
Junction Detection and Semantic Interpretation Using HoughLinesMarco Hahn, Norbert Kr�ugerLehrstuhl f�ur kognitive SystemeInstitut f�ur Informatik,Christian{Albrechts{Universit�at zu KielPreusserstrasse 1-9, 24105 Kiel, Germanymahfnkrg@ks.informatik.uni-kiel.deNovember 28, 1999AbstractWe present a method for junction detection and semantic interpretation that uses an imageand a set of extracted lines as input data. A uni�ed model is used to work on both tasks. Themodel allows the handling of ambiguous information in images. Our method is fast since we doonly evaluate 1D parts of the image.1 IntroductionJunction detection and classi�cation can be divided into three subtasks. The �rst one is �ndingjunction hypotheses in images. The next one is about determining a semantic interpretation of ajunction. Such an interpretation contains the number of edges meeting at the junction and theorientation of the edges. The last subtasks involves at least two images and the information on thejunctions contained in each image. Knowledge of the intrinsic and extrinsic camera parameters allowsdetermining 3D junction location and 3D edge orientation.A complete assessment of the semantic information contained in a given region of an image isusually not possible, but requires the use of information of the global context of the image. We decidedto develop methods that do not make �nal decisions, but rather extract a set of local interpretationswhich allow a complete interpretation at later processing stages. Thus, we derive only junctionhypotheses and possible assessments of these. If ambiguities exists, these are not eliminated.Images are a two dimensional entity. Searching for junctions in images is often done by evaluatingsquared or circular areas. The methods presented, however, work 1D entities, i. e. lines. Thereforetheir processing time is far shorter and global information can be used. Here we concentrate onjunction �nding and 2D classi�cation, i. e. determining the number of edges of a junction and theirorientation. The 3D interpretation is described in [Hah99]. This paper covers the following topics:junction detection in images and classifying found 2D junctions.There are two main types of 2D junction detection methods [DG93]: First, there are methodsthat search for edges and look for intersections of these. The use of chain codes [J�ah97] is one way.Places of maximum curvature in the codes are probable junctions. Techniques of the second type dodirectly process gray scale images. They either analyze gradient and curvature of gray level surface,1



like Kitchen and Rosenfeld [KR82] did, or are based on heuristics like the interest operator of Moravec[Mor77]. However, the above-mentioned methods do only determine the location of a junction, theydo not deliver any semantic interpretation. The methods presented in this paper use the intersectionsof lines contained in the image to generate junction hypotheses but to evaluate these hypotheses theimage gradient is used.Methods for 2D junction classi�cation have been proposed by Rohr [Roh92], Michaelis and Sommer[MS94], and others. Rohr uses a parameterized model of a junction and �ts it to the gray level surfacenear a given junction location. His model of the neighborhood consists of a square patch containingseveral planes of constant gray level. Michaelis and Sommer [MS94] use �lters that are steerablein orientation and scale. The complex response of the quadrature pair contains information on theexistence and the type of an event. It is possible to distinguish between sharp and smeared eventsand between lines and edges.Both methods may use a neighborhood ranging from only a few to several dozen pixels. All threemethods require knowledge of the location of a junction, they only determine the semantics of ajunction.The methods presented in this paper use a uni�ed model to tackle the problems of junctiondetection and classi�cation in 2D images and computing edge orientation in 2D space. A preprocessingstages obtains a list of lines, which is used to generate a set of hypotheses. The junction detection isbased on the intersections of lines that partially correlate to edges contained in the image, but doesnot directly use the gray scale image information. The semantic assessment of the junctions is basedboth on the list of lines and on the gray scale data. The interpretations are weighted by a con�dencemeasure and are not absolute. Misinterpretations due to processing errors at early stages are thereforecorrectable at later stages. As long as the input data, the list of lines, is correct and complete, alljunction types may be recognized. Due to the 1D processing of parts of the image, the methodswork much faster compared to other mentioned techniques. Both problems, junction detection andclassi�cation, are handled within the same framework. The other junction classi�cation algorithmspresuppose found junctions, while our method �nds and evaluates junctions.The methods are described in the order of their application to images. First, we explain thegeneration of 2D junction hypotheses. These hypotheses are subjected to a �ltering and a mergingprocess. After these steps, junctions are usually evaluated without any knowledge of the underlyinggray scale information. Using sets of junctions derived from two images, it is shown in [Hah99] how3D junctions and edges can be obtained. Thereafter, the results of experiments are given. Finally wediscuss the results and possible extensions of the presented methods. Figure 1 shows the processingorder and the processed data between di�erent parts of the method presented in this paper.2 Detecting and Evaluating Junction HypothesesDetecting Junction Hypotheses: The detection of junction hypotheses proceeds in two steps.The �rst step extracts intersections of lines that are not yet su�cient to describe arbitrarily complexjunctions. In the second step, we survey the near surroundings of low level junction hypotheses forother hypotheses and merge them if certain preconditions are met. The resulting higher level junctionhypotheses can then represent junctions consisting of any number of straight edges.The input for our 2D methods is a list of lines. Parts of these lines correspond to edges in theimage, while other parts are unrelated to the respective image information. The lines are detectedusing the orientation selective Hough transform [Bal81] with Ackermann's [Ack00] method for �ndingand extracting the maxima in the Hough transform of an image. (See �gure 1, (1).)Since junctions are intersections of edges, we use the list of Hough lines to determine locations ofpossible junctions. Each Hough line is intersected with all other Hough lines. If the intersection iswithin image boundaries, we use the location as a junction hypothesis. Such a junction hypothesishas four edge hypotheses, which we independently assess with a method described below. We call theresult of the assessment a con�dence. A con�dence is always in the unit interval [0; 1], with 1 for acertain edge and 0 for an extremely unlikely edge. Our low level junctions are thus represented by thefollowing feature vector: (x; c+1 ; c�1 ; c+2 ; c�2 ), where x is the location, and c+ and c� are the con�dences2



PSfrag replacements input image Iobtained Hough-lines Habsolute gradient image I jrjgradient orientation image I 6location of intersections xfound junction hypothesesj0 = (x; c+1 ; c�1 ; c+2 ; c�2 )�ltered junctions|̂ = (f(x1;�1; c1); :::; (xn;�n; cn)g)merged junctionsj = (x; f(�1; c1); :::; (�n; cn)g)2D assessmentsa = (x; ep; c)0.96 0.72 0.03 0.00
(0)(1)(2)(3)(4)(5)(6)(7)(8)(9)Figure 1: Order of usage of the methods described in this paper. The gradient is computed for theinput image and a set of Hough lines is detected. Intersections between all Hough lines are determinedand the gray scale information along the Hough lines is used to characterize four edge candidates.The edge candidates are �ltered and merged into general junctions that can be assessed.in both directions. The indices 1 and 2 denote both intersecting lines. This step corresponds to part(2) of �gure 1.Planck's Formula: To determine the edge con�dences, we assess how the image informationcon�rms the edge hypothesis along each Hough line. The whole half-line need not be assessed: Forvarious reasons are edges blurred near junctions [Bey91]. Furthermore it becomes ever more unlikelythat ever more remote parts of the images still contain the edge. Thus we decided to apply a weightingfunction to the assessments along the Hough line. If we put the origin of the function to the locationof the junction hypothesis, the function should be very close to zero for a few pixels, thereafter sharplyrise, have a wide maximum, and �nally fall slowly down to zero again. We decided to use a weightingfunction that is a generalization of a formula �rst used by Planck to describe the thermal propertiesof a black body. Since the con�dences are normalized to the unit interval, the weighting functionmust integrate to 1. For the normalization we include the �rst factor, while the second determinesthe shape of the graph: p(x) = 1b! cb+1 � xbex=c (1)We can adapt the parameters b and c to change the location and width of the part signi�cantlydi�erent from zero. In Figure 2 the e�ects of di�erent parameters b and c are shown.Assessing the Edge Hypotheses: The gradient information of an image can be used to �ndand characterize edges. The gradient orientation I 6 is perpendicular to the edge orientation and themaximum of the gradient magnitude I jrj de�nes the location of the edge. We use these two featuresto assess the edges. The gradient magnitude is one of the three factors of the assessment.The gradient orientation should be perpendicular to the edge orientation as given by the orientationof the underlying Hough line. Due to image noise, the orientation of the gradient is also noisy. We3
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0.075Figure 2: Shape of the weighting formula for di�erent values of b and c.therefore check whether it is within a certain range of the orientation of the Hough line. If this is thecase, the gradient magnitude at the location is taken into account, otherwise not.The last factor is the weighting function (1). If we put the intersection at the origin of the weightingfunction and use a parameterized access to the Hough line, we get the following weighting contributionof a single pixel at x(t):cpixel(t) = p(t) � I jrj(x(t)) �� 1 i� �� �r 6 (x(t))�� � � 60 i� �� �r 6 (x(t))�� > � 6 � (2)The full con�dence is computed by summing the pixelwise evaluations along a certain stretch ofthe Hough line. We have now arrived at part (2) of �gure 1.The con�dences of all edges found in a given imagemay not fully exploit the unit interval. After wenormalized the con�dences to the unit interval, we found that almost all real edges have con�dencesabove 0.1, while almost artifacts have con�dences below that threshold. Thus we call this levelsigni�cant con�dence and �lter all edges that lie below this threshold.3 Merging Junction HypothesesThe junction hypotheses as extracted with the methods given so far cannot model arbitrarily complexjunctions. Indeed, even very simple common junctions are impossible to describe with such a model:in general, the corner of a cube will result in a junction containing three edges with no one beingcollinear to any other. Such a junction will result in three Hough lines that have three di�erentintersections. Furthermore, of the four edges originating in each junction, usually exactly two willhave signi�cant con�dences. Each real-world edge will cause two signi�cant edges to be detected. Themerging process should handle these problems and result in a junction that contains three edges withsigni�cant con�dences. To achieve this, the location information has to be re-assessed to yield a singlelocation, and the set of edges has to be �ltered and reorganized. (See �gure 3.)(a) (b) (c)Figure 3: Example of a junction merge: (a) Two junction hypotheses with two localized edges each(b) A single merged junction hypothesis with three edges (c) Schematic view of the transformationand of the involved edgesMerging Junction Hypotheses: The merging process proceeds in two steps. First we transferthe location and angle information from the Hough lines to the edges. An edge is modeled as (x;�; c)4



(see �gure 1, part (3)), with � being the angle between edge and the horizontal. Junctions hypothesesbecome sets of localized edges: |̂ = (f(x1;�1; c1); :::; (xn;�n; cn)g; n 2 f2; 3; 4g), where n gives thenumber of edges in the set. Note that after merging all xi are equal.The second step generates our �nal 2D junction hypotheses j = (x; f(�1; c1); :::; (�n; cn)g) fromthis information. In this structure, the location information x is bound to the junction and theorientation and con�dence values are bound to their respective edges. (See �gure 1, part (4).)Before the merging starts, we �lter all those junctions that do not have signi�cant con�dences onat least two edges derived from di�erent Hough lines. Obviously, junctions with zero or one signi�cantedge do not correspond to real world junctions. Junctions that have only two signi�cant edges inopposite directions of the same Hough line are of no use, either. They originate in intersections oftwo Hough lines of which one is describing the edge of an object while the other Hough line does notcorrespond to any signi�cant image information in that part of the image that contains the intersection.After this �ltering, we sort all junctions by the sum of their edge con�dences. The merge candidatesare then evaluated in the order of decreasing summed con�dence:For each junction, we check which other junctions are within a certain distance. All such junctionsare merged into a single one. The location of the merged junction is the weighted average of thelocation of the junction and its neighbors. The weighting factors are the summed edge con�dences.The edge information is the union of the edge sets of the junction and its neighbors. The newedge set is sorted and if it contains multiple edges with the same orientation, these are merged into asingle one, thereby combining the di�erent con�dences into one. This is done with a steerable functionthat computes a weighted average from a set of input values, the OWA operator [Yag88], for whichwe adjust the steering parameter so that the operator acts more like a maximum function, since thelower con�dences are probably due to non-optimal locations for the con�dences evaluation.Thus we have yielded our merged junction hypotheses (�gure 1, part (4)). Figure 3 shows theresult of a merge process.Semantic Interpretation of the Found Junction Hypotheses: The edge information ofthe merged junction hypotheses can be used to characterize the junction hypotheses. It is possible,though, that one or more of the detected edges do not correspond to real edges. To allow for suchuncertainties, our assessment uses the following strategy:The edge set is divided into two disjunct sets, the pro-edges and the contra-edges. The pro-edgesare supposed to be real edges supporting a certain assessment and the contra-edges are supposed tobe artifacts contradicting it. If a certain assessments is a good one, the pro-edges will have highcon�dences, while the contra-edges will have low con�dences. Again, each junction hypothesis musthave at least two pro-edges.We divide the edge set into all possible pairs of subsets. For each set of pro-edges ep, we applythe OWA operator to the con�dences of the edges in the set with a behavior close to the minimumfunction (i. e. zep < 1), while for each set of contra-edges ec we apply the OWA operator close to themaximum function (zec > 1). For a good assessment, the �rst value will be high and the second willbe low. Thus the di�erencec(ep; ec; zep ; zec) = maxf
zep (ep)� 
zec (ec); 0g (3)will be a good measure of the quality of an assessment. The maximum function ensures that veryinappropriate divisions of the edge set do not yield a negative con�dence.The full assessment a contains the location of the junction hypothesis, the set of pro-edges, and acon�dence as computed with equation (3): a = (x; ep; c(ep; ec; zep ; zec )). Similar to discarding edgeswith very low con�dences, we discard assessments with very low con�dences. Thus we have arrivedat the last step of �gure 1.In most cases there is only one assessment with a high con�dence, however ambiguous cases mayyield two or more assessments with signi�cant con�dences, which may be resolved by later processingstages.4 Experimental ResultsSamples of Detected 2D Junction Hypotheses And of 2D Semantic Interpretations: Fig-5



ure 4(a) shows the con�dences for several edges of �gure 4(b). For the junctions B, D and E thereare more than one possible assessments. Note that the length of the marked edges corresponds tothe con�dence, i. e. longer lines represent edges with higher con�dences. Missing edges are usuallydue to missing Hough lines. In table 1 the con�dences for each assessment and the orientation andcon�dence for all marked edges are listed.
(a) (b)Figure 4: Example of a semantic interpretation: (a) Found junction hypotheses (b) Label of thejunctions; for assessments see table 1Junc- Con�dence 1st edge 2nd edge 3rd edgetion of the �1 c1 �2 c2 �3 c3assessment (degree) (degree) (degree)A 0.50 95 0.45 184 0.65 - -B 0.56 95 0.64 184 0.91 - -0.40 275 0.15 95 0.64 184 0.91C 0.32 272 0.11 177 0.95 184 0.91D 0.26 4 0.79 90 0.23 270 0.170.20 4 0.79 90 0.23 - -E 0.30 4 0.53 92 0.22 184 0.350.17 4 0.53 184 0.35 - -F 0.33 182 0.28 270 0.46 - -G 0.20 4 0.16 90 0.17 184 0.52H 0.21 275 0.38 2 0.15 - -I 0.17 177 0.14 270 0.29 - -J 0.19 272 0.17 2 0.19 182 0.26Table 1: Assessment of junction hypotheses of �gure 4. For each junction all assessments withsigni�cant con�dences are shown. Each assessment consists of two or three edges, for which theorientations � and con�dences c of are shown.5 SummaryWe presented a method that does junction detection and classi�cation, together with edge evaluation,in a uni�ed model. The model puts special emphasis on preserving ambiguities. Thus later processingstages have more freedom in assessing an image. They can better combine several features fromdi�erent parts of the image. Since we work on lines and not 2D parts of the input data, we achieve ashort run time behavior. Our model is easily extended to 3D entities and allows determination of edge6
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