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Abstract

We introduce a robotic—vision system which is able to extract object repre-
sentations autonomously utilizing a tight interaction of visual perception and
robotic action within a perception action cycle [12, 24]. Controlled movement
of the object grasped by the robot enables us to compute the transforma-
tions of entities which are used to represent aspects of objects and to find
correspondences of entities within an image sequence.

A general accumulation scheme allows to acquire robust information from
imperfect and partly missing information extracted from single frames of an
image sequence. Here we use this scheme with a preprocessing stage in which
3D-line segments are extracted from stereo images. However, the accumula-
tion scheme can be used with any kind of preprocessing as long as the entities
used to represent objects can be brought to correspondence by certain equiv-
alence relations such as ’rigid body motion’.

We show that an accumulated representation can be applied within a track-
ing algorithm. The accumulation scheme is an important module of a vision
based robot system on which we are currently working. In this system, ob-
jects are planned to be represented by different visual and tactile entities. The
object representations are going to be learned autonomously. We discuss the
accumulation scheme in the context of this project.

1 Introduction

The aim of our research is the design and implementation of an active vision sys-
tem coupled with a robot arm which is able to recognise and grasp objects with
autonomously learned representations. The system shall gain robot control over
new objects (i.e., grasp a new object in a scene) by an instinctive and rudimentary
behavior pattern and use the control over the object to accumulate a representation
of the object and finally apply these representations to robustly track, grasp and
recognise the object in complex scenes. Here we describe one module of such a
system which can be used to extract object representations.

Model based vision systems usually apply manually designed object representa-
tions (see e.g., [27] or [15]). These methods work well but commonly have drawbacks
with the need of manual intervention for creating object representations and the



fine-tuning of these representations. Here we demonstrate an autonomous extrac-
tion of object representations making use of a tight interaction of perception and
action: Accumulation of information takes place within a perception—action—cycle
[12, 24]. As a challenging perspective we aim at a coupled robotic—vision system
which is not equipped with manually designed object representations but the ob-
ject to be manipulated is given to the robot and a representation is accumulated
autonomously (see figure 1).

Feature extraction faces the problem that semantic information extracted by
artificial systems from a single image or stereo images even under optimal conditions
is necessarily imperfect. For instance, although there exist a large amount of edge
detectors none of them is comparable to human performance. One important reason
for the extremely good performance of humans on these tasks is that the human
visual system applies constraints to interpret a certain scene or situation [7, 13]. A
situation never stands for itself but is embedded in a time continuum [8]. Therefore
an important constraint is the utilization of the coherence of objects during a rigid
body motion which allows to accumulate information over time.

In this paper we suggest to accumulate object representations from image se-
quences by using the equivalence relation ’rigid body motion’. We account for
the vagueness of semantic information extracted from single images by assigning
confidences to this information and accumulating this information over an image
sequence of a moving object. Although the information extracted from single images
contains errors due to, e.g., changes of illumination or noise, (see the representa-
tions on the left hand side of figure 1) a more stable representation can be achieved
by combining information from different images (see right hand side of figure 1).
Because the object can change its position and orientation — and this change
might be wanted because another view of the object gives new information which
might not be extractable from former ones — we face the correspondence problem:
Correspondences between entities describing the object in different images (or 3D
interpretations extracted from stereo images) are not known.

Here the correspondence problem is solved within a behavior based paradigm
[2, 23]: The parameters of motion are known since the robot manipulates the ob-
ject and the transformations of entities can be compensated for each frame of the
sequence to achieve correspondences. Knowing the correspondences, an algorithm
can be applied to update and improve the object representation iteratively. This
accumulation algorithm is an extension of an algorithm introduced in [13, 18] which
has only dealt with 2D representation and translational motion.

The paper is organized as following. In section 2 we introduce the accumulation
scheme and its application to the entity ’3D-local line segment’. In section 3 we
give a short description of other existing modules of our vision based robot system.
Finally, in section 4 we point out to future research.

2 Extraction of Object Representations from Im-
age Sequences

Our accumulation algorithm can be defined independently of the entities used to
represent objects. The algorithm also is independent of the concrete equivalence
relation or transformation used to define correspondences. It only requires an object
representation by certain entities for which a metric is defined and to which certain
transformations or equivalence relations (such as rigid body motion) can be applied.
The object establishes itself as an invariant under the equivalence relation, i.e., as
an equivalence class. The algorithm in its general form is defined in subsection 2.1.
In this paper for the representation of objects we use local three dimensional line



Figure 1: left) top: left and right image of an object in two frames. bottom: the
projected 3D representation extracted from the stereo images. right) Projected 3D
Representation accumulated over a set of stereo images. The system’s confidence
for the presence of line segments is represented as grey value (dark values represent
high confidences).

segments only. The extension of the system to other kind of object descriptors such
as texture or color flow is part of our current research.

The concrete realization of the accumulation scheme can be divided into two
parts, preprocessing (section 2.2.1) and accumulation (section 2.2.2). The algorithm
is applied to a stereo image sequence in which the object grasped by the robot
is shown to the system in various positions and orientations (see figure 1). A
representation is accumulated over the stereo image sequence (see figure 1 right).
Although the representations extracted from each of the stereo image pairs shows
missing line segments (left) the accumulated representation is more complete (right).
Here we give a condensed description of the algorithm, for further details see [1].

2.1 The Accumulation Scheme

Let e € E be an entity used to describe objects (for instance a 2D-line segment, a
structure tensor [11] extracted from an image, 3D-line segments extracted from a
stereo image pair or any other kind of object descriptor) and d(e, e') be a distance
measure on the space of entities E. Furthermore, let T' be a transformation or
equivalence relation, for instance a rigid body motion or the projection of a rigid
body motion. If e’ is an entity extracted from frame 4 of a sequence of events then
TH#+1(e?) is the transformation 75! from the i—th to the i + 1-the frame applied
to e’.

Let e*! be an entity extracted from the (i+1)-th frame of the sequence. We say
that ef and ei*! are likely to correspond to each other if d(T'(e?), e?*1) is small. Often
it might not be possible to find an exact correspondence with d(T(e?),eit!) = 0.
For example, if we want to compare local image patches in two images knowing
the exact projective transformation corresponding to the rigid body motion of an
object from the first to the second frame, the corresponding image patches can not
be expected to be exactly equal because of factors such as noise during the image
acquisition, changing illumination, non-Lambertian surfaces or discretization errors.
The problem may even become more severe when we extract more complex entities
such as 3D or 2D line segments or 3D—surface patches. Therefore it is advantageous
to formalize a confidence of correspondence by using a metric.
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Figure 2: The accumulation scheme. The entity e! (here represented as a square) is
transformed to T%:2(e!). Note that without this transformation it is barely impossi-
ble to find a correspondence between the entities e! and e? because the entities show
significant differences in appearance and position. Here a correspondence between
T'2(e') and e? is found because a similar square can be found close to 7% (e!) and
both entities are merged to the entity é2. The confidence assigned to é? is set to a
higher value than the confidence assigned to e! indicated by the width of the lines
of the square. In contrast, the confidence assigned to e’ ! is decreased because no
correspondence in the second frame is found. The same procedure is then applied
for the next frame for which again a correspondence for e! has been found while no
correspondence for e'* could be found. The confidence assigned to e! is once again
increased while the confidence assigned to e'" is one again decreased (the entity
has been disappeared). By this scheme information can be accumulated to achieve
robust representations.

The accumulation of information can now simply be achieved by the follow-
ing update rule: If there exists an entity e'*! in the (i+1)-th frame for which
d(T(e'),e'*!) is small (i.e. a correspondence is likely), then merge T'(e?) and e*!
by some kind of average operator, ét! = merge(T'(e?), et!), and set the confidence
for €711 to a higher value than the confidence assigned to e. If there exists no entity
e**t! in the (i+1)-th frame for which d(T (e?), e!*!) is small, the confidence for entity
e’ to be part of the object is decreased. In Figure 2 a schematic representation of
the algorithm is shown for two iterations.

2.2 Application of the Accumulation Scheme to a Represen-
tation with 3D-Line Segments

In this section we apply the accumulation scheme introduced above to object rep-
resentations consisting of local 3D line segments. For these entities the change of
the transformation (i.e., T%**!(e)) can be computed explicitly (for details see [1]).

2.2.1 Extraction of a 3D Representation from Stereo Images

In the preprocessing step a 3D representation of the object grasped by the robot and
presented at a certain position and orientation is extracted. The orientation of the
object differs in each stereo image pair (figure 1). The object representation consists
of local 3D-line segments and is extracted using calibrated cameras and epipolar
geometry [3]. First, in each single image lines are extracted using the orientation
sensitive Hough transformation [19]. The Hough lines are divided into local line
segments according to local information indicating evidence for the existence of a
local line segment at a certain pixel position in the image by evaluating gradient
information. In our implementation the entity ’'local line segment’ can only be ex-
tracted when there is local support (a high magnitude of the gradient) and global
support (the line segment is part of a Hough line). Second, correspondences of line
segments in the two stereo images are found. The epipolar constraint is used to
reduce the search problem to a one-dimensional problem. On the epipolar line cor-



responding to a certain line segment the best match is defined as the corresponding
entity. For finding the best match a similarity combining gray level information (by
evaluating the correlation of image patches) and semantic information (evaluating
the differences in the orientation of the found line segments) are used.

In most cases the correspondence of 2D line segments defines a 3D line segment.
In some cases, when the 2D line segments are close to a ’critical plane’ [3, 9] the
correspondences do not uniquely define a 3D line segment and a 3D representation
of parts of the object can not be extracted. Note that by moving the object, 3D-line
segments which can not be extracted in one frame (because they are too close to
the critical plane) move out of the critical plane so that they can be part of the
final representation. Here the haptic control of the object allows the creation of
situations in which critical features can be extracted.

The representation extracted from a single stereo image pair usually is not per-
fect (see figure 1), there are many missing parts (because of the critical plane,
correspondences not found, not detected Hough lines or not extracted 2D line seg-
ments in one of the two stereo images) and some 'wrong’ line segments (because of
wrong correspondences or wrong 2D line segments extracted during preprocessing).
Here we face the problem that semantic information can not be extracted with suf-
ficient accuracy from single or stereo images which is also one of the the reasons for
the need of manually designed object representations in many artificial systems.

To achieve a suitable representation autonomously and to overcome the need
of manual intervention, we accumulate evidence over a self generated stereo image
sequence within a perception—action cycle as described in the next subsection.

2.2.2 Accumulation of Object Representations in Stereo Image Sequences
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Figure 3: Left: Spherical coordinates. Right: Difference in orientation d,

The object representation computed from the first stereo image pair consists
of a list £ of 3D line segments [ = (p,u), i.e., a line segment is described by the
position of its centre p = (z,y, 2) and by the unit vector u = (¢,%) indicating the
orientation of the line segment (see figure 3 left). For these entities a metric d(I,1")
can be defined which gives low values for similar line segments and high values for
dissimilar ones.

Definition of the Metric: Here, we define a distance measure d(l,l") between
two 3D-line segments [,I’. We evaluate the orientation difference d, and spatial

I This kind of preprocessing faces some problems which we currently overcome by use of a filter
introduced in [6] instead of the Hough transform. We discuss this issue in detail in section 4.



difference d,, of the line segments. Given! = (p,u) and I’ = (p’,u’). The orientation
difference is simply defined as

do(l,1") := arccos(u - u'),

i.e. as the angle between u and u' (see figure 3 right).

For the distance measure d, we have, because of the aperture problem (see e.g.
[16]), also to take the orientation of a line segment into account: The translation of
a line segment along the axis spanned by u should not increase the distance between
two line segments as long as it is less then half of the length of the line segment. In
the following we define an ellipsoid unit sphere, i.e. we allow in the u direction a
larger translation than orthogonal to u (figure 4 (left) shows the 2D projection of
the ellipsoid).

y y
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Figure 4: Left: Projection of ellipsoid unit sphere. Right: Symmetry does not
hold for f,: The midpoint of the diagonal elliptical area is within the horizontal
elliptical area but not the other way round.

To compare p and p’, we need the coordinates p’ of p’ in the coordinate system
spanned by p and u (p be the origin (0,0,0) and u = (7/2,0) the x—axis).

We define a distance measure between ! and I’ (taking into account an elliptical
deformation) by

2
1 . .
1) = (1 = :c’) + G2 + 312,

L
2

Since this measure is not symmetric (see figure 4 right) we define

dy(1,1") := min{f,(1,1"), fp,(I',1)}

as the final metric. Now we are able to say that line segment ! and I’ do correspond
to each other when d,(l,1") and d,(l,!') are smaller then certain thresholds s, and
Sp-

Accumulation: A rigid body movement M of the robot can be described by six
parameters ﬁ € IRS, three describing translation and the others describing rotation.
Let M5 (L) be the list of local line segments £ representing the object moved by
MP. Let £ be the list of local line segments extracted from a new stereo image
pair. In this image pair the object is shown after a movement whose parameters
are known. For our algorithm the correspondences between the representations £’
and £ can easily be achieved by applying the rigid body motion M 5 to the stored
representation £: M 8 (L) =~ L' and comparison of the line segments by applying



Figure 5: Accumulation of an object representation (first iteration in first row and
fifth iteration in second row). Left: one of the stereo images. Middle: Represen-
tation extracted from one stereo image pair. Right: Accumulated representation.
Line segments corresponding to the background vanish after a few iterations.

the above defined metric. The rigid body motion is known in this context, since the
robot has physical control over the object. 3

After achieving correspondences the two representations M?(£) and £' can be
merged by the accumulation scheme defined above: For each line segment [; in

M5 (L) we search for a line segment I}, in £’ which is close to [; according to our
metric d. If such a corresponding line segment has been found, a value ¢; indicating
the confidence of the system that I; is part of the object is increased, otherwise

it is decreased. Line segments in £’ to which no correspondences in M?(L) do
exist are included in the accumulated representation with only low confidences.
After a couple of iterations with different views of the object the accumulated
representation becomes more and more stable (see figure 1 right). It is even possible
to segment objects from the background: Since the background is fixed and not
changing according to the equivalence relation rigid body motion, line segments
corresponding to the background do vanish after a few iterations (see figure 5) and
only line segments corresponding to the object and gripper remain.

Note that in this scheme, an entity (here, a 3D line segment) is regarded to be
existent only if it has accumulated confidence over time, or more precise, it is un-
derstood as an invariant entity in the time—space continuum under the equivalence
relation ’rigid body motion’. Therefore an interpretation (as a 3D-line segment)
is grounded in its change under the controlled movement of the object: the en-
tity ’3D-line segment’ establishes itself only if it has been reconfirmed within the
perception—action cycle. Our ansatz is therefore related to the so called symbol
grounding problem (see [10]), i.e., to the problem to assign meaning to abstract
entities. Here 'meaning’ can be interpreted as an observable and foreseeable change
under a self-performed motion.



3 The Accumulation Scheme as a Module in a Vi-
sion Based Robot System

The introduced module is part of our effort to design and implement a vision based
robot which is able to recognise and grasp objects with autonomously learned rep-
resentations. The system shall gain robot control over new objects (i.e., grasp a
new object in a scene) by an instinctive and rudimentary behavior pattern and use
the control over the object to accumulate a representation of the object and finally
apply these representations to robustly track, grasp and recognise the object in a
complex scene.

The design of our system is guided by a behavior based paradigm (see [2, 23])
in a dual sense. Firstly, to perform a certain action we may only need to extract
a minimum of information (e.g., to fixate and zoom we do not need exact shape
information in our system). This is perception for action. Secondly, by active in-
tervention we can make tasks easier for perception (e.g., in our system fixating and
zooming potentially facilitates grasping or, as another example, robot control over
the object helps for the extraction of object representations). This is action for per-
ception. Usually both aspects — perception for action and action for perception —
occur together in a so called perception—action cycle (PAC) [12, 24], i.e., perception
and action support each other and depend on each other permanently.

We think that a complex vision—based system can not start to learn without some
kind of prior knowledge [7, 13]. It can neither be a fully predetermined system,
because the world within it operates is too complex that algorithms which solve
difficult tasks could be formalised explicitly. Nor can it be a fully undetermined
structure because the space of possible algorithms to be explored is much too large.
Therefore, a certain amount of a priori knowledge has to be built in a complex vision
system to guide learning. We think that an important part of this knowledge are
basic competences (as our accumulation scheme), necessary to start a bootstrapping
process in which more complex competences can be established.

A second module of the system is a visual and (potentially) haptic attention
mechanism described more precisely in [14]). In this module the system directs
its attention to new objects and manipulates the active components (i.e., cameras
and grasper) such that a situation is achieved in which grasping becomes easier:
grasper and object appear in the centre of a zoomed stereo image pair. In this situ-
ation grasping of the object can be performed using only relative positions between
grasper and object. The high resolution allows to accurately extract 3D—information
about the relative position and orientation of grasper and object by stereo. Our
attention module is combined by a number of more primitive competences such as
detection of a new object, fixation, a simple recognition scheme of an object un-
der controlled conditions after fixation, movement of the grasper, zoom etc. Note
that our attention mechanism is planned not to be only vision-based. We are cur-
rently redeveloping a haptic sensor [22] which allows to explore an object haptically.
Therefore, our attention mechanism potentially focuses visual and haptic attention
to the new object. The attention mechanism is to a wide degree predetermined
but also contains adaptable components: The grasper is permantly tracked by the
system. The information of motor commands and positioning of the grasper in the
image allow a self—calibration during the perception—action cycle.

As a third module we apply a novel 2D-3D pose estimation algorithm [26] to
the tracking problem (described more precisely in [20]). This pose estimation al-
gorithm shows some interesting characteristics which makes it especially useful for
this purpose. Beside features such as stability in the presence of noise and online—
capabilities [21, 28] its main advantage in the tracking context is that it can unify
different kinds of correspondences within the algebraic framework of geometric alge-



Figure 6: Tracking with an accumulated object model. In each of the image pairs
the pose of the object before (left) and after pose estimation (right) is shown.

bra (for a discussion of the application of geometric algebra in computer vision see
[25]). We applied the tracking algorithm with an accumulated object representa-
tion consisting of local 3D line segments. Figure 6 shows the succesful tracking with
such a learned representation. An interesting extension of the accumulation scheme
could be the combination of tracking and accumulation, or, more precisely, instead
of using the parameters of the rigid body motion from the motor commands given
to the robot we can use the parameters estimated by our pose estimation algorithm.
In this way the competences ’tracking’ and ’accumulation’ can support each other.

Here we like to point out a further problem of our object representation: An
object is coded by a large number of satistically dependent local entities. The
use of local features is sensible for accumulation because of two reasons. First,
an object usually is bounded in space and second, for local entities it is easier to
define correspondences than for more complex features which are also more difficult
to extract from images. Nevertheless, for matching it would be advantageous if
these entities become connected by some kind of grouping process to achieve a
representation with a smaller set of more complex features to speed up matching.
The formalization of such perceptual grouping processes (for an overview see, e.g.,
[17]) is part of our research.

In its current state, only these three modules are implemented. However, in
section 4 we give a short overview about our current and future research aiming at
a more complete system.

4 Conclusion and Outlook

We showed that our algorithm is able to accumulate autonomously representations
utilizing self—controlled movements within a perception—action cycle. For the future
a robot systems equipped with the ability to extract efficient object representations
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in a normal environment promises more flexible applications of robot vision sys-
tems. Instead of being equipped with manually defined representations the robot
may use its own ability as a basis for manipulation and recognition. A first stage of
our algorithm could be a behavior which allows to achieve haptic control over new
objects and which positions the robot arm and the camera such that the accumula-
tion process can start. The bridge between the visual-haptic attention mechanism
and the accumulation module, i.e. grasping after fixation and zooming, still has to
be done. However, for such a grasp the attention mechanism gives a good starting
point, because we have only to operate with relative positions and since we gained
high resolution of the important aspects of the scene by active control of the camera.
Furthermore, we intend also to use haptic information for performing grasping.

As already pointed out in section 2.2.1 our 3D reconstruction scheme faces some
problems: First, for small line segments Hough lines often are not found within the
Hough array. Second, it is only the geometric interpretation of the 3D-line segment
which is included in the object representation. To overcome these problems we
aim to use the structure multi-vector introduced in [6]. This operator, also derived
within the framework of geometric algebra, is an isotropic extension of the analytic
signal to two dimensions. It has some interesting properties in the context here.
First, it is a local filter in contrast to the global Hough transformation. Second, the
structure multi—vector performs a local decomposition of the signal into energetic,
structural and geometric information (split of identity, see [5]). The separated
information about geometry and structure can be used for matching on the epipolar
line (for details, see [4]). Third, it allows to include both, geometric and structural
(i-e., appearance based) information within the object representation. We think,
that also this kind of information can be accumulated by our scheme because of its
generic structure. We think it is advantageous to use different kind of information
of the objects, 3D-based or/and appearence based, depending on the actual task. It
is likely that for,e.g., recognition tasks the appearance based aspects of the objects
are more significant than the 3D-aspects. However, for grasping or navigation the
3D-aspects might be more important. The aim of our approach is a representation
which includes both aspects.

A further important problem is the accumulation of the complete 3D-structure
of the object. Up to know only one aspect of an object can be accumulated because
correspondences are needed which are not granted when occlusion does occur. That
means, when the robot rotates the object by a larger angle it is likely that new edges
occur in the stereo images and other edges disappear. An important extension of
our algorithm would be the full 3D representation of objects, i.e. the algorithm
should extend the representation when, due to occlusion, a new aspect is presented.

We aim at a multi-modal representation of objects containing visual entities such
as contour information, texture or colour embedded within a unified framework.
This representation shall also contain haptic information (such as roughness or
size). Both kinds of descriptions — visual and haptic — can support each other.
For example the visual estimated size of an object can be compared with the distance
of grasper jaws after grasping.

The design of a vision-based robot system in which basic competences (such as
introduced here) interact with each other to derive more complex behavior patterns
is a challenging and demanding perspective. It desires the integration of different
disciplines such as robotics, computer vision, signal processing and statistical learn-
ing as well as the integration of software developed by different people. Finally, the
success of such a system should be measured empirically.
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