
Two Modules of a Vision{Based Roboti
System: Attention and A

umulation of Obje
tRepresentationsNorbert Kr�uger, Daniel Wendor�, Gerald SommerLehrstuhl f�ur Kognitive SystemeInstitut f�ur Informatik,Christian{Albre
hts{Universit�at zu KielPreusserstrasse 1-9, 24105 Kiel, Germanynkrfdw,gsg�ks.informatik.uni-kiel.deAbstra
t. In this paper, two modules of a behavior based roboti
{visionsystem are des
ribed: An attention me
hanism, and an a

umulationalgorithm to extra
t stable obje
t representations within a per
eption{a
tion 
y
le.1 Introdu
tionThe aim of our resear
h is the design and implementation of an a
tive visionsystem 
oupled with a robot arm (see �gure 1a) whi
h is able to re
ognise andgrasp obje
ts with autonomously learned representations. The system shall gainrobot 
ontrol over new obje
ts (i.e., grasp a new obje
t in a s
ene) by an instin
-tive and rudimentary behavior pattern and use the 
ontrol over the obje
t toa

umulate a representation of the obje
t and �nally apply these representationsto robustly tra
k, grasp and re
ognise the obje
t in a 
omplex s
ene.In this paper, two modules of su
h a system are des
ribed: A visual and(potentially) hapti
 attention me
hanism, and an a

umulation algorithm toextra
t stable obje
t representations. In the �rst module (des
ribed in se
tion2) the system dire
ts its attention to new obje
ts and manipulates the a
tive
omponents (i.e., 
ameras and grasper) su
h that a situation is a
hieved in whi
hgrasping be
omes easier: grasper and obje
t appear in the 
entre of a zoomedstereo image pair (see �gure 1h). In this situation grasping of the obje
t 
anbe performed using only relative positions between grasper and obje
t. Thehigh resolution allows to a

urately extra
t 3D{Information about the relativeposition and orientation of grasper and obje
t by stereo. Note that our attentionme
hanism is planned not to be only vision{based. We are 
urrently redevelopinga hapti
 sensor [17℄ whi
h allows to explore an obje
t hapti
ally. Therefore, ourattention me
hanism potentially fo
uses visual and hapti
 attention to the newobje
t. The attention me
hanism is to a wide degree predetermined but also
ontains adaptable 
omponents: The grasper is permantly tra
ked by the system.The information of motor 
ommands and tra
king results allow a self{
alibrationduring the per
eption{a
tion 
y
le [10, 18℄.
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Fig. 1. a) A
tive bino
ular head with robot arm. bi-biv) Images of a person enteringthe s
ene, putting an obje
t into the s
ene and leaving the s
ene. 
) Graph indi
atinga dynami
 period by the magnitude of di�eren
es between images. d-h) Stereo images:d) Di�eren
e image before and after the dynami
 period e) Similarities of a Gabor jetextra
ted from the 
entre of gravity in the left image to the jets extra
ted from otherpixel positions of the di�eren
e area. Maxima are de�ned as 
orresponding points. �)Fixation of the new obje
t. �i) Similarities of the Gabor jets for �ne tuning of �xation.�ii) Fixation after a se
ond 
amera a
tion. g) Movement of the robot arm to a positionnear the obje
t. h) Zoom.The se
ond module (des
ribed in se
tion 3) uses 
ontrol over the obje
t toextra
t a stable representation. We a

ount for the vagueness of semanti
 infor-mation extra
ted from single images by assigning 
on�den
es to this informationand a

umulating this information over an image sequen
e of a 
ontrolled movingobje
t. Although the information extra
ted from single images 
ontains errors(see the representations on the left hand side of �gure 3) a more stable represen-tation 
an be a
hieved by 
ombining information from di�erent images (see righthand side of �gure 3). Be
ause the obje
t 
an 
hange its position and orientation| and this 
hange might be wanted be
ause another view of the obje
t givesnew information whi
h might not be extra
table from former ones | we fa
ethe 
orresponden
e problem: Corresponden
es between entities des
ribing theobje
t in di�erent images (or 3D interpretations extra
ted from stereo images)are not known. However, the parameters of motion are known sin
e the robotmanipulates the obje
t and the transformations of entities 
an be 
ompensatedfor ea
h frame of the sequen
e. Knowing the 
orresponden
es, an algorithm 
anbe applied to update and improve the obje
t representation iteratively within aper
eption{a
tion{
y
le.One important aspe
t of the design of a 
omplex behavior based vision systemis the intera
tion of modules developed by di�erent people within one softwarepa
kage to derive 
omplex 
ompeten
es from the 
ombination of more primitive




ompeten
es. We are 
urrently developing a C++{library (KiViGraP, KielerVision and Grasping Proje
t) in whi
h this intera
tion is going to o

ur (fordetails see [14℄).2 Attention me
hanism based on visual{roboti
Per
eption{A
tion Cy
lesOur basi
 behavior aimin at a ta
tile 
onta
t with a new obje
t 
an be dividedinto a number of more simple 
ompeten
es (des
ribed below). The behavior pat-tern 
an be understood to a wide degree as a re
ex a
tion: The system shall\aim" to get in 
onta
t to new obje
ts to explore them visually and hapti
ally.Going even further, it \aims" to grasp the obje
t using a rudimentary represen-tation to learn a more sophisti
ated and eÆ
ient representation (see se
tion 3).During robot a
tions a permanent tra
king of the grasper allows to permanentlyre
alibrate the system.The module des
ribed in this se
tion is going to initiate a situation in whi
hgrasping and ta
tile exploration is fa
ilitated. Sin
e for the a

umulation s
heme(se
tion 3) it is essential that the system has physi
al 
ontrol over the obje
t, themodule des
ribed in this se
tion 
an be understood as part of a bootstrappingpro
ess, that (on
e the system's experien
e has been grown) 
an be substitutedby or transformed into a more goal{oriented behavior pattern. However, thebridge between attention and grasping has not yet been built and is part of
urrent resear
h.In the following we des
ribe some submodules used to a
hieve ta
tile 
onta
t.The modules des
ribed here are not understood to be performed in a sequentialpro
ess but as 
ompeten
es whi
h intera
t with ea
h other (e.g., tra
king andself{
alibration) and whi
h 
an be applied depending on the a
tual system'sgoal. It is likely that at the very beginning of the bootstrapping pro
ess thestru
ture and relations of the 
ompeten
ies are more predetermined than aftera period of adaptation.{ Dete
tion of a new obje
t and dete
tion of a suitable time intervalfor robot a
tion: A new obje
t is dete
ted by the di�eren
e in ea
h ofthe two stereo images before and after a dynami
 period, i.e., a period inwhi
h people or other obje
ts enter the s
ene (see �gure 1bi{iv). For reasonsof grasping su

ess and maintaining safety for people intera
ting with therobot, it is ne
essary not to intervene in a dynami
 situation. The systemsear
hes for a new obje
t when a dynami
 period o

ured | a person putsa new obje
t into the s
ene | followed by a stable period | the personleaves the s
ene (see �gure 1bi{iv). Figure 1
 shows a graph indi
ating thedynami
 in a s
ene. During a period in whi
h the graph shows high valuesthe robot is not allowed to intervene. The behavior pattern, responsible forrobot and people safety 
an be understood as a permanent (self)prote
tionexpert whi
h restri
ts all other robot pro
esses.In 
ase that the person puts a new obje
t into the s
ene, the obje
t is dete
tedby the di�eren
e in the images before and after the dynami
 period (see



�gure 1d). Sin
e simple di�eren
es of grey{level images are unstable due tolittle movements of the 
amera or variation of illumination, we also 
omputethe di�eren
e of the magnitude of Gabor wavelet responses. For eÆ
ient
omputation we make use of the separability of quaternioni
 Gabor wavelets[5℄.{ Fixation, approa
hing and zooming: In 
ase of dete
tion of a 
hange inthe images before and after the dynami
 period we �xate the new obje
t. Theinternal 
amera parameters of our bino
ular 
amera-head are 
alibrated atan initialisation stage. Then the system re
alibrates itself after a movementby 
omputing the new proje
tion parameters from the motion 
ommandsgiven to the 
amera head. This re
alibration is relatively stable even after anumber of movements.The two areas whi
h represent di�eren
es in the image (or more pre
iselytheir 
entre of gravity) give us two 
orresponding points for whi
h we 
an
ompute a 3D{position with our 
alibrated system. Knowing its 3D{positionwe 
ould easily �xate the obje
t. However, sin
e the 
orresponden
e of twoobje
ts is de�ned by the 
entre of gravity of areas (whi
h might not bevery pre
ise), the system may additionally use information about similaritieswithin a small area around our di�eren
e areas. We 
ompare image pat
hes(with a method similar to [13℄ based on Gabor wavelets and jets) to �nd morepre
ise 
orresponden
es in the two stereo images (see �gure 1e). The system
an a
hieve a higher robustness by iterativeley 
omputing the distan
e ofthe obje
t and the image 
enter after �xation. Note that these distan
es also
an be used as a measure for the performan
e of the system, i.e., 
an alsobe used in a more global feedba
k loop to optimize the system.Finally, the robot arm is moved to a position near the 
omputed 3D{positionof the obje
t (see �gure 1g) and the system 
an perform a zoom to get ahigher resolution of both, the obje
t and the grasper (see �gure 1h). Obje
tand grasper appear magni�ed and their relative distan
e 
an be used forgrasper manipulation with high a

ura
y. It is expe
ted that this relativedistan
e 
an be extra
ted with higher a

ura
y than absolute distan
es fromstereo images.{ Tra
king and self{
alibration: The system is equipped with a permanentgrasper{tra
king me
hanism whi
h is also based on the jet{representationin [13℄. The 2D{tra
king results and the motion parameters given to therobot 
an be 
ompared to re
alibrate the system by a simple update rule. Itseems to be important that 
alibration does not only o

ur at the beginningof a pro
ess (often with an arti�
ial 
alibration pattern) but is performedpermanently during the normal per
eption{a
tion 
y
le. Therefore, we haveto fa
e the tra
king of the grasper in our quite un
ontrolled environment.This is known as a very hard mat
hing task whi
h we are able to solve evenwith our rudimentary obje
t representation by allowing only 'sure' mat
hesto be used for self{
alibration (for details see [19℄). Here again, the system'sability to measure the su

ess of performing 
ompeten
es is of signi�
antimportan
e.



We would like to �nish this se
tion with the remark that, although in its 
ur-rent state the behavior pattern is to a huge degree predetermined, we do intendto a
hieve a more robust, more 
exible and more{goal oriented behavior pat-tern in a 
omplex system through learning. Self{
alibration by grasper tra
kingalready supports an even better estimate of internal and external parametersand therefore a more robust behavior. Furthermore, the module 
an measure itssu

ess of �xation (�gure 1�-iii) and is intended to dete
t the su

ess of ta
-tile 
onta
t and grasping. Therefore, this information 
an be used as feedba
kfor a more global learning whi
h may allow to a
hieve dire
t 
onta
t and su
-
essful grasping more frequently by optimizing free parameters of the system.Finally, after a
hieving robot 
ontrol more 
omplex obje
t representations 
anbe learned (see se
tion 3) and the original re
ex behavior 
an be transformedinto a more goal{oriented behavior, e.g., an obje
t is only grasped when it hasn'tbeen learned so far.PSfrag repla
ements e1 e2 T 1;2(e1)ê2 ê3e3 T 2;3(e2)Fig. 2. The a

umulation s
heme. The entity e1 (here represented as a square) is trans-formed to T 1;2(e1). Note that without this transformation it is nearly impossible to �nda 
orresponden
e between the entities e1 and e2 be
ause the entities show signi�
antdi�eren
es in appearan
e and position. Here a 
orresponden
e between T 1;2(e1) ande2 is found be
ause a similar square 
an be found 
lose to T 1;2(e1) and both entitiesare merged to the entity ê2. The 
on�den
e assigned to ê2 is set to a higher value thanthe 
on�den
e assigned to e1 indi
ated by the width of the lines of the square. Thesame pro
edure is then applied for the next frame for whi
h again a 
orresponden
ehas been found. By this s
heme information 
an be a

umulated to a
hieve robustrepresentations.3 A

umulation of Ina

urate Information to a RobustObje
t RepresentationAfter grasping the obje
t, an a

umulation s
heme 
an be applied to extra
t arepresentation of the obje
t (see �gures 2 and 3). Feature extra
tion fa
es theproblem that semanti
 information extra
ted by arti�
ial systems from a singleimage or stereo images even under optimal 
onditions is ne
essarily imperfe
t.For instan
e, although there exist a large amount of edge dete
tors none ofthem is 
omparable to human performan
e. Moreover, we see it as an importantproblem to extra
t obje
t representations in real situations and not in arti�
iallyadapted 
onditions (su
h as homogeneous ba
kground, 
ontrolled pose et
.), i.e.,we intend to full�ll the requirements situatedness formulated by Brooks [3℄. One



Fig. 3. left) top: left and right image of an obje
t. bottom: the proje
ted 3D represen-tation extra
ted from the stereo images. middle) Two pairs of stereo images (top: left
amera image, middle: right 
amera image) and the the proje
ted 3D representation(bottom). right) Proje
ted 3D Representation a

umulated over a set of stereo images.The system's 
on�den
e for the presen
e of line segments is represented as grey value(Dark values represent high 
on�den
es).important reason for the extremely good performan
e of humans on these tasks ineven very diÆ
ult situations is that the human visual system applies 
onstraintsto interpret a 
ertain s
ene or situation [7, 11℄. An important 
onstraint is theutilization of the 
oheren
e of obje
ts during a rigid body motion whi
h allowsto a

umulate information over time. Furthermore, in an a
tive vision{basedrobot system we are able, instead of only passively per
eiving a 
ertain situation, to support learning by our own a
tions. This 
orresponds to embodyment asanother requirement formulated by Brooks [3℄.Our a

umulation algorithm 
an be de�ned independently of the entities usedto represent obje
ts. The algorithm also is independent of the 
on
rete equiva-len
e relation or transformation used to de�ne 
orresponden
es. It only requiresan obje
t representation by 
ertain entities for whi
h a metri
 is de�ned andto whi
h 
ertain transformations or equivalen
e relations (su
h as rigid bodymotion) 
an be applied. This a

umulation algorithm is an extension of an al-gorithm introdu
ed in [12, 15℄ whi
h has only dealt with 2D representation andtranslational motion.Let e 2 E be an entity used to des
ribe obje
ts (for instan
e a 2D{linesegment, a stru
ture tensor [9℄ extra
ted from an image, 3D{line segments ex-tra
ted from a stereo image pair or any other kind of obje
t des
riptor) andd(e; e0) be a distan
e measure on the spa
e of entities E. Furthermore, let T bea transformation or equivalen
e relation, for instan
e a rigid body motion or theproje
tive map 
orresponding to a rigid body motion. If ei is an entity extra
tedfrom frame i of a sequen
e of events then T i;i+1(ei) is the transformation T i;i+1from the i{th to the (i+ 1){th frame applied to ei.Let ei+1 be an entity extra
ted from the (i+1){th frame of the sequen
e.We say that ei and ei+1 are likely to 
orrespond to ea
h other if d(T (ei); ei+1)



is small. Often it might not be possible to �nd an exa
t 
orresponden
e withd(T (ei); ei+1) = 0. For example, if we want to 
ompare lo
al image pat
hes in twoimages knowing the exa
t proje
tive transformation 
orresponding to the rigidbody motion of an obje
t from the �rst to the se
ond frame, the 
orrespondingimage pat
hes 
an not be expe
ted to be exa
tly equal be
ause of fa
tors su
has noise during the image a
quisition, 
hanging illumination, non{Lambertiansurfa
es or dis
retization errors, i.e., the features are quasi{invariant. The prob-lem may even be
ome more severe when we extra
t more 
omplex entities su
has 3D or 2D line segments or 3D{surfa
e pat
hes. Therefore it is advantageousto formalize a 
on�den
e of 
orresponden
e by using a metri
.The a

umulation of information 
an now simply be a
hieved by the followingupdate rule: If there exists an entity ei+1 in the (i+1){th frame for whi
hd(T (ei); ei+1) is small (i.e., a 
orresponden
e is likely), then merge T (ei) andei+1 by some kind of average operator, êi+1 = merge(T (ei); ei+1), and set the
on�den
e for êi+1 to a higher value than the 
on�den
e assigned to ei. If thereexists no entity ei+1 in the (i+1){th frame for whi
h d(T (ei); ei+1) is small,the 
on�den
e for entity ei to be part of the obje
t is de
reased. In Figure 2 as
hemati
 representation of the algorithm is shown for two iterations.The a

umulation s
heme 
ould also be interpreted as an iterative 
lusterings
heme with an in build equivalen
e relation to 
ompensate the motion of theobje
t. It is also related to, so 
alled 'dynami
 neural nets' [6, 4℄, in whi
h 
ellsappear or vanish a

ording to some kind of 
on�den
e measure.Figure 3 shows the appli
ation of this s
heme to representations 
onsistingof 3D line{segments extra
ted from stereo images. For these entities the 
hangeof the transformation (i.e., T i;i+1(e)) and a metri
 
an be 
omputed expli
itly(for details see [1℄). Up to now, only one aspe
t of an obje
t 
an be a

umulatedbe
ause 
orresponden
es are needed whi
h are not granted when o

lusion doeso

ur. That means, that when the robot rotates the obje
t by a larger degree, it islikely that new edges o

ur in the stereo images and other edges disappear. In the
urrent state we ensure that the same aspe
t is presented to the system by onlyallowing movements within a small subspa
e of the spa
e of rigid body motions.To de�ne su
h a subspa
e of possible rigid{body motions we make expli
itly useof the metri
 de�ned on the spa
e of unit{quaternions 
orresponding to rotationsin Eu
lidean spa
e [2℄.4 OutlookWe have introdu
ed two basi
 
ompeten
es of an obje
t re
ognition and manip-ulation system. In both modules per
eption and a
tion are tightly intertwinedwithin per
eption{a
tion 
y
les [10, 18℄.Important 
omponents of su
h a system are still missing, su
h as performinggrasping of the obje
t after the attention me
hanism. However, for su
h a graspthe attention me
hanism gives a good starting point, be
ause we have only tooperate with relative positions and sin
e we gained high resolution of the impor-tant aspe
ts of the s
ene by a
tive 
ontrol of the 
amera. A further importantproblem is the appli
ation of our extra
ted representations to re
ognition and



grasping tasks. In [16℄ we 
ould su

essfully apply one of our a

umulated rep-resentations to the tra
king problem.Referen
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