
Collinearity and Parallelism are Statistically Signi�cantSecond Order Relations of Complex Cell Responses�Norbert Kr�ugerAbstractBy investigating the second order statistics of Gabor wavelet responses derived from naturalimages, we show that collinearity and parallelism are conspicuous relations. We give a precisemathematical characterization of these Gestalt principles by the conditional probability of tworesponses. Essential for our investigations is a non{linear transformation, initially utilizedwithin the object recognition system [5], which transforms continuous Gabor wavelet responsesinto a binary code indicating the presence or absence of local oriented line segments.Keywords: Natural images, Gabor Wavelets, Gestalt Principles, Learning, Contextual Information,Banana Wavelets,Norbert Kr�ugerInstitut f�ur NeuroinformatikRuhr{Universit�at Bochum44801 BochumUniversit�atsstra�e 150Germany
�Supported by grants from the German Ministry for Science and Technology 01IN504E9 (NEUROS) and01M3021A4 (Electronic Eye). 1



Collinearity and Parallelism are Statistically Signi�cantSecond Order Relations of Complex Cell ResponsesAbstractBy investigating the second order statistics of Gabor wavelet responses derived from naturalimages, we show that collinearity and parallelism are conspicuous relations. We give a precisemathematical characterization of these Gestalt principles by the conditional probability of tworesponses. Essential for our investigations is a non{linear transformation, initially utilizedwithin the object recognition system [5], which transforms continuous Gabor wavelet responsesinto a binary code indicating the presence or absence of local oriented line segments.1 IntroductionA lot of evidence exists for the assumption that Gabor wavelets (see, e.g., Daugman [1]) play animportant role in the �rst stages of visual processing of humans. Jones et al. [4] recorded neuronswith Gabor wavelet like sensitivity in V1 and Gabor wavelet like �lters can be learned from thestatistics of natural images by applying the restrictions \information preservation" and \sparse cod-ing" (Ohlshausen et al. [7]). There is also strong evidence that the human object recognition systemprocesses the visual input through a couple of stages in which features of increasing complexity areextracted and in which Gabor wavelets represent only an early stage of processing (see, e.g., Hummelat al. [3] and Oram et al. [8]). Evaluating the second order statistics of Gabor wavelet responseswe give statistical evidence for important second order relations for the class of natural images andtherefore we support the understanding of the stages of the visual system beyond the extraction ofGabor wavelets responses.On the one hand there exists little knowledge about the statistical properties of the class ofnatural images. As the most precise quality Field [2] showed that the amplitude of the powerspectrum of natural images decreases with frequency (1=f{law) and that this statistical qualityholds true for at least three octaves of scaling. On the other hand it is known for a long while thathumans utilize grouping mechanisms in their perception called \Gestalt principles" (see e.g., Ellis[9]). Hummel and Biederman [3] showed that there is a mutual dependence of the occurence oflocal oriented line segments for line drawings of randomly generated triangles. Here we go beyondthis result by characterizing the Gestalt principles collinearity and parallelism in a mathematicalframework from the second order statistics of Gabor wavelet responses. By showing that pairs ofGabor wavelet responses derived from natural images have a characteristic conditional probabilitydistribution corresponding to the Gestalt principles mentioned above we describe an additionalstatistical quality of natural images.Essential for the extraction of Gestalt principles from natural images is a non{linear transfor-mation which transforms continuous Gabor wavelet responses (see �gure 1b) to the binary codeindicating the presence or absence of local oriented line segments (see �gure 1d). This correspondsto a transformation of a quantitative description to a more qualitative description of an image.Without this transformation, looking only at the second order statistics of the magnitude of Gaborwavelet responses, the Gestalt principles collinearity and parallelism are barely detectable. Initially2
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d) Figure 1: Gabor Transformation a) Gabor wavelets of four di�erent orientations. b) An image andthe Gabor responses corresponding to the kernels in a). c) Normalized response after applying thenormalization function N . d) Binarized response after thresholding.the transformation was derived to match a sparse and binary object representation with an im-age (see �gure 2 and [5]). We see the ability to detect these important Gestalt relations with thisnon-linear transformation as a positive example of task{driven approaches yielding answers to morefundamental questions.2 Second Order Statistics of Gabor Wavelet ResponsesGabor wavelets (see �gure 1a) can be parameterized by a vector ~c = (x; y; f; �). The tupel (x; y)gives the position of the Gabor wavelet's center in the image, f the frequency of the wave functionand � its orientation. In all of our simulations we use only one frequency level because we areonly interested in the relation of line segments corresponding to similar scale. We apply a slightmodi�cation of Gabor wavelets. Instead of a Gaussian with �x = �y as envelope function we choosestretched the envelope function perpendicular to the orientation of the wave function by a factor 1:5.In this way we achieve a more speci�c tuning to local oriented lines. Here a Gabor wavelet responser(~c; I) = ���G~c � I��� is de�ned as the magnitude of the convolution of the Gabor wavelet G~c with imageI. Figure 1b) shows a Gabor transformation with four orientations of an 128 � 128 image. Thespace of second order relations consists of (1282 � 4)2 �= 4 � 109 elements. In order to reduce thishuge number we restrict ourselves to the relative distance of two Gabor wavelets assuming that thesecond order statistics of natural images are translation invariant. This implies that we computeour statistics over all tupel of Gabor wavelets which have same distance vector. In other words, weintroduce the equivalence relation \ T�":(~c1;~c2) T�(~c10;~c20)() (x1 � x2; y1 � y2; f1; f2; �1; �2) = (x01 � x02; y01 � y02; f 01; f 02; �01; �02):Let now I be a set of images. In all our simulations we used an image data base from British3



Figure 2: A learned representation of a face. In [5] a large number of objects (such as, hand postures,faces, and cans) are coded by localized curved line segments allowing for a fast and e�cient detectionof these objects in complicated scenes.Telecom1 consisting of 98 pictures of natural images showing outdoor scenes with and without humanmade objects like houses and cars (see �gure 3a). The images have the pixel format 512 � 512. Byextracting sub{images of size 128 � 128 we can produce a large set of training images used for ourstatistics (see �gure 3b). In our simulation we used 900 randomly selected sub{images.We compute the correlation of two Gabor wavelet responsesCor(T�;I)(~c1;~c2) = Cor(T�;I)((0; 0; f; �1); (x2; y2; f; �2))= P(I;T�)(r(~c1; I)� <r(~c1)>) � (r(~c2; I)� <r(~c2)>)rP(I;T�)(r(~c1; I)� <r(~c1)>)2 �rP(I;T�)(r(~c2; I)� <r(~c2)>)2 (1)where r(~c; I) represents the response if the Gabor waveletG~c for image I 2 I and <r(~c)> representsthe mean response of ~c on all images. Because of the translation invariance of the statistics of naturalimages <r(~c)> does not depend on the position (x; y) but only on the angle � (see also table 1).The expression P(I;T�) indicates that we sum over all instances (~c1;~c2) in I for which the eqivalencerelation \ T�" holds true. Because we are only interested in the relative distances of two Gaborwavelets, i.e., because of our equivalence relation \ T�", we can set x1 = y1 = 0. We investigatethe correlation for Gabor wavelets with a maximal distance of 40 pixels. For 4 orientations andone frequency level we have 42 � 812 = 104976 equivalence classes described by the parameters�i1; �j2 : 0; �2 ; �; 3�2 and x2; y2 : �40; : : : ; 40. For each tupel (~c1;~c2) we extract in each image 729values falling in the same equivalence class, i.e., our estimate of Cor(T�;I)(~c1;~c2) is based on morethan 300.000 data values. Figure 4) shows the result. For each pair of orientations, i.e., one contourplot in �gure 4, the computation of Cor(T�;I)(~c1;~c2) takes approximately 3 hours on a Sun UltraSparc(167Mhz).Most interesting are the results for which ~c1;~c2 have the same orientation. We can see a distinctexpansion along and perpendicular to the orientation of the kernel corresponding to the fact thatcollinear edges and parallel edges occur with statistically signi�cant frequency. In case of horizontaland vertical orientation this expansion is most distinct. Furthermore there is always positive corre-lation, expressing that the occurrence of structure at one position makes the occurrence of structurenearby more likely.1Access to these images may be obtained by anonymous ftp to site ftp.teleos.com. The images may be found inthe subdirectory VISION-LIST-ARCHIVE/IMAGERY/BT scenes.4
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c) Figure 3: a) Original Images of the BT data base. b) Extracted subimages. c) Rotated subimages.To ensure that these e�ects are not caused by the correlation of the kernels themselves wecompute the correlation on noise with 1f {power spectrum (see �gure 5). Here the correlation is verydi�erent compared to natural images. Firstly correlation drops down to zero where the kernels donot overlap, i.e., there is no global dependency of the correlation for 1f {noise images. Secondly theexpansion along the orientation of the kernel is much weaker compared to natural images. Thirdlythe second order statistics of 1f {noise are rotation invariant.Now we apply a non-linear transformation to the Gabor responses to translate the continuousresponse to the pure binary information indicating the presence or absence of local line segmentswith certain orientation (see �gure 1d). We sayAAC a line segment corresponding to the Gabor wavelet G~c is present if the corresponding Gaborwavelet response is distinctly above the average response.We call this criterion the \Above Average Criterion" which can be formalized by �rst applyinga normalization function N(t) to the Gabor wavelet response transforming r(~c; I) to the interval[0; 1]. The normalized response N(r(~c; I)) represents a con�dence in the interval [0; 1] indicatingthe presence or absence of a line segment corresponding to a certain Gabor wavelet parametrizedby ~c (see �gure 1c). We worked with di�erent normalization functions and di�erent parameters.The results do not depend crucial on our speci�c choices as long as they formalize our criterionAAC. The normalization function used for our simulations is described in the appendix. A similarnormalization function is applied in the object recognition system2 described in Kr�uger et al. [5].2In this system an object is represented as a sparse and spatially organized arrangement of curved local line5



 

Figure 4: Correlation of Gabor wavelet responses. 1st line: Cor((0; 0; f; 0); (x; y; f; �j2)) for �j2 :0; �2 ; �; 3�2 . 2nd; 3rd; 4th line: Cor((0; 0; f; �i1); (x; y; f; �j2)) for �i1 : �2 ; �; 3�2 and �j2 : 0; �2 ; �; 3�2 . Thevalue with coordinate (x0; y0) in each contour plot represents Cor((0; 0; f; �i1); (x0; y0; f; �j2)). Eachplot is smoothed by a Gaussian of 3 pixel width.A simple thresholding ~r(~c; I) = N(r(~c; I)) > 0:75 (2)transforms the normalized response to binary values (see �gure 1d) indicating the presence or absenceof local line segments with a certain orientation and position. Figure 6 shows the correlations ofthe binarized responses. As in �gure 4 collinearity and parallelism are conspicuous relations. But incontrast to the correlation of unmodi�ed Gabor wavelet responses parallelism is a global property:The correlation of binarized responses of same orientation is always higher than the correlation ofresponses of di�erent orientation. In other words, the occurrence of a parallel line segment with 40pixel distance is more likely than the occurrence of a line segment with di�erent orientation andsmaller distance.We can look at the binarized Gabor wavelet responses as discrete events and we can calculateG(T�;I)(~c1;~c2) := P (~r(~c2; I)j~r(~c1; I))P (~r(~c2; I)) = P (~r(~c2; I) \ ~r(~c1; I))P (~r(~c1; I)) � P (~r(~c2; I)) = 1n P(I;�) ~r(~c1; I) � ~r(~c2; I)1n P(I;�) ~r(~c1; I) � 1n P(I;�) ~r(~c2; I)(3)segments (see �gure 2). The normalization mediates between the continuous wavelet responses and the binary objectrepresentations. 6



a) 

b) Figure 5: a) 1f {noise images. b) Cor((0; 0; f; 0); (x; y; f; �j2)), �j2 : 0; �2 ; �; 3�2 for 1f {noise images.which expresses the inuence of occurrence of a line segment corresponding to ~c1 to the occurrenceof the line segment corresponding to ~c2 (n is the number of evaluated tupels (~c1;~c2)). If G(~c1;~c2)is larger than one the occurrence of a line segment corresponding to ~c2 is more likely when a linesegment corresponding to ~c1 is present. In case G(~c1;~c2) = 2 we can say the likelihood has doubled.We call G(~c1;~c2) the Gestalt coe�cient3. Figure 7 shows the result. We recognize that the likelihoodof the presence of a certain line segment is strongly inuenced by the presence of other line segments.The Gestalt principles \collinearity" and \parallelism" are described by the Gestalt coe�cient asstatistically signi�cant relations.The second order statistics of natural images are not rotation invariant. Not only the Gestaltprinciples collinearity and parallelism are most conspicuous for horizontal and vertical orientation.Also occur horizontal and vertical local lines more often than lines of diagonal orientation. Table 1shows the mean responses for the non normalized and binarized Gabor wavelet responses of di�erentorientations for natural images and 1f {noise.3It can be shown that the Gestalt coe�cient G(T�;I) can be computed from the correlation of the binarized Gaborwavelet responses by the formula G(T�;I) = c �Cor(T�;I) + 1 (4)where c does only depend on �1 and �2. 7



 

Figure 6: Correlation of binarized Gabor wavelet responses.� 0 �2 � 3�2natural images / 1f noise nat 1f nat 1f nat 1f nat 1f<r(~c)> 6047 7705 4529 7719 4871 7705 4529 7704< ~r(~c) > 0.11 0.02 0.03 0.02 0.07 0.02 0.03 0.02Table 1: The mean value for non{normalized and binarized Gabor wavelet responses.To neglect di�erences resulting from this non-isotropic structure of natural images according torotation we introduce an additional equivalence relation \T�R� " representing translation and rotationinvariance:(~c1;~c2)T�R� (~c10;~c20)() (x1 � x2; y1 � y2; f1; f2; �1 � �2) = (x01 � x02; y01 � y02; f 01; f 02; �01 � �02)By this equivalence relation we can reduce the number of equivalence classes to 4 � 812 = 26244described by the parameters �j2 : 0; �2 ; �; 3�2 and x2; y2 : �40; : : : ; 40. In our implementation werealize this equivalence relation by randomly rotation of the pictures used for our statistics (see�gure 3c). Figure 8 shows Cor(~c1;~c2) and G(~c1;~c2) for T�R� as contour plots. Figure 9a) shows allfour plots in the �rst line of �gure 8 as surface plots. The surface on the top of the other threesurfaces corresponds to Gabor wavelets with same orientation.8



 

Figure 7: The Gestalt coe�cient.3 Collinearity and Parallelism are Signi�cant RelationsNow we can characterize the Gestalt principles \collinearity" and \parallelism" in terms of theGestalt coe�cient.Collinearity: Two complex cells ~c1;~c2 are collinear ifG(T�R� ;I)(~c1;~c2) > 4:7: (5)Parallelism: Two complex cells ~c1;~c2 are parallel if2:2 � G(T�R� ;I)(~c1;~c2) � 4:7: (6)Figure 10 shows line segments corresponding to di�erent intervals [r1; r2] with G(~c1;~c2) 2 [r1; r2].4 ConclusionWe showed that statistically signi�cant second order relations in natural images exist and that theyrepresent the Gestalt principles collinearity and paralellism. They can be characterized mathe-matically by the Gestalt coe�cient. The detection of these important relations is facilitated by a9



 

 

Figure 8: The correlation and the Gestalt coe�cient for randomly rotated images as contour plots.1st{line: Cor(T�R� ;I)((0; 0; f; 0); (x; y; f; �j2)) for �j2 : 0; �2 ; �; 3�2 2nd{line: Correlation in �rst line minuscorrelation on 1f {images. 3rd and 4th{line: Same as in the 1st and 2cd{line for the Gestalt coe�cient.transformation of the continuous Gabor wavelet reponse to a binary and more complex feature: alocal oriented line segment. In the object recognition system developped by Kr�uger et al. [5] thiskind of normalization is utilized to mediate between a binary object representation and the contin-uous wavelet responses. In a next step we aim to incorporate the Gestalt principles characterizedhere as grouping mechanisms into this object recognition system (see also [6]).Acknowledgement: I like to thank Christoph von der Malsburg, Irving Biederman, Rolf W�urtzand Michael P�otzsch for fruitful discussions. Many thanks to Rolf W�urtz for deriving equation (4).Appendix: The Normalization FunctionFor our formalization of the AAC we de�neMean(x; y; I;I) := 12Meanlocal(x; y; I) + 12Meanglobal(I)as an average response. Meanglobal(I) is the average of all Gabor wavelet responses in a large setof images I and Meanlocal(x; y; I) the average of all Gabor wavelet responses at at pixel position10



Figure 9: The correlation (left) and the Gestalt coe�cient (right) for randomly rotated images assurface plots. The four plots in the �rst and third line in �gure 8 are displayed within one plot.
a) b) c) Figure 10: Line segments corresponding to the Gestalt coe�cient taking values in the intervals a)[0; 2:2), b) [2:2; 4:7) and c) [4:7;1)(x; y) in image I. To improve robustness we neglect the maximal and minimal local response forthe calculation of Meanlocal(x; y; I). Max(x; y; I) is the maximum of all Gabor wavelet responses atpixel position (x; y) in image I. We de�ne a sigmoid function (see �gure 11) N (x;y;I;I)(t) byN (x;y;I;I)(t) = 8><>: 0 for t < � �Mean(x; y; I;I)s � t� s � � �Mean(x; y; I;I) for ( t � � �Mean(x; y; I;I) withs = maxf 1Max(x;y;I)���Mean(x;y;I;I) ; 12���Mean(x;y;I;I)gwith � = 1:2. This normalization function sets all Gabor wavelet responses not signi�cantly aboveaverage to zero and applies to the other Gabor wavelet reponses a linear function with a minimalslope of 12���Mean(x;y;I;I) which transforms the Gabor response into the interval [0; 1].References[1] J.G. Daugman, \Uncertainty Relation for Resolution in Space, spatial Frequency, and Orienta-tion optimized by 2D Visual cortical Filters", Journal of the Optical Society of America vol. 2
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Mean Max Mean Figure 11: The sigmoid function N (x;y;I;I)(r(~c; I)) transforming the Gabor wavelet reponse to theinterval [0; 1]. 11
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