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Collinearity and Parallelism are Statistically Significant

Second Order Relations of Complex Cell Responses

Abstract

By investigating the second order statistics of Gabor wavelet responses derived from natural
images, we show that collinearity and parallelism are conspicuous relations. We give a precise
mathematical characterization of these Gestalt principles by the conditional probability of two
responses. Fssential for our investigations is a non-linear transformation, initially utilized
within the object recognition system [5], which transforms continuous Gabor wavelet responses
into a binary code indicating the presence or absence of local oriented line segments.

1 Introduction

A lot of evidence exists for the assumption that Gabor wavelets (see, e.g., Daugman [1]) play an
important role in the first stages of visual processing of humans. Jones et al. [4] recorded neurons
with Gabor wavelet like sensitivity in V1 and Gabor wavelet like filters can be learned from the
statistics of natural images by applying the restrictions “information preservation” and “sparse cod-
ing” (Ohlshausen et al. [7]). There is also strong evidence that the human object recognition system
processes the visual input through a couple of stages in which features of increasing complexity are
extracted and in which Gabor wavelets represent only an early stage of processing (see, e.g., Hummel
at al. [3] and Oram et al. [8]). Evaluating the second order statistics of Gabor wavelet responses
we give statistical evidence for important second order relations for the class of natural images and
therefore we support the understanding of the stages of the visual system beyond the extraction of
Gabor wavelets responses.

On the one hand there exists little knowledge about the statistical properties of the class of
natural images. As the most precise quality Field [2] showed that the amplitude of the power
spectrum of natural images decreases with frequency (1/f-law) and that this statistical quality
holds true for at least three octaves of scaling. On the other hand it is known for a long while that
humans utilize grouping mechanisms in their perception called “Gestalt principles” (see e.g., Ellis
[9]). Hummel and Biederman [3] showed that there is a mutual dependence of the occurence of
local oriented line segments for line drawings of randomly generated triangles. Here we go beyond
this result by characterizing the Gestalt principles collinearity and parallelism in a mathematical
framework from the second order statistics of Gabor wavelet responses. By showing that pairs of
Gabor wavelet responses derived from natural images have a characteristic conditional probability
distribution corresponding to the Gestalt principles mentioned above we describe an additional
statistical quality of natural images.

Essential for the extraction of Gestalt principles from natural images is a non-linear transfor-
mation which transforms continuous Gabor wavelet responses (see figure 1b) to the binary code
indicating the presence or absence of local oriented line segments (see figure 1d). This corresponds
to a transformation of a quantitative description to a more qualitative description of an image.
Without this transformation, looking only at the second order statistics of the magnitude of Gabor
wavelet responses, the Gestalt principles collinearity and parallelism are barely detectable. Initially



Figure 1: Gabor Transformation a) Gabor wavelets of four different orientations. b) An image and
the Gabor responses corresponding to the kernels in a). ¢) Normalized response after applying the
normalization function N. d) Binarized response after thresholding.

the transformation was derived to match a sparse and binary object representation with an im-
age (see figure 2 and [5]). We see the ability to detect these important Gestalt relations with this
non-linear transformation as a positive example of task—driven approaches yielding answers to more
fundamental questions.

2 Second Order Statistics of Gabor Wavelet Responses

Gabor wavelets (see figure la) can be parameterized by a vector ¢ = (x,y, f,a). The tupel (z,y)
gives the position of the Gabor wavelet’s center in the image, f the frequency of the wave function
and « its orientation. In all of our simulations we use only one frequency level because we are
only interested in the relation of line segments corresponding to similar scale. We apply a slight
modification of Gabor wavelets. Instead of a Gaussian with o, = 0, as envelope function we choose
stretched the envelope function perpendicular to the orientation of the wave function by a factor 1.5.
In this way we achieve a more specific tuning to local oriented lines. Here a Gabor wavelet response
r(e,l) = ‘Ga * ]‘ is defined as the magnitude of the convolution of the Gabor wavelet G° with image
I. Figure 1b) shows a Gabor transformation with four orientations of an 128 x 128 image. The
space of second order relations consists of (128? - 4)*> = 4 - 10? elements. In order to reduce this
huge number we restrict ourselves to the relative distance of two Gabor wavelets assuming that the
second order statistics of natural images are translation invariant. This implies that we compute
our statistics over all tupel of Gabor wavelets which have same distance vector. In other words, we

. . . T
introduce the equivalence relation “=":

T
(81782)5(81/782/) — (1}1 — T2, Y1 — y27f17f27a17a2) = (xll - xévyi - yévf{vfévo/lvaé)'

Let now Z be a set of images. In all our simulations we used an image data base from British
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Figure 2: A learned representation of a face. In [5] a large number of objects (such as, hand postures,
faces, and cans) are coded by localized curved line segments allowing for a fast and efficient detection
of these objects in complicated scenes.

Telecom®

consisting of 98 pictures of natural images showing outdoor scenes with and without human
made objects like houses and cars (see figure 3a). The images have the pixel format 512 x 512. By
extracting sub—images of size 128 x 128 we can produce a large set of training images used for our
statistics (see figure 3b). In our simulation we used 900 randomly selected sub—images.

We compute the correlation of two Gabor wavelet responses

COT(£7I)(81782) = COr(évz)((()?O,f, 051),($27y27f7 a2))
Zpzyrlen D)= <r(@)>) - (r(é, )= <r(&2) >)

(r(@, 1)~ <r(@)>) ¢z(zé)(r(82, - <r(&)>)

e

where (&, I') represents the response if the Gabor wavelet G for image I € T and < r() > represents
the mean response of ¢ on all images. Because of the translation invariance of the statistics of natural
images < r(¢) > does not depend on the position (x,y) but only on the angle a (see also table 1).
The expression Z(I r_indicates that we sum over all instances (i, ¢2) in Z for which the eqivalence

(1)

113

)

relation “=” holds true. Because we are only interested in the relative distances of two Gabor
wavelets, i.e., because of our equivalence relation “%”, we can set 7y = y; = 0. We investigate
the correlation for Gabor wavelets with a maximal distance of 40 pixels. For 4 orientations and
one frequency level we have 4% - 817 = 104976 equivalence classes described by the parameters

al,ad 2 0,2, 7,2 and @9,y : —40,...,40. For each tupel (&,¢c) we extract in each image 729

sy 99ty g
T
values falling in the same equivalence class, i.e., our estimate of Cor(5%) (&, &) is based on more

than 300.000 data values. Figure 4) shows the result. For each pair of orientations, i.e., one contour

plot in figure 4, the computation of COT(E’I)(E}, ¢3) takes approximately 3 hours on a Sun UltraSparc
(167Mhz).

Most interesting are the results for which ¢, é; have the same orientation. We can see a distinct
expansion along and perpendicular to the orientation of the kernel corresponding to the fact that
collinear edges and parallel edges occur with statistically significant frequency. In case of horizontal
and vertical orientation this expansion is most distinct. Furthermore there is always positive corre-
lation, expressing that the occurrence of structure at one position makes the occurrence of structure
nearby more likely.

1 Access to these images may be obtained by anonymous ftp to site ftp.teleos.com. The images may be found in

the subdirectory VISION-LIST-ARCHIVE/IMAGERY /BT _scenes.



Figure 3: a) Original Images of the BT data base. b) Extracted subimages. ¢) Rotated subimages.

To ensure that these effects are not caused by the correlation of the kernels themselves we
compute the correlation on noise with %fpower spectrum (see figure 5). Here the correlation is very
different compared to natural images. Firstly correlation drops down to zero where the kernels do
not overlap, i.e., there is no global dependency of the correlation for 1-noise images. Secondly the
expansion along the orientation of the kernel is much weaker compared to natural images. Thirdly
the second order statistics of %fnoise are rotation invariant.

Now we apply a non-linear transformation to the Gabor responses to translate the continuous
response to the pure binary information indicating the presence or absence of local line segments
with certain orientation (see figure 1d). We say

AAC a line segment corresponding to the Gabor wavelet (i is present if the corresponding Gabor
wavelet response is distinctly above the average response.

We call this criterion the “Above Average Criterion” which can be formalized by first applying
a normalization function N(t) to the Gabor wavelet response transforming r(¢, I) to the interval
[0,1]. The normalized response N(r(¢c, I)) represents a confidence in the interval [0, 1] indicating
the presence or absence of a line segment corresponding to a certain Gabor wavelet parametrized
by ¢ (see figure 1c). We worked with different normalization functions and different parameters.
The results do not depend crucial on our specific choices as long as they formalize our criterion
AAC. The normalization function used for our simulations is described in the appendix. A similar
normalization function is applied in the object recognition system? described in Kriiger et al. [5].

?In this system an object is represented as a sparse and spatially organized arrangement of curved local line



-40

Figure 4: Correlation of Gabor wavelet responses. 1° line: Cor((0,0, f,0), (z,y, f, oz‘%)) for o :
0,2, 7,2 2m 37 4™ line: C'or((0,0, f,a}), (z,y, f,03)) for of : Z 7,2 and o} : 0,Z,7,2F. The
value with coordinate (zq,yo) in each contour plot represents Cor((0,0, f,a), (xo, yo, f,a3)). Each

plot is smoothed by a Gaussian of 3 pixel width.

A simple thresholding
r(e, 1) = N(r(e, 1)) > 0.75 (2)

transforms the normalized response to binary values (see figure 1d) indicating the presence or absence
of local line segments with a certain orientation and position. Figure 6 shows the correlations of
the binarized responses. As in figure 4 collinearity and parallelism are conspicuous relations. But in
contrast to the correlation of unmodified Gabor wavelet responses parallelism is a global property:
The correlation of binarized responses of same orientation is always higher than the correlation of
responses of different orientation. In other words, the occurrence of a parallel line segment with 40
pixel distance is more likely than the occurrence of a line segment with different orientation and
smaller distance.
We can look at the binarized Gabor wavelet responses as discrete events and we can calculate

g(é,I)(E» E) L P(F(E%[)W(Elv[)) _ P(F _)27[) N F(_)h[)) _ %Z(IE)F(EL[) F(E%[)
DT PW@, D) PH@, D) PH@, D) E e #@ ) s M@, )

(3)

segments (see figure 2). The normalization mediates between the continuous wavelet responses and the binary object
representations.




a)

b)

Figure 5: a) %fnoise images. b) Cor((0,0, f,0), (x,y, f, oz‘%)), ol 0 0, Z w2 for %fnoise images.
which expresses the influence of occurrence of a line segment corresponding to ¢; to the occurrence
of the line segment corresponding to ¢ (n is the number of evaluated tupels (¢, ¢é)). If G(c1, G)
is larger than one the occurrence of a line segment corresponding to & is more likely when a line
segment corresponding to ¢; is present. In case G(¢1, ¢2) = 2 we can say the likelihood has doubled.
We call G(¢,, ) the Gestalt coefficient®. Figure 7 shows the result. We recognize that the likelihood
of the presence of a certain line segment is strongly influenced by the presence of other line segments.
The Gestalt principles “collinearity” and “parallelism” are described by the Gestalt coefficient as
statistically significant relations.

The second order statistics of natural images are not rotation invariant. Not only the Gestalt
principles collinearity and parallelism are most conspicuous for horizontal and vertical orientation.
Also occur horizontal and vertical local lines more often than lines of diagonal orientation. Table 1
shows the mean responses for the non normalized and binarized Gabor wavelet responses of different
orientations for natural images and %fnoise.

T
31t can be shown that the Gestalt coefficient G(=7) can be computed from the correlation of the binarized Gabor

wavelet responses by the formula
T T

¢ED —¢.CorED 41 (4)

where ¢ does only depend on aj and as.
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0 20 40

o} 0 z ™ =
natural images / % noise || nat % nat % nat % nat %
<r(e)> 6047 | 7705 || 4529 | 7719 || 4871 | 7705 || 4529 | 7704
<r(¢) > 0.11 | 0.02 || 0.03 | 0.02 || 0.07 | 0.02 || 0.03 | 0.02

Table 1: The mean value for non—normalized and binarized Gabor wavelet responses.

To neglect differences resulting from this non-isotropic structure of natural images according to
. . o, . . ToR
rotation we introduce an additional equivalence relation “ =7

invariance:

representing translation and rotation

(01702) = (01/702/) — (1'1 — T2, Y1 — Y2, f1, f2, 00 — a2) = (xll - xévyi - yévfivfévo/l - 0/2)

By this equivalence relation we can reduce the number of equivalence classes to 4 - 817 = 26244
described by the parameters a3 : 0,7, 7, 37” and x9,ys @ —40,...,40. In our implementation we

realize this equivalence relation by randomly rotation of the pictures used for our statistics (see

. - = - = ToR .
figure 3c). Figure 8 shows Cor(cy,¢) and G(éy,¢,) for "= as contour plots. Figure 9a) shows all
four plots in the first line of figure 8 as surface plots. The surface on the top of the other three
surfaces corresponds to Gabor wavelets with same orientation.
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Figure 7: The Gestalt coefficient.

3 Collinearity and Parallelism are Significant Relations

Now we can characterize the Gestalt principles “collinearity” and “parallelism” in terms of the
Gestalt coefficient.
Collinearity: Two complex cells ¢y, ¢; are collinear if

ToR

G(=D(G,6) > 4.7. (5)
Parallelism: Two complex cells ¢;, ¢, are parallel if
ToR
2.2 < G(= D&, ) < 4.T. (6)

Figure 10 shows line segments corresponding to different intervals [ry, 2] with G(¢1, é) € [ry,72].

4 Conclusion

We showed that statistically significant second order relations in natural images exist and that they
represent the Gestalt principles collinearity and paralellism. They can be characterized mathe-
matically by the Gestalt coefficient. The detection of these important relations is facilitated by a
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Figure 8: The correlation and the Gestalt coefficient for randomly rotated images as contour plots.

ToR . .
1**line: Coorl =-D((0,0, f,0), (x,y, f,a3)) for o} : 0, Z m, 2 2" Jine: Correlation in first line minus
correlation on %fimages. 374 and 4" line: Same as in the 1** and 2°*-line for the Gestalt coefficient.

transformation of the continuous Gabor wavelet reponse to a binary and more complex feature: a
local oriented line segment. In the object recognition system developped by Kriiger et al. [5] this
kind of normalization is utilized to mediate between a binary object representation and the contin-
uous wavelet responses. In a next step we aim to incorporate the Gestalt principles characterized
here as grouping mechanisms into this object recognition system (see also [6]).

Acknowledgement: I like to thank Christoph von der Malsburg, Irving Biederman, Rolf Wurtz
and Michael Potzsch for fruitful discussions. Many thanks to Rolf Wiirtz for deriving equation (4).
Appendix: The Normalization Function

For our formalization of the AAC we define
1 local 1 lobal
Mean(x,y, [,7) := §Mean (x,y, 1)+ §Meang (7)

as an average response. Mean?*(Z) is the average of all Gabor wavelet responses in a large set

of images T and Mean'"(z,y, I) the average of all Gabor wavelet responses at at pixel position
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Figure 9: The correlation (left) and the Gestalt coefficient (right) for randomly rotated images as
surface plots. The four plots in the first and third line in figure 8 are displayed within one plot.

a)

PEDE DE WD DWW W
PE D DE P DWW W W
B DWW W MWW
P BE DE M MMM MM
FEBEDE MMM MWW
PEDE DE WD DWW W
PE D DE WD DWW W
B DWW W MWW
P BE DE M MMM MM
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Figure 10: Line segments corresponding to the Gestalt coefficient taking values in the intervals a)

[0,2.2), b) [2.2,4.7) and ¢) [4.7,00)

(x,y) in image . To improve robustness we neglect the maximal and minimal local response for

the calculation of Mean'*(z,y, I). Max(z,y, I) is the maximum of all Gabor wavelet responses at
pixel position (z,y) in image I. We define a sigmoid function (see figure 11) N@¥ 1D (1) by

N(l’,y,[,z) (t) —

0

for t<6-Mean(z,y,1,T)

s-t—s-0-Mean(z,y,[,T) for {

t >0 -Mean(z,y,[,7) with

1

_ 1
s = maX{ Max(z,y,7)—6-Mean

(w,y,1,T)7 2-6-Mean(z,y,1,7)

with # = 1.2. This normalization function sets all Gabor wavelet responses not significantly above
average to zero and applies to the other Gabor wavelet reponses a linear function with a minimal

slope of 1
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