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Abstract

We introduce a compact coding of image informa-
tion which explicitely separates geometric informa-
tion (orientation) and structural information (phase
and color). We investigate the importance of these
factors for stereo matching on a large data set. From
these investigation we can conclude that it is their
combination that gives the best results. Concrete
weights for their relative importance are measured.

1 Introduction

In stereo processing with calibrated cameras we can
reconstruct 3D points from two 2D points corre-
spondences by computing the point of intersection
of the two projective lines generated by the corre-
sponding image points and the optical centers of
the cameras (see figure 1 and, e.g., [5]). However,
most meaningful image structure is intrinsically
one-dimensional [23], i.e., is dominated by edges or
lines. Orientation at intrinsically one-dimensional
image structures can be estimated robustly and pre-
cisely by various methods (see, e.g., [10]). Hence,
it is sensible to use orientation information as well
for the representation of 3D–information in visual
scenes. From two corresponding 2D points with as-
sociated orientation (in the following called ’2D–
line segment’1) we can reconstruct a 3D point with
associated 3D orientation, (see figure 1 and , e.g.,
[5, 20]): Each of the 2D-lines generated by the
points with associated orientation together with the
optical center of the camera span a 3D plane (fig-
ure 1). Then the intersection of both planes defines
the 3D orientation of a 3D–line segment. Only in
case that the two planes are identical reconstruction
is not possible.

1Note that we do not want to use end points of lines for recon-
struction (as, e.g., in [22]). Since they presuppose the grouping of
points to one connected entity, these tuples are hard to determine
non–ambiguously in images. Instead, we make use of the orien-
tation at a certain image point which can be estimated with much
more precision and robustness.

3D Orientation

3D Position

2D Orientation

2D Position

Figure 1: Reconstruction of 3D-point and 3D-
orientation from two 2D-point and direction corre-
spondences.

The problem at hand is to find correspondences
between image structures in the left and right im-
age. There is severe trouble connected to this prob-
lem: Since the scene is seen from different views
the image structure differs in the left and right im-
age, position of corresponding points are different
and the local orientation at these points differ as
well (see figure 2). In fact, these differences are
the reason why reconstruction is possible: Dissim-
ilarity in position (disparity) determines the depth
while dissimilarity in orientation determines the 3D
orientation (note that all geometric attributes of an
oriented 3D point are covered by its 3D position
and 3D orientation). The photometric information
going beyond geometric information (in the follow-
ing called structural information) undergoes a com-
plex transformation which has to take into account
the transfer of pixel positions (depending on the 3D
geometry of the projected object) as well as varia-
tion of reflection properties of surfaces according to
view variation and the occurrence of occlusion.

For 3D reconstruction we face the following
similarity–dissimilarity dilemma: We want to find
correspondences by similarity of the image patches
but we want to reconstruct utilizing their dissimilar-
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Figure 2: Dissimilarity of corresponding image
patches in stereo images.

ity in position and the geometric property orienta-
tion. While dissimilarity in position can be resolved
by a transition of the image patch on the epipolar
line the difference in orientation can only be re-
solved by more complex mechanisms (see, e.g.,[7]).

Some stereo similarity functions for intrinsically
1D information use geometric attributes (orienta-
tion, length) [2, 19]. However, ambiguity of geo-
metric information leads to a large number of po-
tential matches. Furthermore, significant variation
of orientation in both images can occur for entities
with small depth (see figure 2). In this paper we will
show that we can improve stereo matching signifi-
cantly by using structural information in addition
to geometric information and we give measures for
their relative importance.

Alternatively to methods that use geometric in-
formation only for feature matching, in classical
stereo approaches often a kind of template match-
ing is used to find correspondences in images: Lo-
cal image patches are compared pixel-wise, see e.g.,
[21, 14]. These methods are also called ‘area-based
stereo’ or ‘intensity based correspondence analy-
sis’ [12]. The similarity function might be a (nor-
malized) squared error (see [21]) or a (normalized)
cross correlation (see [12]). In these approaches the
above mentioned similarity–dissimilarity dilemma
is not treated explicitely. Indeed, the underlying ar-
gument or ‘hope’ is that despite the deviation of ori-
entation the template match is sufficiently close, a
hope which is not necessarily justified (see figure 2).
This ’hope’ is with high likelihood fulfilled, when
the depth in relation to the basis width of the stereo
rig is sufficiently large. The performance of match-
ing procedures will decline, when orientation dif-
ference is too large since they do not distinguish the
two above-mentioned factors. Furthermore, they
are not able to make use of 3D–orientation infor-
mation since they do not represent 2D-orientations
explicitely.

Some authors use both factors, orientation and
structural information. In [7] variation of the lo-

cal image patches are taken into account explicitely
by applying an affine transformations of the grey
values of the image patch. The parameters of this
affine transformation have to be computed by find-
ing a solution of an overdetermined set of equations.
Once these parameters are known, relative orienta-
tion difference of the image patches can be used for
reconstruction. Of course, solving the set of equa-
tions can be a time demanding procedure. Taking
assumptions about the 3D geometry into account
(more specifically, assuming the edge being pro-
duced by the intersection of planes) the complex-
ity of the affine transformation can be reduced [20]
but still an optimization method has to be applied.
Other problems concerned with this approach are
that the assumption of plane surfaces is not neces-
sarily full-filled. Furthermore, for edges caused by
intersection of strictly homogenous 3D–surfaces an
optimal transformation can not be computed. Fi-
nally and most importantly, from the point of view
of object representation a more compact storage of
structural information than the image patch itself is
wanted.

In this paper, we introduce a similarity function
which uses geometric information (orientation) and
structural information in a direct way, i.e., with-
out the need of solving a set of equations. An in-
trinsically one-dimensional structure in a grey level
image can be described by orientation (or geomet-
ric information) and information about its struc-
ture (e.g., it can be distinguished between being a
dark/bright (bright/dark) edge or a bright (dark) line
on dark (bright) background). Of course, there is a
continuum between these different grey level struc-
ture. The local phase as additional feature allows
to take the grey level information into account (as
one parameter in addition to orientation) in a very
compact way (see, e.g., [9, 15, 6]).

As it was shown by e.g., [14, 11] color also is an
important cue to improve stereo matching. We use
color triplets to describe the left and right side of the
edge in RGB space: Color at the left and right side
of an edge is averaged to two color vectors indicat-
ing the mean color structure of two half sides (see
figure 3).2

The paper is structured as following: In section
2 we briefly describe our feature processing. In im-
age processing we are able to compute a local ori-
entation. However, taking more global interdepen-

2More precisely we use for signal patches corresponding to
lines (i.e., phase close to 0 or � ) also a color value for the cen-
ter line. For the sake of simplicity we neglect this in the following
description.
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Figure 3: Top left: Schematic representation of a basic feature vector. Position is coded by
�����
	��

, orienta-
tion by  (or direction as � respectively), phase by � (or � when associated with a direction), and color by������ ������ � . Bottom left: Frame in an image. Right: Extracted feature vectors.

dencies (such as consistency across different views)
into account we can extend the concept of orien-
tation to the concept of direction. In section 3 we
therefore discuss the concept of direction in more
detail. A similarity function is derived in section
4 that allows to steer explicitely the influence of
the orientation deviation in contrast to the structural
information and also the influence of phase versus
color information. The relative importance of ori-
entation, phase and color is investigated in section
5.

We would like to point out that it is not our aim
to derive a perfect stereo system. Stereo is an am-
biguous visual modality since the correspondence
problem can become extremely awkward in com-
plex scenes and mismatches lead to wrong 3D es-
timates. Integration of other visual modalities (see,
e.g., [1, 18, 3]) and integration of ambiguous infor-
mation over time (see, e.g. [4, 13, 20, 16]) has to
be used to achieve robust information. However,
the aim of this paper is to define and investigate an
appropriate local similarity function which makes
use of structural and geometric information and to
derive statements about the relative importance of
geometric versus structural information, and phase

versus color information.

2 Feature Processing

In this section we describe the processing of infor-
mation (orientation, phase and color) used in our
stereo algorithm. Note that in [18] the same kind of
features are used to determine their statistical rela-
tionship.
Position, Orientation and Phase: In this paper we
will use a systematic mathematical description of
geometric and structural information of grey level
images based on the monogenic signal [6]. The
monogenic signal performs a split of identity, i.e., it
orthogonally divides the signal into energetic infor-
mation (indicating the likelihood of the presence of
a structure), its orientation  and its structure (ex-
pressed in the phase � ). Features are extracted at
energy maxima in local image patches where the
position is parameterized by

��
(see figure 3). The

variance of orientation in an image patch (computed
from pixel positions of high energy) is indicated as
a square in the displays of feature vectors in figure
3 (right). In our simulations we only use features
for which the variance of orientation within a small
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∆∆d=(θθll++π)−θθrr       
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Figure 4: a) Given extracted orientation  and phase � the same image patch can be interpreted in terms
of direction � and phase � as

� �������� � ���! "� � (left) or
� �#�� � �$�%� � (right). b) The similarity in

structure and orientation of two image patches changes with the interpretation of direction. c) Theoretically
possible interpretations of direction in the left and right image patch. Note that ii) and iii) are geometrically
not possible according to the Stereo coherence constraint.

patch is below and the magnitude is above certain
thresholds, i.e., features that correspond to image
patches of intrinsic dimension close to one.

The phase can be used to interpret the kind of
contrast transition at this maximum [15], e.g., a
phase of & � corresponds to a dark–bright edge, while
a phase of 0 corresponds to a bright line on dark
background. The continuum of contrast transition
at an intrinsic one-dimensional signal patch can be
expressed by the continuum of phases.
Color: The distribution of phases in natural im-
ages has been investigated in [18]. There exist clear
peaks at �'�(�*)�+ and �'�� ,�*)�+ which show that
edges (i.e., intrinsic 1-dimensional signals with odd
symmetry) are the dominant one-dimensional struc-
ture in natural images while line structures (i.e., in-
trinsic 1-dimensional signals with even symmetry)
are less dominant. Our model for an intrinsically
one–dimensional signal patch (see figure 3) there-
fore describes edges.3

To integrate the modality color at intrinsically

3Although there is significantly more edge like structures than
line like structures in natural images we can also make use of an
extra line model to describe intrinsically one-dimensional image
patches with phase close to 0 or � . The introduction of this model
makes only small difference for stereo matching (but is important
in other contexts). We neglect this issue here.

one–dimensional image structures we perform an
averaging in the RGB color space over the left and
right part (’left’ and ’right’ defined by the associated
line segment) of the image patch (see figure 3)4.

We get two vectors
���� � � � �� � � �- � � �. � and

���� �� � �� � � �- � � �. � , representing the red, green and blue
values of the left and right side of the edge.

Therefore, our basic feature vector has the form�/ � �0����  � � �0�1�� � ���� � �2��3

3 Direction and Orientation

In the feature processing described in section 2 we
extract orientation information  which takes val-
ues in 4 5 � � � . However, when we add structural in-
formation at the local edge (see figure 4a) we can
extend the concept of orientation to the concept of
direction (see figure 4a and [9]), parameterized by�7684 5 � +9� � (Note that the local phase can change
as well when we go from orientation to direction.
We denote this corrected phase � instead of � ). Al-
though for each single edge in figure 4a) or 4c)
two interpretations for direction are possible we can
overcome this ambiguity by taking global relations

4The image patch has a radius of 8 pixels.
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a) b) c)

Figure 5: a) Geometrically possible interpretation of direction. b) Geometrically impossible interpretation
of direction. c) Good Continuation.

into account. For example, by assuming both edges
as part of the same 3D Gestalt (see figure 5c) both
assignments of direction have to be coherent.

In the stereo domain, the association of direction
to two corresponding 2D line segments implies a
3D direction (see figure 5a). On the other hand, a
3D direction implies 2D directions of its projections
(see figure 5a). We call this relation the direction
uniqueness constraint.

Another constraint is Stereo Direction Coher-
ence: Assuming parallel cameras. If for a line
segment : � in the left image holds �<;>=0)�+9� or�@?BAC)D+0� than for the corresponding line segment
in the right image must hold the same. Figure 5a
shows a valid interpretation of direction while fig-
ure 5b shows a non–valid interpretation of direc-
tion).5

Both constraints are used in the stereo similarity
function described in section 4. The stereo direction
constraint is used to reduce the number of possible
correspondences of directed line segments. The di-
rection uniqueness constraint states that reconstruc-
tion of directed 3D line segments is possible. It is
one advantage of our similarity function that it asso-
ciates a direction to line segments, i.e., can be used
to overcome the ambiguity of local direction esti-
mation.

4 A new Stereo Similarity Function

Our basic local features at position
��

can now be ex-
tended to

�/ � �0��E� � � � �F����1� ���� � �2� , �G6H4 5 � +9�JI repre-
senting the direction, �76K4L ,� � �EI representing the
phase (�#�8� if �M�N and �#�O "� if �M�NP�H� ),������ ������ ������1Q 6R4 5 � =1ITSK4 5 � =1I,SU4 5 � =1I represent the

5In case of non-parallel cameras the constraint reads: If for a
line segment VXW in the left image holds that the vector of direction
points above the epipolar line in the left image (constituted by the
corresponding line segments in both images) than for the vector
of direction of the corresponding line segment in the right image
holds the same and vice versa.

color in RGB space. Since we want to neglect in-
formation about the magnitude we ensure YZY �� YZYD�O= .

A straightforward distance function between two
line segments for stereo matching is the weighted
sum of differences of the orientation and the struc-
tural information associated to the features ex-
tracted from the left and right image:

[ � �/ � � �/ � � � (1)

\ �^] � � � � =T \ �J�X_`�^] � � � � =T _a�1�^] � �2�J3
\ 6b4 5 � =1I represents the weight for the geomet-
ric information compared to structural information,_ 6c4 5 � =�I represents the weight for phase compared
to color information.

] � �d] � and
] � are all de-

fined such that they take value in 4 5 � =1I . Here we
want to remark that all values

] � �d] � �e] � are nor-
malized such that they have comparable mean and
standard deviation according to [8].

The concept of direction is essential for the defi-
nition of structural information, since the structural
part switches under a rotation of � (see figure 4a)
and the two triplets

������ ������ � switch as well). To de-
fine a stereo similarity function the concept of di-
rection is essential as well. For instance, the im-
age patches in figure 4bi) (if direction is interpreted
as indicated) have same structure but opposite di-
rection while the image patches in figure 4bii) have
same direction but different structure.

However, in images only the orientation is locally
measurable only while the structural part switches
under the assumed underlying direction (see figure
4b and [9]). Although from a more global perspec-
tive consistent interpretation of direction could be
associated to the line segments (see section 3) we
can not decide locally which interpretation of di-
rection is appropriate. Therefore, to compare two
feature vectors

� � � � � � �F���� �� ���� �� �2���F� � � � � � �F���� �� ���� �� �2�
in the stereo similarity function we have to look at
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Figure 6: Top: Left Image (left), ground truth (middle), right image (right). Bottom: Extracted features in
the left and right image.

all geometrically possible interpretations of direc-
tion for the left and right image patch. We have to
deal with four cases:

1) The measured orientation in the left and right
image equals the underlying direction: � � � � � � � �f � (see figure 4ci).

2) The measured orientation in the left image
equals the underlying direction but the mea-
sured orientation in the right image is related
to the direction by � � �g � �B� . This also
implies that the phase has opposite sign than
the locally measured phase for the right image� � � �h "� � � and the color triplets switch as
well (see figure 4cii).

3) The measured orientation in the left image
equals is related to the direction by ( � � � � ��� ) which also implies that the phase has
opposite sign than the locally measured phase� � �i "� � (see figure 4ciii) and the color
triplets switch as well. The underlying direc-
tion in the right image equals the measured ori-
entation.

4) The measured orientation in the left image is
associated to the direction � � �h � �B� and
the measured orientation in the left image is
associated to the direction � � �f � �7� .

The exact definition of the stereo similarity func-
tion can be derived by treating and combining these
four cases in an appropriate way (for details, see
[17]).

5 Experiments

In this section we investigate the relative impor-
tance of geometrical versus structural information
as well as the relative importance of phase versus
color. That means we investigate the quality of
stereo matching depending on the weights \ and

_
in (1).
Measuring performance: To achieve statistically
relevant statements about the importance of the dif-
ferent factors of visual information we need a large
data base. Since a manual generation of ground
truth from natural images is extremely tedious we
use images created in a virtual environment by tex-
ture mapping with natural images: Natural images
are mapped onto a randomly rotated cube (see fig-
ure 6). This ensures that we deal with data close to
natural conditions as well as a known 3D–structure
of the scene.

Our measure of performance is the number of
3D–line segments with associated disparity close to
the ground truth (in our case we chose a deviation of
3 pixel, jP�%A ) divided by the number of extracted
3D–line segments.

In many stereo algorithms additional constraints
are used to improve performance. The epipolar line
constraint says that the corresponding point to a
point in the left image must be on a epipolar line
in the right image. This constraint is always valid
(see, e.g., [5, 12]). The uniqueness constraint states
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Figure 7: Slices of surface shown in figure 8. The
x-axis represent \ . Top:

_ �85 . Middle:
_ �85 3 k ,

Bottom:
_ ��= 3 5 .

that a 3D–point can not have two distinct projec-
tions in an image. This constraint is always valid as
well. Other constraints such as ordering (i.e., for a
point which is left to another point the correspond-
ing points in the right image have to have the same
order) and restrictions on the absolute disparity are
only valid in most circumstances but there exist ge-
ometric exceptions.

In our simulations we only make use of the
epipolar constraints and the uniqueness constraint
but we do not use any kind of further restrictions
to improve stereo since our aim is not come up
with a system which optimal performance but to
investigate the different factors of visual informa-
tion according to their contribution to stereo match-
ing. We use a set of 40 images. The chance level
(i.e., when our similarities are defined randomly)
of performance is 30.6%. The performance with a
normalized cross correlation6 on the grey level im-
age is 67.7%, the performance with a normalized
cross correlation (by adding the results of correla-
tion in each sub–channel) on the color level image
is 68.5% .
Contribution of structural versus geometric in-
formation in grey level images: Figure 7 (bottom)
shows the variation of performance on the test set
of 40 images for different \ when we set

_ �l= 3 5 ,
i.e., we use only phase and no color. We recognize
a peak performance of 61% for \ �m5 3 n . We see

6The comparisons are made at the very same pixel positions for
normalized cross correlation than for our new similarity function.
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Figure 8: Performance for varying \ and
_

. \ rep-
resents the ’weight geometry versus structure’ and_

the ’weight phase versus color’.

that optimal performance is achieved by combining
structural and geometric information (using direc-
tion only we get only 51.1% and using phase only
we get 52%). Here, the importance of geometric in-
formation for stereo matching is slightly higher than
for the structural information coded in the phase
The performance is lower than for a normalized–
cross correlation matching with =F5$Sf=�5 patches.
However, we achieve a reasonable performance al-
though we reduce the signal to 2 parameters only
(direction and phase) compared to 100 parameters
for the normalized cross correlation! This corre-
sponds to a reduction by a factor of 50.
Contribution of structural versus geometric in-
formation using also color information: Figure
7 (top) shows the variation of performance per-
formance on the test set different \ when we set_ ��5 3 5 , i.e., we use color only as structural infor-
mation. We see again that optimal performance is
achieved by combining geometrical and structural
information. We also recognize that the structural
information coded in color leads to better results
than by using phase only.

Figure 8 shows the performance when we vary\ and
_

. The plots in figure 7 are slices of this
figure. We achieve a top performance of 70.5%
for \ �o5 3 A �e_ �o5 3 A . Once again we see that
the combination of structural and geometric infor-
mation gives optimal performance and we can also
recognize that the combination of phase and color
information gives the best results, i.e., both fac-
tors can be used complementary. Our parameteriza-
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tion of color leads to an increase of performance by
9.5% compared to the use of grey level information
only. Structural information can now be weighted
higher compared to grey level information (0.7 ver-
sus 0.4). However, since our similarity function dis-
tinguishes between left and right side of the edge
some geometric information is coded as well in the
color triplets.

For the optimal weights we achieve on our data
set an even higher performance (70.5% versus
68.5%) than using normalized cross correlation for
color images although we reduce a 100 dimensional
image patch to 8 parameters only.

6 Conclusion

We have investigated a compact and explicit cod-
ing of local image information for intrinsically one–
dimensional signals in terms of direction, phase and
color attributes. We applied applying this coding
within the stereo domain. By making use of the ex-
plicit separation of geometric and structural infor-
mation we could compute the relative importance
of the different sub–aspects for stereo processing.
We could show that it is the combination of aspects
that gives the best results. Moreover, we could show
that we can achieve high matching performance al-
though we reduce the image information by a factor
of 50 for grey level images. For color images we
can achieve an even higher matching performance
than with a normalized cross correlation although
we reduce the image information by a factor of
more than 35. Therefore, this compact coding also
promises efficient applicability for tasks that require
low storage costs, such as, e.g., object coding and
object recognition.
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