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Abstract— In this article a new method is presented to obtain
a full and precise calibration of camera-robot systems with eye-
in-hand cameras. It achieves a simultaneous and numerically
stable calibration of intrinsic and extrinsic camera parameters
by analysing the image coordinates of a single point marker
placed in the environment of the robot. The method works
by first determining a rough initial estimate of the camera
pose in the tool coordinate frame. This estimate is then used
to generate a set of uniformly distributed calibration poses
from which the object is visible. The measurements obtained in
these poses are then used to obtain the exact parameters with
CMA-ES (Covariance Matrix Adaptation Evolution Strategy),
a derandomised variant of an evolution strategy optimiser.
Minimal claims on the surrounding area and flexible handling
of environmental and kinematical limitations make this method
applicable to a range of robot setups and camera models.
The algorithm runs autonomously without supervision and
does not need manual adjustments. Our problem formulation
is directly in the 3D space which helps in minimising the
resulting calibration errors in the robot’s task space. Both
simulations and experimental results with a real robot show
a very good convergence and high repeatability of calibration
results without requiring user-supplied initial estimates of the
calibration parameters.

I. INTRODUCTION

A large part of current robotics research and development

is on aspects that make robot systems more autonomous and

versatile. Eye-in-hand systems, i.e. robots with a camera

mounted to their end-effector, are often used to guide the

end effector (e.g. a gripper) to ensure that grippers properly

engage the intended targets. In order for such a system to

work efficiently and with a high precision the system needs

to know the exact pose of the camera in the robot tool frame

as well as the camera’s internal calibration parameters like

the focal length and lense distortion.

Formulating these models and determining their parame-

ters can be tedious, even though special calibration systems

have been developed to make this easier. Re-calibration is

one of the most important maintenance tasks for industrial

robot systems. Parameters can change over time, e.g. if the

camera is removed and re-assembled. The quality of this

calibration process is highly relevant since inaccuracies limit

the precision of the whole eye-in-hand system. Most of the

research on autonomous hand-eye calibration has been done

using calibration objects like checker boards, which provide

a lot of information in one camera image. The dependence on

a special calibration object, however, makes those algorithms

less suitable for industrial purposes.
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The algorithm presented in this article is able to auto-

matically determine all intrinsic parameters, including lens

distortion characteristics, as well as all extrinsic parameters,

describing the relative pose of the camera with respect to

the tool coordinate system. No special calibration pattern

or high-precision calibration object is required; the method

requires only one simple detectable marking in the robot

environment. For data acquisition, the algorithm calculates a

set of calibration movements. Based on the position of the

marker in the images an optimisation problem is formulated

and solved using the evolutionary optimiser CMA-ES (Co-

variance Matrix Adaptation Evolution Strategy) [1].

The remainder of the article is organised as follows.

Section II describes related work. Section III gives a brief

overview over our method, with details following in Sec-

tions IV (initial steps) and V (main calibration). The test

setup and experimental results are located in Section VI,

followed by conclusions in Section VII.

II. RELATED WORK

Hand-eye calibration has been subject to research for about

30 years. The algorithms can be divided into 3 classes,

depending on the type of calibration object used.

A. Methods using Calibration Boards

The most common calibration object is the calibration

board. It allows to estimate the complete transformation be-

tween two camera poses by analysing the images acquired in

these poses. Checker board patterns were used as calibration

objects for hand eye calibration algorithms introduced 1988

by Tsai and Lenz [2], [3] and by Shiu and Ahmad [4]. Both

calibration methods focus on calculating the transformation

between wrist and camera without performing a camera

calibration or robot calibration. They use local optimisation

algorithms which usually necessitate good initial estimates.

The method proposed by Shiu and Ahmad is based on the

homogeneous [5] matrix equation AX = XB, where for

each measurement A is the transition of the robot arm and

B the motion captured by the camera [4]. X is the transfor-

mation from robot arm to the camera’s optical centre which

is to be determined. The algorithm by Weng et al. combines

intrinsic and extrinsic calibration [6]. It works by first seeking

the extrinsic parameter with minimum error for a standard

camera model and then using these parameters as an initial

estimate for refining intrinsic and extrinsic parameters. More

recently Strobl and Hirzinger introduced a more effective

way of solving AX = XB based on a physical metric and a

self-parameterising stochastical environment model, again in

a calibration algorithm which needs a calibration board [7].
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B. Methods using Single Point Markers

The second class of algorithms uses detectable single

points with unknown relative positions as calibration objects.

These methods are more versatile because the calibration

pattern requires only little space and no high precision in

manufacturing it. Unlike calibration boards, single markers

do not deliver enough information in one image to calculate

the corresponding camera transformation (the matrix B in

Section II-A above). This leads to a new class of non-convex

optimization problems that require global optimisation. Ho-

raud and Dornaika presented a method introducing a new

problem formulation as MY = M ′Y B which regarded

intrinsic and extrinsic parameters without the need to render

the projection explictly during the optimisation process [8].

Wei and Arbter introduced an algorithm using the Gauss

Markov Theorem to build and optimise environment models

yielding very accurate results [9].

C. Methods using Tracked Local Image Features

The third class of calibration algorithms is characterised

by the use of no specific calibration pattern at all. In-

stead, these methods extract from each camera image salient

points, e.g. by their local properties, and track them from

image to image. Andreff et al. developed an algorithm

using correspondences of such points within the images to

calculate the performed transformation [10]. Their algorithm

is, however, strongly influenced by the inaccuracy of these

point measurements and/or correspondence errors.

III. OVERVIEW OF OUR METHOD

A. Main Features

One of the most important aspects in wrist mounted

sensor calibration is the process of solving the equations

derived from the acquired data. Optimisation in the high

dimensional space of calibration parameters is done either

by acquiring poses especially designed to keep the resulting

objective function smooth or by generating good initial

estimates. In these special cases the convergence of local

optimisation methods is more easily ensured. A number of

mathematical tools have been introduced to determine and

ensure convergence and to ensure constraints, like having a

positive focal length. The new technique introduced in this

paper offers more versatility and freedom in two aspects:

• There are no limitations to the poses or paths taken

by the robot to keep the calibration object in the

camera’s field of view. Existing algorithms use iterative

movements to approach a desired pose to keep the

calibration pattern visible. Our algorithm uses 6 very

small initial robot movements which provides sufficient

data to calculate an orientation, enabling us to focus the

object for every reachable robot position. An arbitrary

number of poses with a visible object can thereby easily

be generated. In our tests the object was visible from all

generated poses, albeit the algorithm does not require

this.

• There are no limitations on the environment and cam-

era/robot model. Several models for geometry and

lens distortion have been tested; these can easily be

exchanged. Thanks to the properties of the CMA-ES

optimiser every model yields a unique and reproducible

set of parameters. The modular concept is very open to

adaptations since every part of the evaluation process

can be easily exchanged.

B. The Algorithm

An important difference of our algorithm is its formulation

of the environment model, which minimises the actual error

in 3D space. The negative of this error measure is used in

the calculation of the fitness function which is maximised in

the evolutionary optimisation loop.

The algorithm can be separated into 3 sets of consecutive

robot movements. Each set it followed by a calculation to

determine how the following movements are to be executed

depending on the measurements in the images taken at each

pose. These are the 3 steps of the algorithm:

1) Three translations (20–50 mm) are done to estimate the

orientation of the camera.

2) Three rotational movements (approx. 5˚) are executed

to estimate the distance to the calibration object.

3) A set of calibration poses is generated and movements

executed to provide the data used in the actual calibra-

tion process. This process yields the parameter vector

containing the calibration results.

While the calculations in step 1 and 2 are based on simple

equations, the data derived from the images of step 3 is

used to formulate a more complex optimisation problem.

Depending on the camera model the fitness function has

a dimension up to 17, expressing the dependence of the

actual geometrical error on these parameters. The CMA-ES

optimisation algorithm we use (see Section V-D) is able to

directly minimise this fitness function without the need to

smooth it, invert it explicitly or simplify it in any way.

IV. INITIAL ESTIMATES AND POSE GENERATION

The initial translations and rotations are performed to

retrieve basic information about the environment, minimising

the inherent assumptions of the method. This data is used to

generate a set of robot poses in which the calibration mark

is visible from the gripper mounted camera. Rotations are

needed to gather information about translational differences

between gripper and optical centre of the camera, while the

orientation estimation requires translational movements [2].

Unlike the method in [9] the initial environment model

calculation is based on the observation of a single marker

and allows to compute an a priori error maximum. Because

of this, the resulting model can be trusted to yield a pattern-

facing pose for every position, and does not need iterative

refinement and intermediate steps approaching far off poses.

A. Preliminaries

Let c ∈ IR4 be the homogeneous [5] position of the

calibration pattern in the world coordinate system and let

I ⊂ IN be the indices to the set of poses. For each

i ∈ I let Gi ∈ IR4×4 be the corresponding gripper pose
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Fig. 1. The calibration pattern (bottom right) can be located by its position
in the world coordinate system and as a point on the line of sight

as a homogeneous matrix in the world coordinate system1.

Further, let Ci ∈ IR4×4 be the camera pose for a given index

i ∈ I . The origin is the optical centre of the camera and the z-

axis describes the line of sight. Since the camera is mounted

rigidly to the gripper, the transformation GC ∈ IR4×4 from

gripper to camera is constant:

GC = G−1
i · Ci ∀i ∈ I. (1)

In the following sections homogeneous transformation ma-

trices are decomposed into their rotational and translational

part. The indices r and t are used to denote this:

M = Mt · Mr. (2)

To simplify the equations homogeneous vector elements

are referred to by indices. For v ∈ IR4, v = (x, y, z, s)T we

write (v)x := x, (v)y := y and (v)z := z.

B. Initial Translations

The first step of the algorithm is an estimation of the

camera orientation in the (robot) world coordinate system,

which is equivalent to estimating the transformation from

the gripper to the camera, since the transformation from the

robot base to the gripper coordinate system is known (up to

the robot’s precision).

Three equidistant translations are performed along the x-,

y- and z-axis of the robot basis, resulting in camera poses C1,

C2 and C3. The image movements observed by the camera

are defined as t1, t2, t3 ∈ IR. Let δt := |t1| = |t2| = |t3|,
the distance of each movement. Ignoring for a moment the

projection to the image plane, the observed movement of

the calibration object in camera coordinates can be used to

describe the camera orientation:

t1 = (C−1
0 · c) − (C−1

1 · c), (3)

which leads to

t1 = (GC−1 ·G−1
r,0 ·G

−1
t,0 · c)− (GC−1 ·G−1

r,1 ·G
−1
t,1 · c). (4)

1The world coordinate system can be defined arbitrarily as long as it is
fixed in relation to the robot coordinate system. In this article we equate
the world coordinate system with the robot base coordinate system.

Since there is no rotation performed (Gr,0 = Gr,1):

t1 = GC−1
r · G−1

r,0 ·









δt

0
0
0









. (5)

This derivation also applies to t2 and t3, which leads to the

matrix equation:

GCr = G−1
r,0 ·









1
δt

0 0 0

0 1
δt

0 0

0 0 1
δt

0

0 0 0 1









·









tT1
tT2
tT3

0 0 0 1









. (6)

It is therefore possible to estimate the orientation of the

camera by using these initial translations. Standard cameras

only deliver 2D projections of the 3D movements t1, t2 and

t3. However, we can reconstruct the missing information due

to the properties of the performed movements, assuming the

projection is given by a parallel projection Pλ and a scale

vector λ ∈ IR2:

Pλ := IR4 → IR2,









x
y
z
s









7→

(

x · λx

y · λy

)

, λ =

(

λx

λy

)

(7)

The error caused by this assumption can be neglected,

since the influence of the z value is in most parts substituted

by the arbitrary scale vector. The projection model implies

that ∃λx, λy, (t1)z, (t2)z, (t3)z ∈ IR:

t1 =











P (t1)x

λx

P (t1)y

λy

(t1)z

1











∧ t2 =











P (t2)x

λx

P (t2)y

λy

(t2)z

1











∧ t3 =











P (t3)x

λx

P (t3)y

λy

(t3)z

1











, (8)

which, using (6), gives λx and λy:

λx =

∥

∥

∥

∥

∥

∥

∥

∥

∥











−P (t1)x

δt

−P (t2)x

δt

−P (t3)x

δt

0











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

, λy =

∥

∥

∥

∥

∥

∥

∥

∥

∥











−
P (t1)y

δt

−
P (t2)y

δt

−
P (t3)y

δt

0











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

. (9)

Since the product of the two rightmost matrices in (6) is

orthonormal and rows 1, 2, 4 and the determinant (= 1) are

known, the unknown 3rd row is given by the cross product:





(t1)z

(t2)z

(t3)z



 =







−P (t1)x

δt·λx

−P (t2)x

δt·λx

−P (t3)x

δt·λx






×









−
P (t1)y

δt·λy

−
P (t2)y

δt·λy

−
P (t3)y

δt·λy









. (10)

This way the z-components lost during the projection can be

recovered and GCr can be calculated.

C. Initial Rotations

Now that the orientation of the camera C0,r is estimated it

is possible to calculate the distance between the gripper and

the calibration object by performing three rotations. Each

is a rotation around a point on the camera’s line of sight.
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Fig. 2. The distance between the calibration object and the camera is
calculated by rotations around a centre placed on the estimated line of sight.

Let p0, p1, p2 ∈ IR4 be these points and ty the gripper’s

rotation axis. The corresponding gripper poses are defined

as G4,G5 and G6. Let t ∈ IR4 be the 3D motion of the

calibration pattern in the camera coordinate system while

rotating around p0 such that:

t = (C−1
0 · c) − (C−1

4 · c). (11)

The motion t determines C0,t since there is one transforma-

tion GCt to every motion t observed in the camera coordinate

system. The movement performed by the gripper G0,4 is

known.

(C−1
4 · c) = GC · G0,4 · GC−1 · (C−1

0 · c) (12)

Define R ∈ IR4×4 as

R := GCr · G0,4 · GC−1
r . (13)

Then solving the equation

x + t = GCt · R · GC−1
t · x, x ∈ IR4 (14)

yields the missing elements of GC and the position of the

calibration pattern c.

In contrast to the 3D motion the data provided by the

camera is not sufficient to solve the equation (14). We know,

however, that if c = p0:

G−1
0 · c = G4−1 · c (15)

because of the definition of G4. This implies:

C−1
0 · c = C−1

4 · c. (16)

Any other p0 leads to a visible motion in the camera image2.

The direction and length of the observed motion depends on

the distance between c and p0 and the coordinate system as

well as the projection.

Let d ∈ IR be the initial distance estimation:

p0 = C0 ·









0
0
d
1









. (17)

2This statement is true for every projection but the trivial one, which can
be neglected.

Given an error ε ∈ IR a rotation by α ∈ [0, π/2] around p0

leads to an observable motion:

C−1
4 · c =









sin(α) · ε
0

cos(α) · ε + d
1









. (18)

The next distance estimator d′ is evaluated likewise using

the same angle α for the rotation. The x-component of the

position of the calibration object in the camera coordinate

systems C4, C5 and the distance estimator error ε are linearly

dependent. Disregarding the lens distortion, any pinhole or

parallel projection output can be used to find a

p2 = C0 · (0, 0, d′′, 1)T , d′′ ∈ IR (19)

such that ε = 0, p2 = c and

C−1
6 · c = C−1

4 · c, (20)

which in our setup yields a very accurate initial estimate of

GC, although a less precise estimate would suffice.

D. Pose Generation

Based on the acquired measurements a set of poses of

arbitrary size can be generated. A set of many poses facing

the calibration pattern can be distributed uniformly in the

robot environment. (Unreachable poses will be reported by

the inverse kinematics and discarded.) This way, the acquired

data is based on the maximum entropy, providing a well

defined optimum to the extrinsic parameters of the resulting

equation system. In order to improve the calculation of the

intrinsic camera parameters an adaptive random value is

added to the orientation of each pose and thereby distributing

the observation points of the marker uniformly in the image

plane. This creates an optimal set of data to calculate intrinsic

camera and lens distortion values in a stable manner. At

least 16 poses are required to get a unique optimum but a

minimum of 30 poses is recommended to guarantee a precise

result.

V. MAIN CALIBRATION AND OPTIMISATION

A. Camera Parameter Vector Θ

The acquired images are combined in a fitness function

representing the actual geometrical environment. The param-

eter vector passed to the fitness function has 11 dimensions

plus the dimensions needed to describe the lens distortion

functions δu and δv. The function yields the actual geometri-

cal error for every parameter set represented by the parameter

vector Θ:

Θ := (x, y, z, γx, γy, γz, βx, βy, cx, cy, cz, δu, δv)T
(21)

The parameters are:

• x, y, z to describe the translation represented by GC.

• γx, γy , γz to describe the rotation represented by GC.

• βx and βy , aperture ratio in x- and y-direction.

• cx, cy and cz , the position of the calibration pattern.

• δu and δv , the lens distortion functions.
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The position of the calibration marker is not necessarily a

part of the optimisation problem. For every parameter vector

Θ′, defined as Θ without cx, cy and cz , a position can be

calculated that yields the lowest possible error with respect to

the given estimation Θ′. This calculation is done in O(|I|2)
and gives a high computational cost to the otherwise very

effective O(|I|) fitness function that works without rendering

the calibration marker position. This aspect increases the

problem dimension by 3 but it preserves the versatility of

the algorithm by keeping it scalable.

B. Environment Model

The error value given by the fitness function is the mean

negative error calculated over all images. Let i ∈ I be

the image at hand. Evaluating Θ for image i is done by

calculating the image coordinates according to Θ, where the

calibration pattern centre is expected and comparing this

to the observed image coordinates. The Gripper pose Gi

is known for every image. GC∗ and c∗ are provided by

the current guess Θ∗. In the camera coordinate system the

calibration pattern is supposed to be at position p∗i ,

p∗i = (C∗

i )−1 · c∗ = G−1
i · (GC∗)−1 · c∗. (22)

Hence image coordinates implied by Θ∗ are given by

u∗

i =
(p∗i )x

(p∗i )z

+ δu

(

(p∗i )x

(p∗i )z

,
(p∗i )y

(p∗i )z

)

(23)

and

v∗

i =
(p∗i )y

(p∗i )z

+ δv

(

(p∗i )x

(p∗i )z

,
(p∗i )y

(p∗i )z

)

(24)

The error ei for an image i is then given by

ei(Θ
∗) =

√

(ui − u∗

i )
2 + (vi − v∗

i )2, (25)

where (ui, vi) are the image coordinates the pattern was

actually observed at. The overall fitness of a parameter vector

Θ is therefore given by the negative RMS error

F (Θ) = −

√

∑

i∈I

ei(Θ)2. (26)

C. Lens distortion

The calibration algorithm does not depend on any par-

ticular lens distortion algorithm but is able to apply every

distortion model given by δu : IR2 → IR and δv : IR2 → IR.

A list of distortion models have been tested, including

the one by Heikkilä and Silvén [11] and different types

of polynomial distortion models. The distortion model de-

scribed by Weng et al. [6] is the most versatile and gave

very stable results. Therefore it was used in the tests shown

in Section VI. It is defined by the distortion functions

δu(u, v) = (g1 + g3)u
2 + g4uv + g1v

2 +k1u(u2 + v2) (27)

and

δv(u, v) = g2u
2 + g3uv +(g2 + g4)v

2 + k1v(u2 + v2) (28)

where g1, g2, g3, g4 and k1 are the distortion parameters.

Fig. 3. Unimation Stäubli RX90 with camera and calibration marker

D. The Use of CMA-ES and Initial Calibration Values

The CMA-ES algorithm (Covariance Matrix Adaptation-

Evolution Strategy) is an evolutionary algorithm for global

non-linear optimisation [1]. As an evolutionary algorithm, its

optimisation loop keeps populations of candidate solutions

(individuals), selects the best (fittest) ones and mutates them

to produce the next generation, thereby moving in the search

space. As an evolution strategy (ES) algorithm, it adapts

its own strategy (search) parameters to the structure of the

search space. This algorithm uses a second order approach

by estimating a covariance matrix of samples. This matrix is

an approximation of the inverse Hessian matrix as used in

traditional optimisation, however, CMA-ES does not require

the knowledge (or even existence) of a derivative.

Using CMA-ES enables our algorithm to directly minimise

the error in 3D space without the need to smooth the fitness

function. We use CMA-ES with a population size of 30

individuals and a maximum number of 700 generations. The

mean calculation time of the optimisation is less than 20

seconds. The initial values for all calibration values are set

to 0. CMA-ES initialises the first generation around this

value. Simple physical constraints are enforced during the

optimisation, e.g. the focal length must be positive, f > 0.

VI. EXPERIMENTS

A. Test Setup

In the test setup a Sony DFW-X710 camera was mounted

rigidly to the wrist of a Unimation Stäubli RX90 robot arm,

see Figure 3. A single calibration marker was placed on

the ground in front of the robot. Hand-eye calibration test

methods are difficult to validate since it is very difficult to

obtain high-precision ground truth. Therefore, our algorithm

was tested both in the real world and in a simulator. The

simulator uses a full model of the environment in OpenGL

and a simulated camera.

B. Results from Simulations

Tests in a simulated 3D environment were performed to

evaluate the convergence properties of the method and its

accuracy. The results achieved in the test runs showed a
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TABLE I

MEAN RMS ERROR IN THE INTRINSIC AND EXTRINSIC CAMERA PARAMETERS

Parameter x y z yaw pitch roll βx βy g1 g2 g3 g4 k1

RMS 0.063 0.017 0.021 0.0014˚ 0.027˚ 0.025˚ 0.0054 0.0069 0.00009 0.00007 0.00008 0.00010 0.00011

very reliable convergence. All 4000 tests runs for this article

converged to the same optimum, so that the same results are

achieved every time the algorithm is run. The test results

displayed in Table I have been generated using a simulated

Stäubli RX90, a camera aperture angle of 45˚ and a camera

resolution of 1024× 1024 pixels.

Additionally, a test with artificial image noise has been

performed in order to compare the algorithm introduced in

this paper to other calibration methods. In [9] Wei et al.

compare their calibration method to the classical Tsai and

Lenz algorithm. Using the same setup and also image noise

of σx = σy = 0.5 px, the mean overall translation errors are:

Our Method Wei and Arbter Tsai and Lenz

0.28 mm 0.36 mm 0.58 mm

It can be seen that in the simulation, where precision can

be most easily compared, our algorithm performs signifi-

cantly better than the standard methods.

C. Results from Tests in the Real World

The accuracy of the results with the Unimation Stäubli

RX90 is better than we can measure. Therefore the evaluation

of real world tests uses the standard deviation of the results

from a number of test runs, i.e. we measure repeatability. The

test consisted of several calibration tasks, each performed

in the same environment but with different start poses and

different relative positions (using random variables during

pose generation). The standard deviations of the extrinsic

parameters were:

σx σy σz σyaw σpitch σroll

1.5 mm 1.08 mm 2.54 mm 0.08˚ 0.15˚ 0.13˚

Real world test results are not very suitable for comparing

them to algorithms not running on the same system since the

results strongly depend on robot accuracy, camera resolution

and aperture angle. Therefore no comparison is given here.

D. Calibration Time

Data acquisition takes a few minutes, depending on the

robot and image processing system used. In our setup about

6 minutes are required to collect measurements from around

40–50 robot poses. The final calculation of the calibration

parameters requires around 20 seconds.

VII. CONCLUSIONS

A new algorithm for full calibration of camera-robot

systems with eye-in-hand camera has been presented. It has

the following features:

• Simultaneous and numerically stable calibration of in-

trinsic and extrinsic camera parameters

• Runs without user-given initial estimates

• Very easy usage; there are no parameters to adjust

• Simple application; only a small and easy to produce

calibration pattern is required

• Versatility, since the environment and lens distortion

models can be easily exchanged

• Higher accuracy than existing and well-established al-

gorithms.

The method uses a very effective way of acquiring

information to build an initial environment model using

6 very small robot movements. This environment model

provides the ability to focus the calibration object from

every robot/camera position and thereby enables the system

to automatically acquire many (numerically) relevant mea-

surements. The CMA-ES optimisation algorithm provides

a stable and reliable way to calculate a resulting camera

parameter vector.

Experiments from simulations show a very good and fast

convergence of the algorithm to the ground truth values in

a range of setups, proving its versatility. Experiments with

a real robot show a high repeatability of calibration results

with different start poses.
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