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Abstract. In this paper, two modules of a behavior based robotic vision
system are described: An attention mechanism, and an accumulation
algorithm to extract stable object representations within a perception
action cycle.

1 Introduction

The aim of our research is the design and implementation of an active vision
system coupled with a robot arm (see figure 1a) which is able to recognise and
grasp objects with autonomously learned representations. The system shall gain
robot control over new objects (i.e., grasp a new object in a scene) by an instinc-
tive and rudimentary behavior pattern and use the control over the object to
accumulate a representation of the object and finally apply these representations
to robustly track, grasp and recognise the object in a complex scene.

In this paper, two modules of such a system are described: A visual and
(potentially) haptic attention mechanism, and an accumulation algorithm to
extract stable object representations. In the first module (described in section
2) the system directs its attention to new objects and manipulates the active
components (i.e., cameras and grasper) such that a situation is achieved in which
grasping becomes easier: grasper and object appear in the centre of a zoomed
stereo image pair (see figure 1h). In this situation grasping of the object can
be performed using only relative positions between grasper and object. The
high resolution allows to accurately extract 3D-Information about the relative
position and orientation of grasper and object by stereo. Note that our attention
mechanism is planned not to be only vision-based. We are currently redeveloping
a haptic sensor [17] which allows to explore an object haptically. Therefore, our
attention mechanism potentially focuses visual and haptic attention to the new
object. The attention mechanism is to a wide degree predetermined but also
contains adaptable components: The grasper is permantly tracked by the system.
The information of motor commands and tracking results allow a self—calibration
during the perception action cycle [10,18].
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Fig. 1. a) Active binocular head with robot arm. bi-biv) Images of a person entering
the scene, putting an object into the scene and leaving the scene. ¢) Graph indicating
a dynamic period by the magnitude of differences between images. d-h) Stereo images:
d) Difference image before and after the dynamic period e) Similarities of a Gabor jet
extracted from the centre of gravity in the left image to the jets extracted from other
pixel positions of the difference area. Maxima are defined as corresponding points. fi)
Fixation of the new object. fii) Similarities of the Gabor jets for fine tuning of fixation.
fiii) Fixation after a second camera action. g) Movement of the robot arm to a position
near the object. h) Zoom.

The second module (described in section 3) uses control over the object to
extract a stable representation. We account for the vagueness of semantic infor-
mation extracted from single images by assigning confidences to this information
and accumulating this information over an image sequence of a controlled moving
object. Although the information extracted from single images contains errors
(see the representations on the left hand side of figure 3) a more stable represen-
tation can be achieved by combining information from different images (see right
hand side of figure 3). Because the object can change its position and orientation
— and this change might be wanted because another view of the object gives
new information which might not be extractable from former ones we face
the correspondence problem: Correspondences between entities describing the
object in different images (or 3D interpretations extracted from stereo images)
are not known. However, the parameters of motion are known since the robot
manipulates the object and the transformations of entities can be compensated
for each frame of the sequence. Knowing the correspondences, an algorithm can
be applied to update and improve the object representation iteratively within a
perception action cycle.

One important aspect of the design of a complex behavior based vision system
is the interaction of modules developed by different people within one software
package to derive complex competences from the combination of more primitive



competences. We are currently developing a C++ library (KiViGraP, Kieler
Vision and Grasping Project) in which this interaction is going to occur (for
details see [14]).

2 Attention mechanism based on visual-robotic
Perception—Action Cycles

Our basic behavior aimin at a tactile contact with a new object can be divided
into a number of more simple competences (described below). The behavior pat-
tern can be understood to a wide degree as a reflex action: The system shall
“aim” to get in contact to new objects to explore them visually and haptically.
Going even further, it “aims” to grasp the object using a rudimentary represen-
tation to learn a more sophisticated and efficient representation (see section 3).
During robot actions a permanent tracking of the grasper allows to permanently
recalibrate the system.

The module described in this section is going to initiate a situation in which
grasping and tactile exploration is facilitated. Since for the accumulation scheme
(section 3) it is essential that the system has physical control over the object, the
module described in this section can be understood as part of a bootstrapping
process, that (once the system’s experience has been grown) can be substituted
by or transformed into a more goal-oriented behavior pattern. However, the
bridge between attention and grasping has not yet been built and is part of
current, research.

In the following we describe some submodules used to achieve tactile contact.
The modules described here are not understood to be performed in a sequential
process but as competences which interact with each other (e.g., tracking and
self calibration) and which can be applied depending on the actual system’s
goal. It is likely that at the very beginning of the bootstrapping process the
structure and relations of the competencies are more predetermined than after
a period of adaptation.

— Detection of a new object and detection of a suitable time interval
for robot action: A new object is detected by the difference in each of
the two stereo images before and after a dynamic period, i.e., a period in
which people or other objects enter the scene (see figure 1bi—iv). For reasons
of grasping success and maintaining safety for people interacting with the
robot, it is necessary not to intervene in a dynamic situation. The system
searches for a new object when a dynamic period occured  a person puts
a new object into the scene followed by a stable period the person
leaves the scene (see figure 1bi—iv). Figure 1c shows a graph indicating the
dynamic in a scene. During a period in which the graph shows high values
the robot is not allowed to intervene. The behavior pattern, responsible for
robot and people safety can be understood as a permanent (self)protection
expert which restricts all other robot processes.

In case that the person puts a new object into the scene, the object is detected
by the difference in the images before and after the dynamic period (see



figure 1d). Since simple differences of grey level images are unstable due to
little movements of the camera or variation of illumination, we also compute
the difference of the magnitude of Gabor wavelet responses. For efficient
computation we make use of the separability of quaternionic Gabor wavelets
[5]-

Fixation, approaching and zooming: In case of detection of a change in
the images before and after the dynamic period we fixate the new object. The
internal camera parameters of our binocular camera-head are calibrated at
an initialisation stage. Then the system recalibrates itself after a movement
by computing the new projection parameters from the motion commands
given to the camera head. This recalibration is relatively stable even after a
number of movements.

The two areas which represent differences in the image (or more precisely
their centre of gravity) give us two corresponding points for which we can
compute a 3D—position with our calibrated system. Knowing its 3D—position
we could easily fixate the object. However, since the correspondence of two
objects is defined by the centre of gravity of areas (which might not be
very precise), the system may additionally use information about similarities
within a small area around our difference areas. We compare image patches
(with a method similar to [13] based on Gabor wavelets and jets) to find more
precise correspondences in the two stereo images (see figure 1e). The system
can achieve a higher robustness by iterativeley computing the distance of
the object and the image center after fixation. Note that these distances also
can be used as a measure for the performance of the system, i.e., can also
be used in a more global feedback loop to optimize the system.

Finally, the robot arm is moved to a position near the computed 3D position
of the object (see figure 1g) and the system can perform a zoom to get a
higher resolution of both, the object and the grasper (see figure 1h). Object
and grasper appear magnified and their relative distance can be used for
grasper manipulation with high accuracy. It is expected that this relative
distance can be extracted with higher accuracy than absolute distances from
stereo images.

Tracking and self—calibration: The system is equipped with a permanent
grasper tracking mechanism which is also based on the jet representation
in [13]. The 2D tracking results and the motion parameters given to the
robot can be compared to recalibrate the system by a simple update rule. It
seems to be important that calibration does not only occur at the beginning
of a process (often with an artificial calibration pattern) but is performed
permanently during the normal perception—action cycle. Therefore, we have
to face the tracking of the grasper in our quite uncontrolled environment.
This is known as a very hard matching task which we are able to solve even
with our rudimentary object representation by allowing only ’sure’ matches
to be used for self—calibration (for details see [19]). Here again, the system’s
ability to measure the success of performing competences is of significant
importance.



We would like to finish this section with the remark that, although in its cur-
rent state the behavior pattern is to a huge degree predetermined, we do intend
to achieve a more robust, more flexible and more goal oriented behavior pat-
tern in a complex system through learning. Self-calibration by grasper tracking
already supports an even better estimate of internal and external parameters
and therefore a more robust behavior. Furthermore, the module can measure its
success of fixation (figure 1fi-iii) and is intended to detect the success of tac-
tile contact and grasping. Therefore, this information can be used as feedback
for a more global learning which may allow to achieve direct contact and suc-
cessful grasping more frequently by optimizing free parameters of the system.
Finally, after achieving robot control more complex object representations can
be learned (see section 3) and the original reflex behavior can be transformed
into a more goal oriented behavior, e.g., an object is only grasped when it hasn’t
been learned so far.
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Fig. 2. The accumulation scheme. The entity e' (here represented as a square) is trans-
formed to T"?(e'). Note that without this transformation it is nearly impossible to find
a correspondence between the entities ' and e® because the entities show significant
differences in appearance and position. Here a correspondence between T'?(e') and
e? is found because a similar square can be found close to T'?(e') and both entities
are merged to the entity é2. The confidence assigned to é2 is set to a higher value than
the confidence assigned to e' indicated by the width of the lines of the square. The
same procedure is then applied for the next frame for which again a correspondence
has been found. By this scheme information can be accumulated to achieve robust
representations.

3 Accumulation of Inaccurate Information to a Robust
Object Representation

After grasping the object, an accumulation scheme can be applied to extract a
representation of the object (see figures 2 and 3). Feature extraction faces the
problem that semantic information extracted by artificial systems from a single
image or stereo images even under optimal conditions is necessarily imperfect.
For instance, although there exist a large amount of edge detectors none of
them is comparable to human performance. Moreover, we see it as an important
problem to extract object representations in real situations and not in artificially
adapted conditions (such as homogeneous background, controlled pose etc.), i.e.,
we intend to fullfill the requirements situatedness formulated by Brooks [3]. One



Fig. 3. left) top: left and right image of an object. bottom: the projected 3D represen-
tation extracted from the stereo images. middle) Two pairs of stereo images (top: left
camera image, middle: right camera image) and the the projected 3D representation
(bottom). right) Projected 3D Representation accumulated over a set of stereo images.
The system’s confidence for the presence of line segments is represented as grey value
(Dark values represent high confidences).

important reason for the extremely good performance of humans on these tasks in
even very difficult situations is that the human visual system applies constraints
to interpret a certain scene or situation [7,11]. An important constraint is the
utilization of the coherence of objects during a rigid body motion which allows
to accumulate information over time. Furthermore, in an active vision based
robot system we are able, instead of only passively perceiving a certain situation
, to support learning by our own actions. This corresponds to embodyment as
another requirement formulated by Brooks [3].

Our accumulation algorithm can be defined independently of the entities used
to represent objects. The algorithm also is independent of the concrete equiva-
lence relation or transformation used to define correspondences. It only requires
an object representation by certain entities for which a metric is defined and
to which certain transformations or equivalence relations (such as rigid body
motion) can be applied. This accumulation algorithm is an extension of an al-
gorithm introduced in [12,15] which has only dealt with 2D representation and
translational motion.

Let e € E be an entity used to describe objects (for instance a 2D line
segment, a structure tensor [9] extracted from an image, 3D line segments ex-
tracted from a stereo image pair or any other kind of object descriptor) and
d(e,e’) be a distance measure on the space of entities E. Furthermore, let T be
a transformation or equivalence relation, for instance a rigid body motion or the
projective map corresponding to a rigid body motion. If e’ is an entity extracted
from frame i of a sequence of events then T%*!(e?) is the transformation 7%+!
from the i th to the (i+ 1) th frame applied to e.

Let e't! be an entity extracted from the (i+1)-th frame of the sequence.
We say that e’ and e’*! are likely to correspond to each other if d(T'(e?),e'*1)



is small. Often it might not be possible to find an exact correspondence with
d(T (e),ei™t) = 0. For example, if we want to compare local image patches in two
images knowing the exact projective transformation corresponding to the rigid
body motion of an object from the first to the second frame, the corresponding
image patches can not be expected to be exactly equal because of factors such
as noise during the image acquisition, changing illumination, non Lambertian
surfaces or discretization errors, i.e., the features are quasi invariant. The prob-
lem may even become more severe when we extract more complex entities such
as 3D or 2D line segments or 3D—surface patches. Therefore it is advantageous
to formalize a confidence of correspondence by using a metric.

The accumulation of information can now simply be achieved by the following
update rule: If there exists an entity ei*! in the (i+ 1)-th frame for which
d(T(e'),e’*!) is small (i.e., a correspondence is likely), then merge T'(e?) and
e!T! by some kind of average operator, /7! = merge(T'(e?),e!T!), and set the
confidence for ¢! to a higher value than the confidence assigned to e’. If there
exists no entity e*! in the (i+1) th frame for which d(T'(e?),e'*!) is small,
the confidence for entity e’ to be part of the object is decreased. In Figure 2 a
schematic representation of the algorithm is shown for two iterations.

The accumulation scheme could also be interpreted as an iterative clustering
scheme with an in build equivalence relation to compensate the motion of the
object. It is also related to, so called ’"dynamic neural nets’ [6,4], in which cells
appear or vanish according to some kind of confidence measure.

Figure 3 shows the application of this scheme to representations consisting
of 3D line-segments extracted from stereo images. For these entities the change
of the transformation (i.e., T#**!(e)) and a metric can be computed explicitly
(for details see [1]). Up to now, only one aspect of an object can be accumulated
because correspondences are needed which are not granted when occlusion does
occur. That means, that when the robot rotates the object by a larger degree, it is
likely that new edges occur in the stereo images and other edges disappear. In the
current state we ensure that the same aspect is presented to the system by only
allowing movements within a small subspace of the space of rigid body motions.
To define such a subspace of possible rigid body motions we make explicitly use
of the metric defined on the space of unit quaternions corresponding to rotations
in Euclidean space [2].

4 OQOutlook

We have introduced two basic competences of an object recognition and manip-
ulation system. In both modules perception and action are tightly intertwined
within perception—-action cycles [10, 18].

Important components of such a system are still missing, such as performing
grasping of the object after the attention mechanism. However, for such a grasp
the attention mechanism gives a good starting point, because we have only to
operate with relative positions and since we gained high resolution of the impor-
tant aspects of the scene by active control of the camera. A further important
problem is the application of our extracted representations to recognition and



grasping tasks. In [16] we could successfully apply one of our accumulated rep-
resentations to the tracking problem.
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