
bly language. However, this code changes regularly as
new features are added and it is highly likely that bugs
creep into the assembly code. To catch the layout bugs,
Word programmers write the C version of the layout
code. Both routines run during development or debug
mode and an assertion checks if there is a mismatch
between the results of the two layout programs [13].

• Assertions to detect the impact of known errors: This
type of assertion will be discussed in Section 4.2.

• Other assertions: An assertions can check common er-
rors like division by zero, arithmetic overflow, under-
flow etc.

3.2. Inter-class properties

When two classes interact through inheritance, aggrega-
tion or method calls, they need to preserve some properties.

• CI of a Derived Class: If InvB is the class invari-
ant of a base class, and InvD is the local CI of the
derived class, the resulting CI of the derived class is
InvB ∧ InvD which must hold after initialization of
the derived class and then before and after each method
invocation. In C++ the derived class constructor usu-
ally calls the base class constructor; therefore, asser-
tions can be placed as postconditions of the derived
and base class constructors that they satisfy necessary
class invariants.

• Indirect Invariant Effect [15]: In presence of pointers,
even if a class preserves its own class invariant, it all by
itself cannot preserve certain key properties. Consider
a double linked list, in which each node object has a
forward pointer and a backward pointer. Then con-
sider a property like: Whenever A points to B through
its forward pointer, it means that B must point to A
through its backward pointer. An assertion can be used
to check that such a property is not violated.

• Assertions to satisfy the Liskov Substitution Principle
(LSP) [12]: The principle says: functions that use
pointers or references to base classes must be able
to use objects of derived classes without knowing it.
In C++ the types of the input parameters of a vir-
tual function and its redeclaration must remain iden-
tical and the return type of the redefined function must
be a subtype of the virtual function in the base class.
Even if this holds, the LSP may still be violated if the
base class virtual function has preconditions and post
conditions in the form of assertions. In this context,
we have Meyer’s Method Redeclaration Rule [15]: if
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Figure 1. ADVISOR System Overview

{Pre}body{Post} respectively represents the precon-
dition, body and postcondition of a base class poly-
morphic method and {Pre′}body′{Post′} represents
the same for a redeclaration of the same polymorphic
method, then the following constraint must be satis-
fied: Pre ⇒ Pre′ ∧ Post′ ⇒ Post (“⇒” means
logical implication). Therefore, assertions in the rede-
clared method must respect the redeclaration rule or an
assertion can be placed to check this correspondence.

• Design by Contract [15]: The Design by Contract prin-
ciple advocates that the assertion meant for a precondi-
tion checking should be placed in the client code, and
the assertion for postcondition need to be placed in the
server code. We claim that this division of responsi-
bility in some cases violates object oriented principles.
For example, if a client method wants to pop an ele-
ment out of a stack, then the client code must check
that the stack is non-empty. In order to do this, the
client either needs direct access to the private data of
the stack class or is has to use some utility method
for the check. However, for security reasons such a
method might in some cases not be in the public in-
terface. Therefore, in cases like these the strict use of
Design by Contract principles violates the encapsula-
tion principle of object orientation.

4. The Software Studied for this Analysis

4.1. Context and Brief History

The system studied for this article is the People Track-
ing subsystem of ADVISOR3, an integrated system for au-
tomated surveillance of people in underground stations [20].

3Annotated Digital Video for Intelligent Surveillance and Optimised
Retrieval

Figure 2. People Tracking Results

Figure 1 shows an overview of the system as it was origi-
nally designed4. ADVISOR was built as part of a European
research project involving 3 academic and 3 industrial part-
ners using a total man power of 36 person years. The task of
the People Tracker is to automatically analyse images from
a number of camera inputs. The system has to detect all the
people in the image and track them in realtime as a stream
of video images is continuously fed to the system. The im-
age in Figure 2 shows an example of the visualised output
from the People Tracker.

The People Tracker software (PT) over its lifetime of
10 years has been used in 3 different academic projects in
2 universities. We will focus on the most recent project,
ADVISOR, in which the software has been adapted to form
part of the next-to-market ADVISOR system. The original
PT was written in 1993–1995 using C++ as part of a PhD
research work [1]. The main focus during development was
to provide functionality to carry out experiments on people
tracking. Starting in 2000, the PT was adapted for its use
within ADVISOR. This new application required a num-
ber of major changes at different levels. New functional-
ity was added within the PhD project of an author of this
article [21]. The software was completely re-engineered
(see [19] for details) and during this time assertions were
added.

4.2. Initial Use of Assertions in the PT

The initial PT of 1995 used no assertions. How-
ever, some explicit checks (e.g. array bounds) were per-
formed. Within ADVISOR, 175 run-time assertions and
367 compile-time assertions (const keyword) were added
both to existing and new code. Wherever appropriate, ex-
isting checks were changed to assertions. The assertions

4The design was changed later but this is the state examined.



mostly checked (a) that a function was called in the right
context, (b) an array index lying in the right subrange, (c)
a pointer being non-null at a function entry or exit; and (d)
the consistency of related data within a function body. All
these fall into the classification scheme of Rosenblum [17].

A New Type of Assertion

In addition to the categories above, a new type of asser-
tion was used in PT which we term Assertions to Detect
the Impact of Known Errors. The PT contains at places in-
complete implementations of algorithms and other potential
sources of problems. This is due to limited resources avail-
able during maintenance—a common problem in the soft-
ware industry. Assertions are used to direct the attention
of maintainers to those incomplete implementations which
create difficulties.
Example: A method handles a large amount of data of dif-
ferent types. The implementation covers most of the pos-
sible combinations of data values of a number of variables,
but not all. This means that if a special combination of data
values is encountered the program does not know what to
do. In “normal” operation this special case does not arise.
Therefore a low priority is assigned to the task of correcting
the problem. An assertion is added at this stage to deter-
mine whether the situation sometimes occurs. If the asser-
tion fails, the task of fixing the problem will be assigned a
higher priority5.

Benefits of the Initial Use of Assertions in PT

The developers found that assertions significantly reduced
debugging effort when detecting bugs. Instead of replac-
ing debugging output and the use of a graphical debugger,
assertions were a natural addition to these mechanisms.

Out of the 175 run-time assertions in the code about 10
(5.7 %) failed during development and testing. The devel-
opers also reported that assertions, when placed well, were
helpful in determining not only the existence but also the
location of the error. We present two such cases here.

• Range checks: When assertions for range checks fail
it is easy to determine where the variable was last
changed. Automated search of variable names in
source files and “watch” facilities in modern debug-
gers make this search easy. Furthermore, let us assume
that modification of a variable has led to the violation
of a subrange constraint. Then let it be the case that the
variable was modified along two different paths lead-
ing to the point of assertion violation. Then more as-
sertions could be placed along both the paths to narrow
down the slice of the program that caused the error.

5In this particular case the assertion never failed even after many hours
of program run time and several 10,000 evaluations of the assertion.

Assertion Category # cases added

Compile time assertions (const) 367
Preconditions 73

Postconditions (in constructors) 80
Postconditions (in other methods) 46

Loop invariants not used
Loop variants 2
Cases for LSP 3

Assertions after qualified calls 40
Impact of Known Errors 20

Strengthening of if/case cond. 15
Range checking 84

Consistency of related data 45

Table 1. Types of assertions in the PT

• Consistency checks: Similarly, using tools like debug-
gers and development environments often allowed to
locate the bug easily using the failed assertions as a
starting point. However, the developers noted that con-
sistency checks, more than other assertions, require ex-
tensive domain knowledge to be used effectively.

4.3. Use of OO-specific Assertions in PT

We have added OO-specific assertions discussed in the
previous section to the PT. Table 1 shows the number of as-
sertions of various categories which are now in the PT. The
PT contains 408 run-time and 367 compile-time assertions
in its 47,457 lines of C++ code. Assertions were inserted
into 46 out of the 186 source files. These files make up
24,631 lines of code (52 % of the total code). Considering
its size the system contains few assertions. One reason is
that this is an ongoing work and we are still in the process
of adding more and more assertions of the new categories
and studying their impact on the system behaviour. We have
not yet added loop invariants; the reason is that they are
hard to express in terms of simple assertions. However, we
have observed that by adding additional operations (espe-
cially query operators), we can express the loop invariants
and variants with ease.

5. Adapting Assertions under Design Changes

In OO programming, behaviour-preserving source-to-
source transformations are called refactorings [14]. The
granularity of refactoring can be high like splitting a large
class into a base and derived class pair, or the granularity
can be low like creating a new instance variable. Opdyke
has taken the approach that any high level refactoring can be
implemented in terms of several low-level primitive refac-
torings [16]. Such applications are compositional in the
sense that if each of the primitive refactoring is correct



then it would imply that the high level refactoring is cor-
rect. Banerjee and Kim have defined a set of invariants
which must be preserved with a view to making the refac-
toring transformations behaviour-preserving [2]. Opdyke
has identified preconditions (or enabling conditions) which
must hold so that a refyactoring step satisfies the invari-
ants. Roberts has augmented Opdyke’s refactoring steps
by adding postconditions to the transformations [18]. Van
Gorp et al. [6] have discussed how the pre- and postcon-
ditions of refactorings could be expressed in the Object
Constrained Language (OCL) in a UML framework [23].
Mens and Tourwe have observed that even the simplest de-
sign changes require a large number of primitive refactor-
ings; therefore, to increase the scalability and performance
of a refactoring tool, frequently used sequences of primitive
refactorings are combined into composite refactorings and
then applied atomically [14].

Software engineers usually think about refactorings at
the design level though at the same time they must be aware
of the detailed code-level issues [6]. Therefore, a design
should always be consistent with the code. In our case, we
have encoded important intra-class and inter-class proper-
ties in OCL and placed them in the class diagram. While
performing refactorings, we use such properties to gener-
ate consistent assertions for the refactored code. In the ap-
pendix, Figures 3, 4 and 5 show the specification of class
properties using OCL.

If a source program has been annotated with assertions,
and the code is subjected to refactoring transformations,
then it is natural that the original assertions would no more
be consistent with the refactored code. In this article, we
take the view that, along with the refactoring rules, addi-
tional rules could be used either to recover or transform
the original assertions so that the new assertions are con-
sistent with the refactored code. In the following, we will
cite two refactoring steps and illustrate how rules attached
to them could recover (or generate) consistent assertions for
the refactored code.

Refactoring: Inline method

In this refactoring, a method’s body replaces the method
calls. Let a method method1(a, b, c) have Pre and Post as
the pre- and the post conditions respectively. If the method
body replaces a call to method1(expr1, expr2, expr3),
then the rules:

• At the point of the call, prior to the code seg-
ment which replaces the call, put the assertion
Pre([expr1/a] || [expr2/b] || [expr3/c)]. Here
e1[e2/a2] means substituting all occurrences of argu-
ment variable a2 in expression e1 by the expression e2

and || means parallel substitution. What the above ex-
pression means is that the occurrences of a, b and c in

the predicate Pre are simultaneously substituted by the
expressions expr1, expr2 and expr3 respectively.

• Immediately after the code segment that replaces the
call method1(expr1, expr2, expr3), one can put the
assertion Post([expr1/a] || [expr2/b] || [expr3/c]).

Refactoring: Replace Conditional with Polymorphism

In the following, the behaviour of an object of class
EdgeDetector varies depending on whether the mem-
ber variable search_method has the value NEAR-
EST, MAXIMUM or STATISTICAL. In such a case, a
base class is created with find_edge() as an abstract
method. And the derived classes NEARESTEdgeDetec-
tor, MAXIMUMEdgeDetector and STATISTICALEdgeDe-
tector will have specialised polymorphic versions of the
method find_edge(). In the appendix, we show the
refactoring of this class. Figures 3 and 4 show the origi-
nal class EdgeDetector and the case after the refactoring,
respectively. The relevant assertions have been shown in
the OCL.

typedef enum {NEAREST, MAXIMUM, STATISTICAL} category;
class EdgeDetector{

float max scale;
float curr u val;
category search method;
EdgeDetector(...) {. . .};
edge status find edge (){
switch (search method){

case NEAREST: .... ;
case MAXIMUM: .....;
case STATISTICAL: ....;
} }

};

For the refactoring of the above type, apply the following
rules to obtain the assertions for the refactored classes. In
the Appendix, we show how through the application of such
rules, we recover assertions for the refactored code.

1. The class invariant of the new base class remains the
same as that of the original class.

2. Each of the derived classes corresponds to a partic-
ular case of the conditionals in the original class;
therefore, each such class will have a CI stating that
the category type remains constant in the class (e.g.
search method == MAXIMUM is a CI of the class
MAXIMUMEdgeDetector). Accordingly, the con-
structors in the derived classes can have postconditions
to check that this invariant holds.

3. The postcondition of the polymorphic function in the
derived classes remain the same as the postcondition
of the method containing the conditionals.



6. Discussion

We have learnt the following from our case study.

Assertions in OO Software. In addition to the types of as-
sertions used in non-OO languages like C, OO lan-
guages require some special kinds of assertions. View-
ing a class as the implementation of an ADT helps one
to discover some intra class properties like the class
invariant, operation pre- and postconditions and con-
straints over the member variables in a systematic way.
The following types of assertions are particularly im-
portant for OO programs.

• Checking the class invariant: Constructors
through their postconditions can ensure that the
class invariants are satisfied. Such a checking
should always be followed in practice unless the
class invariant is too trivial. This type of assertion
checking is particularly useful during the refac-
toring phase. For example, when a new base or a
derived class is created, care needs to be taken
as to how, both the base class and the derived
class constructors together preserve the class in-
variants of the derived class; assertions in con-
structors are useful in this case. Constructors can
also perform checks on input parameters through
preconditions.

• Preservation of the LSP is crucial when a de-
rived class is expected to have an IS-A relation-
ship with the base class. We have used Meyer’s
method redeclaration rule to preserve the LSP.
So it is our experience that use of assertions to
preserve this rule should always be used along
with polymorphism. This brings in an added clar-
ity in understanding polymorphic functions.

Design by Contract. As we have pointed out in Sec-
tion 3.2 the Design by Contract principle compromises
a basic principle of object orientation. Therefore,
checking of preconditions should be done by the server
code whenever checking them by the client amounts to
accessing private/protected data. Furthermore, Meyer
advocates always to use assertions after qualified calls.
However, such assertions on many occasions turn out
to be postcondition checking.

Consistency between related data. Assertions to check
the consistency between related data is an effective
way for detecting bugs in a method; however, to use
such assertions effectively one needs to have good do-
main knowledge.

Use assertions to detect the impact of known errors.
When code contains known bugs or incomplete

implementations of functionality these are sometimes
not corrected because of lack of resources. In order to
detect the case where a problem may arise from these
conditions, appropriate assertions can be added to the
code. This has been found to be useful in the project
examined here.

Use assertions to test the system integrability. The
ADVISOR system consisted of six subsystems which
were developed at geographically different places. In
such a scenario, a subsystem is usually checked by
generating simulated data. However, after integration
it is necessary to check that all the assumptions about
the interfaces and the incoming or the outgoing data
have really been addressed. Assertions are a nice
mechanism to check this.

Consistency between design and implementation.
While refactorings are performed over source code,
decision about them are taken at the design level.
As we have discussed in the previous section, key
properties can be encoded in the design which could
be used to generate important assertions. Therefore, it
is imperative that the design should remain consistent
with the implementation.

Extreme Programming. Refactoring is integral to the ap-
proach of Extreme Programming [3]. Therefore our
approach of deriving assertions for the refactored code
(or design) from the previous code (or design), we be-
lieve, is an effective one.

7. Conclusion

In this paper, we briefly presented the re-engineering of
the People Tracking subsystem of the surveillance system
ADVISOR. Some commonly used assertions were used for
debugging purposes but without detailed planning. To use
more effective assertions, we then made a survey of asser-
tions meant for OO systems. Using these new assertions we
have made some important observations.

During maintenance of OO systems, refactorings take
place at regular intervals which make the already used asser-
tions obsolete. In this context we outlined some rules which
could be attached to refactoring steps (primitive or compos-
ite); such rules can recover assertions which are consistent
with the refactored code. We have the following plans for
our future work:

• We are still in the process of studying the impact of all
assertions that we have added to the PT subsystem.

• Our work of generating assertions by attaching rules to
refactoring steps is at an initial stage. Our plan is to de-
fine rules for all important refactorings and to integrate
the rules in a refactoring tool.
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Appendix

Refactoring: Replacing Conditional with Polymorphism

class EdgeDetector {
/* CI: max scale ≥ 1.0 && 0 ≤ curr u val ≤ 1.0 */

float max scale;
float curr u val;
category search method;

public:
EdgeDetector(category c) {. . .};
virtual edge status find edge(...) = 0; /* abstract method */

}

class NEARESTEdgeDetector : public EdgeDetector {
/* local CI:: search method == NEAREST */
public:

NEARESTEdgeDetector(CATEGORY c) : EdgeDetector(c) {
/* postcondition: search method == NEAREST*/

...
}
float find edge(...){

/* precondition: search method == NEAREST*/
....

}
}



EdgeDetector
--------------------
inv: max_scale >= 1.0 and  0<=curr_u_val <=1.0

EdgeDetector::find_edge(...): edge_status
pre:  0 <= curve_point <= 1.0 and window_size >=0.0

EdgeDetector
max_scale : float
curr_u_cal : float
search_method : category

<<virtual>> find_edge()
EdgeDetector()

<<abstract>>

Figure 3. Class EdgeDetector: before refactoring

EdgeDetector
max_scale : float
curr_u_cal : float
search_method : category

<<virtual>> find_edge()
EdgeDetector()

<<abstract>>

NEARESTEdgeDetector

find_edge()
NEARESTEdgeDetector()

MAXIMUMEdgeDetector

find_edge()

STATISTICALEdgeDetector

find_edge()

EdgeDetector
--------------------
-- category:enum{NEAREST, STATISTICAL, MAXIMUM}

inv: max_scale >= 1.0 and  0<=curr_u_val <=1.0

EdgeDetector::EdgeDetector ()

EdgeDetector::find_edge(...): edge_status
pre:  0 <= curve_point <= 1.0 and window_size >=0.0

NEARESTEdgeDetector
----------------------------------

inv: search_method = NEAREST

NEARESTEdgeDetector::find_edge(...): edge_status
pre:  search_method = NEAREST
post: search_method = NEAREST

Figure 4. Refactoring: Replacing conditionals with polymorphism

ShapeDetector: float
max_scale : float
threshold : float

<<virtual>> setup_batch(current : *Profile)

<<virtual>>

ColourShapeDetector

setup_batch(current : *Profile)

ShapeDetector
---------------------
inv: max_scale >= 1.0 and 0<=threshold

ShapeDetector::setup_batch(current: *Profile): void
pre: current <> NULL
post: max_scale >=1.0

ColourShapeDetector
-------------------------------

ShapeDetector::setup_batch(current: *Profile): void
pre: current <> NULL
post: max_scale >=1.0 and current->ColourInfo <> NULL

<<Method Redeclaration 
Rule to satisfy LSP>>

Figure 5. Use of Method Redeclaration Rule to satisfy Liskov’s Substitution Principle


