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Abstract

We present a method for junction detection and semantic interpretation that uses an image
and a set of extracted lines as input data. A unified model is used to work on both tasks. The
model allows the handling of ambiguous information in images. Our method is fast since we do
only evaluate 1D parts of the image.

1 Introduction

Junction detection and classification can be divided into three subtasks. The first one is finding
junction hypotheses in images. The next one is about determining a semantic interpretation of a
junction. Such an interpretation contains the number of edges meeting at the junction and the
orientation of the edges. The last subtasks involves at least two images and the information on the
Jjunctions contained in each image. Knowledge of the intrinsic and extrinsic camera parameters allows
determining 3D junction location and 3D edge orientation.

A complete assessment of the semantic information contained in a given region of an image is
usually not possible, but requires the use of information of the global context of the image. We decided
to develop methods that do not make final decisions, but rather extract a set of local interpretations
which allow a complete interpretation at later processing stages. Thus, we derive only junction
hypotheses and possible assessments of these. If ambiguities exists, these are not eliminated.

Images are a two dimensional entity. Searching for junctions in images is often done by evaluating
squared or circular areas. The methods presented, however, work 1D entities, i. e. lines. Therefore
their processing time is far shorter and global information can be used. Here we concentrate on
Junction finding and 2D classification, i. e. determining the number of edges of a junction and their
orientation. The 3D interpretation is described in [Hah99]. This paper covers the following topics:
junction detection in images and classifying found 2D junctions.

There are two main types of 2D junction detection methods [DG93]: First, there are methods
that search for edges and look for intersections of these. The use of chain codes [Jah97] is one way.
Places of maximum curvature in the codes are probable junctions. Techniques of the second type do
directly process gray scale images. They either analyze gradient and curvature of gray level surface,



like Kitchen and Rosenfeld [KR82] did, or are based on heuristics like the interest operator of Moravec
[Mor77]. However, the above-mentioned methods do only determine the location of a junction, they
do not deliver any semantic interpretation. The methods presented in this paper use the intersections
of lines contained in the image to generate junction hypotheses but to evaluate these hypotheses the
image gradient is used.

Methods for 2D junction classification have been proposed by Rohr [Roh92], Michaelis and Sommer
[MS94], and others. Rohr uses a parameterized model of a junction and fits it to the gray level surface
near a given junction location. His model of the neighborhood consists of a square patch containing
several planes of constant gray level. Michaelis and Sommer [MS94] use filters that are steerable
in orientation and scale. The complex response of the quadrature pair contains information on the
existence and the type of an event. It is possible to distinguish between sharp and smeared events
and between lines and edges.

Both methods may use a neighborhood ranging from only a few to several dozen pixels. All three
methods require knowledge of the location of a junction, they only determine the semantics of a
junction.

The methods presented in this paper use a unified model to tackle the problems of junction
detection and classification in 2D images and computing edge orientation in 2D space. A preprocessing
stages obtains a list of lines, which is used to generate a set of hypotheses. The junction detection is
based on the intersections of lines that partially correlate to edges contained in the image, but does
not directly use the gray scale image information. The semantic assessment of the junctions is based
both on the list of lines and on the gray scale data. The interpretations are weighted by a confidence
measure and are not absolute. Misinterpretations due to processing errors at early stages are therefore
correctable at later stages. As long as the input data, the list of lines, is correct and complete, all
junction types may be recognized. Due to the 1D processing of parts of the image, the methods
work much faster compared to other mentioned techniques. Both problems, junction detection and
classification, are handled within the same framework. The other junction classification algorithms
presuppose found junctions, while our method finds and evaluates junctions.

The methods are described in the order of their application to images. First, we explain the
generation of 2D junction hypotheses. These hypotheses are subjected to a filtering and a merging
process. After these steps, junctions are usually evaluated without any knowledge of the underlying
gray scale information. Using sets of junctions derived from two images, it is shown in [Hah99] how
3D junctions and edges can be obtained. Thereafter, the results of experiments are given. Finally we
discuss the results and possible extensions of the presented methods. Figure 1 shows the processing
order and the processed data between different parts of the method presented in this paper.

2 Detecting and Evaluating Junction Hypotheses

Detecting Junction Hypotheses:  The detection of junction hypotheses proceeds in two steps.
The first step extracts intersections of lines that are not yet sufficient to describe arbitrarily complex
Junctions. In the second step, we survey the near surroundings of low level junction hypotheses for
other hypotheses and merge them if certain preconditions are met. The resulting higher level junction
hypotheses can then represent junctions consisting of any number of straight edges.

The input for our 2D methods is a list of lines. Parts of these lines correspond to edges in the
image, while other parts are unrelated to the respective image information. The lines are detected
using the orientation selective Hough transform [Bal81] with Ackermann’s [Ack00] method for finding
and extracting the maxima in the Hough transform of an image. (See figure 1, (1).)

Since junctions are intersections of edges, we use the list of Hough lines to determine locations of
possible junctions. Each Hough line is intersected with all other Hough lines. If the intersection is
within image boundaries, we use the location as a junction hypothesis. Such a junction hypothesis
has four edge hypotheses, which we independently assess with a method described below. We call the
result of the assessment a confidence. A confidence is always in the unit interval [0, 1], with 1 for a
certain edge and 0 for an extremely unlikely edge. Our low level junctions are thus represented by the
following feature vector: (x; ci", el c;, ¢3 ), where x is the location, and ¢t and ¢~ are the confidences
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Figure 1: Order of usage of the methods described in this paper. The gradient is computed for the
input image and a set of Hough lines is detected. Intersections between all Hough lines are determined
and the gray scale information along the Hough lines is used to characterize four edge candidates.
The edge candidates are filtered and merged into general junctions that can be assessed.

in both directions. The indices 1 and 2 denote both intersecting lines. This step corresponds to part
(2) of figure 1.

Planck’s Formula: To determine the edge confidences, we assess how the image information
confirms the edge hypothesis along each Hough line. The whole half-line need not be assessed: For
various reasons are edges blurred near junctions [Bey91]. Furthermore it becomes ever more unlikely
that ever more remote parts of the images still contain the edge. Thus we decided to apply a weighting
function to the assessments along the Hough line. If we put the origin of the function to the location
of the junction hypothesis, the function should be very close to zero for a few pixels, thereafter sharply
rise, have a wide maximum, and finally fall slowly down to zero again. We decided to use a weighting
function that is a generalization of a formula first used by Planck to describe the thermal properties
of a black body. Since the confidences are normalized to the unit interval, the weighting function
must integrate to 1. For the normalization we include the first factor, while the second determines
the shape of the graph:

1 zb
p(x) = b+l eele (1)

We can adapt the parameters b and ¢ to change the location and width of the part significantly
different from zero. In Figure 2 the effects of different parameters b and ¢ are shown.

Assessing the Edge Hypotheses: The gradient information of an image can be used to find
and characterize edges. The gradient orientation Itis perpendicular to the edge orientation and the
maximum of the gradient magnitude I'V! defines the location of the edge. We use these two features
to assess the edges. The gradient magnitude is one of the three factors of the assessment.

The gradient orientation should be perpendicular to the edge orientation as given by the orientation
of the underlying Hough line. Due to image noise, the orientation of the gradient is also noisy. We
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Figure 2: Shape of the weighting formula for different values of b and c.

therefore check whether it is within a certain range of the orientation of the Hough line. If this is the
case, the gradient magnitude at the location is taken into account, otherwise not.

The last factor is the weighting function (1). If we put the intersection at the origin of the weighting
function and use a parameterized access to the Hough line, we get the following weighting contribution
of a single pixel at x():

) =00 TV - { 0Tl <80 @

The full confidence is computed by summing the pixelwise evaluations along a certain stretch of
the Hough line. We have now arrived at part (2) of figure 1.

The confidences of all edges found in a given image may not fully exploit the unit interval. After we
normalized the confidences to the unit interval, we found that almost all real edges have confidences
above 0.1, while almost artifacts have confidences below that threshold. Thus we call this level
significant confidence and filter all edges that lie below this threshold.

3 Merging Junction Hypotheses

The junction hypotheses as extracted with the methods given so far cannot model arbitrarily complex
junctions. Indeed, even very simple common junctions are impossible to describe with such a model:
in general, the corner of a cube will result in a junction containing three edges with no one being
collinear to any other. Such a junction will result in three Hough lines that have three different
intersections. Furthermore, of the four edges originating in each junction, usually exactly two will
have significant confidences. Fach real-world edge will cause two significant edges to be detected. The
merging process should handle these problems and result in a junction that contains three edges with
significant confidences. To achieve this, the location information has to be re-assessed to yield a single
location, and the set of edges has to be filtered and reorganized. (See figure 3.)

(a) (b) (c)

Figure 3: Example of a junction merge: (a) Two junction hypotheses with two localized edges each
(b) A single merged junction hypothesis with three edges (c) Schematic view of the transformation
and of the involved edges

Merging Junction Hypotheses: The merging process proceeds in two steps. First we transfer
the location and angle information from the Hough lines to the edges. An edge is modeled as (x; ¢, ¢)



(see figure 1, part (3)), with ¢ being the angle between edge and the horizontal. Junctions hypotheses
become sets of localized edges: 7 = ({(x1;¢1,¢1), .., (Xn;@n,cn) },n € {2,3,4}), where n gives the
number of edges in the set. Note that after merging all x; are equal.

The second step generates our final 2D junction hypotheses j = (x;{(¢1,¢1), ..., (¢n,cn)}) from
this information. In this structure, the location information x is bound to the junction and the
orientation and confidence values are bound to their respective edges. (See figure 1, part (4).)

Before the merging starts, we filter all those junctions that do not have significant confidences on
at least two edges derived from different Hough lines. Obviously, junctions with zero or one significant
edge do not correspond to real world junctions. Junctions that have only two significant edges in
opposite directions of the same Hough line are of no use, either. They originate in intersections of
two Hough lines of which one is describing the edge of an object while the other Hough line does not
correspond to any significant image information in that part of the image that contains the intersection.

After this filtering, we sort all junctions by the sum of their edge confidences. The merge candidates
are then evaluated in the order of decreasing summed confidence:

For each junction, we check which other junctions are within a certain distance. All such junctions
are merged into a single one. The location of the merged junction is the weighted average of the
location of the junction and its neighbors. The weighting factors are the summed edge confidences.

The edge information is the union of the edge sets of the junction and its neighbors. The new
edge set is sorted and if it contains multiple edges with the same orientation, these are merged into a
single one, thereby combining the different confidences into one. This 1s done with a steerable function
that computes a weighted average from a set of input values, the OWA operator [Yag88], for which
we adjust the steering parameter so that the operator acts more like a maximum function, since the
lower confidences are probably due to non-optimal locations for the confidences evaluation.

Thus we have yielded our merged junction hypotheses (figure 1, part (4)). Figure 3 shows the
result of a merge process.

Semantic Interpretation of the Found Junction Hypotheses: The edge information of
the merged junction hypotheses can be used to characterize the junction hypotheses. It is possible,
though, that one or more of the detected edges do not correspond to real edges. To allow for such
uncertainties, our assessment uses the following strategy:

The edge set is divided into two disjunct sets, the pro-edges and the contra-edges. The pro-edges
are supposed to be real edges supporting a certain assessment and the contra-edges are supposed to
be artifacts contradicting it. If a certain assessments i1s a good one, the pro-edges will have high
confidences, while the contra-edges will have low confidences. Again, each junction hypothesis must
have at least two pro-edges.

We divide the edge set into all possible pairs of subsets. For each set of pro-edges e,, we apply
the OWA operator to the confidences of the edges in the set with a behavior close to the minimum
function (i. e. ze, < 1), while for each set of contra-edges e. we apply the OWA operator close to the
maximum function (ze, > 1). For a good assessment, the first value will be high and the second will
be low. Thus the difference

C(epa €c, Zep ’ Zec) = maX{QZeP (ep) - Q/ZeC (ec)’ 0} (3)

will be a good measure of the quality of an assessment. The maximum function ensures that very
inappropriate divisions of the edge set do not yield a negative confidence.

The full assessment a contains the location of the junction hypothesis, the set of pro-edges, and a
confidence as computed with equation (3): a = (x;ep;c(ep, €c, %e,, Ze.)). Similar to discarding edges
with very low confidences, we discard assessments with very low confidences. Thus we have arrived
at the last step of figure 1.

In most cases there is only one assessment with a high confidence, however ambiguous cases may
yield two or more assessments with significant confidences, which may be resolved by later processing
stages.

4 Experimental Results

Samples of Detected 2D Junction Hypotheses And of 2D Semantic Interpretations: Fig-



ure 4(a) shows the confidences for several edges of figure 4(b). For the junctions B, D and E there
are more than one possible assessments. Note that the length of the marked edges corresponds to
the confidence, i. e. longer lines represent edges with higher confidences. Missing edges are usually
due to missing Hough lines. In table 1 the confidences for each assessment and the orientation and
confidence for all marked edges are listed.

Figure 4: Example of a semantic interpretation: (a) Found junction hypotheses (b) Label of the
junctions; for assessments see table 1

Junc- || Confidence 1st edge 2nd edge 3rd edge
tion of the o1 cy o2 Co o3 c3
assessment || (degree) (degree) (degree)

A 0.50 95 | 0.45 184 | 0.65 - -
B 0.56 95 | 0.64 184 | 0.91 - -

0.40 275 | 0.15 95 | 0.64 184 | 0.91
C 0.32 272 1 0.11 177 | 0.95 184 | 0.91
D 0.26 4 10.79 90 | 0.23 270 | 0.17

0.20 4 10.79 90 | 0.23 - -
E 0.30 41 0.53 92 | 0.22 184 | 0.35

0.17 41 0.53 184 | 0.35 - -
F 0.33 182 | 0.28 270 | 0.46 - -
G 0.20 41 0.16 90 | 0.17 184 | 0.52
H 0.21 275 | 0.38 21 0.15 - -
I 0.17 177 1 0.14 270 | 0.29 - -
J 0.19 272 | 0.17 21 0.19 182 | 0.26

Table 1: Assessment of junction hypotheses of figure 4. For each junction all assessments with
significant confidences are shown. Each assessment consists of two or three edges, for which the
orientations ¢ and confidences ¢ of are shown.

5 Summary

We presented a method that does junction detection and classification, together with edge evaluation,
in a unified model. The model puts special emphasis on preserving ambiguities. Thus later processing
stages have more freedom in assessing an image. They can better combine several features from
different parts of the image. Since we work on lines and not 2D parts of the input data, we achieve a
short run time behavior. Our model is easily extended to 3D entities and allows determination of edge



orientations in 3D [Hah99]. In current work, we aim to use the junction classifications together with

other visual entities such as line segments, color, and texture to represent, recognize and manipulate

objects.
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