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Abstract. We introduce an object recognition system (called ORAS-
SYLL) in which objects are represented as a sparse and spatially orga-
nized set of local (bent) line segments. The line segments correspond
to binarized Gabor wavelets or banana wavelets, which are bent and
stretched Gabor wavelets. These features can be metrically organized, the
metric enables an efficient learning of object representations. Learning
can be performed autonomously by utilizing motor—controlled feedback.
The learned representation are used for fast and efficient localization and
discrimination of objects in complex scenes.

ORASSYLL has been heavily influenced by an older and well known
vision system [4, 9], and has also been influenced by Biederman’s com-
ments to this older system [1]. A comparison of ORASSYLL and the
older system, including some remarks about the specific role of Gabor
wavelets within ORASSYLL, is given at the end of the paper.

1 Introduction

In this paper we describe a novel object recognition system called ORAS-
SYLL (Object Recognition with Autonomously learned and Sparse SYmbolic
representations based on Local Line detectors). In ORASSYLL representations
of object classes can be learned autonomously. The learned representations are
used for a fast and efficient localization and identification of objects in compli-
cated scenes.

We facilitate and guide learning by carefully selected a priori knowledge.
Important constraints are the restriction of features to localized (bent) line
segments (PF1), their metric organization (PF2), their hierarchical processing
(PF3) and the sparse representations of objects by these features (see figure 1).
Other contraints, discussed in detail in [3], are concerned with the division of
the feature space in independent subspaces (PL1: Independence), its temporal
organization (PL2: Correspondence) and statistical criteria for the evaluation
of significant features for an object class (Invariance Maximization (PE1) and
Redundancy Reduction (PE2)).

A cruical aspect of our work and an important difference to an older system
[4, 9] is the specific application of Gabor wavelets as expressed in the constraints



PF1, PF2 and PF4. PF1 states that we apply Gabor wavelets as local line
detectors, i.e., we assign a symbolic meaning to them. This meaning also enables
the imbedding of Gabor wavelets into a metrically organized space (PF2) as well
as for a sparse object representation (PF4).

Our representation of a certain view of an object class comprises only im-
portant features, learned from different examples (see figure 2 left). In section 2
we formalize PF1 by assigning a local line segment to Gabor wavelets or banana
wavelets respectively (see figure la,b). In addition to the parameters frequency
and orientation banana wavelets possess the properties curvature and elonga-
tion. The space of Gabor or banana wavelet reponses is very large. An object
can be represented as a configuration of a few of these features, therefore it can
be coded sparsely (PF4) (see figure 1c). The feature space can be understood as
a metric space (PF2), its metric representing the similarity of features. This met-
ric is essential for feature extraction and the learning algorithm (section 3). The
banana wavelet responses can be derived from Gabor wavelet responses by hier-
archical processing (PF3) to gain speed and reduce memory requirements. The
sparse representation combined with the hierarchical feature processing allows a
fast and effective locating (section 4).

In order to avoid the necessity of manual intervention for the generation
of ground truth we equip the system with a mechanism which can produce
controlled training data by moving an object with a robot arm and following the
object by fixating the robot hand. The robot produces training data on which a
certain view of an object 1s shown with varying background and illumination but
with corresponding landmarks having the same pixel position in the image (see
figure 2 left). We apply the learning algorithm to this data to extract an object
representation (see figure 2 left,v). Another way to avoid manual intervention is
one-shot learning (see figure 2 left), which already allows for the extraction of
representations successfully applicable to difficult discrimination tasks.

ORASSYLL has been heavily influenced by an older and well known vision
system [4, 9], and has also been influenced by Biederman’s comments to this
older system [1]. A comparison of ORASSYLL and the older system, including
some remarks about the specific role of Gabor wavelets within ORASSYLL, is
given in section 6.

2 The Feature Space

The principle PF1 gives us a significant reduction of the search space. Instead
of allowing, e.g., all linear filters as possible features, we restrict ourself to a small

a) b) )

Fig. 1. a: Arbitrary wavelet. b: Corresponding path. c: Visualization of a representation
of an object class. Gabor or Banana wavelets with lower frequencies are represented
by line segments with larger width.
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Fig.2. Left: Autonomous learning: a) The robot arm with the camera. b) The
“retinal” images produced by following the robot arm holding a toy—duck. ¢,i—iv)
Significant Features per Instance extracted in an rectangular region (shown in b,i).
¢,v) Learned representation. d) Training data and learned representation for a toy
car. Right: One—shot learning: Row a) and c) show the objects to be learned in
front of homogeneous backgound. Row b) and d) show the extracted representations.
For all objects a rectangular grid was roughly positioned on the object as in the first
image a,i).

subset. Considering the risk of a wrong feature selection it is necessary to give
good reasons for our decision. We argue that nearly any 2D—-view of an object
can be composed of localized curved lines. Furthermore, the fact that humans
can easiliy handle line drawings of objects strengthens our assumption PF1.
Gabor and Banana Wavelets: A banana wavelet BP is a complex—valued
function, parameterized by a vector b of four variables b = (f, «, ¢, s) expressing
the attributes frequency (f), orientation (o), curvature (¢) and size (s). It can
be understood as a product of a rotated (and curved) complex wave function
FP and a stretched two—dimensional Gaussian G rotated (and bent) according
to FP (see figure 1a).

Our basic feature is the magnitude of the filter response extracted by a con-
volution with an image. A Gabor or banana wavelet BP causes a strong response
at pixel position x when the local structure of the image at that pixel position
is similar to BP (see [3]).

The Feature Space: The six-dimensional space of vectors ¢ = (x,b) is called
the feature space with ¢ representing the banana wavelet BP with its center at
pixel position x in an image. In [3] we define a metric d(e¢q, ¢2). Two coordinates
c1, ¢ are expected to have a small distance d when their corresponding kernels
are similar, i.e., they represent similar features (PF2).

Approximation of Banana Wavelets by Gabor Wavelets: To reduce com-
putational requirements for the extraction of the large feature space we have
defined an algorithm to approximate banana wavelets from Gabor wavelets and
banana wavelet responses from Gabor wavelet responses (see [3]). By this hier-
archical processing (PF3) we achieve a speed up to a factor 5.
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Fig. 3. Left: Clustering: a) Distribution of the significant features per instance ex-
tracted at a certain landmark. b) Codebook initialization. ¢) Codebook vectors after
learning. d) Substituting sets of codebook vectors with small distance by their center
of gravity. e) Counting the number of elements within a certain radius. f) Deleting
codebook vectors representing insignificant features. Right: Learned Representa-
tions of 10 different hand postures The manually provided ground truth consists
of 6 pictures per hand posture with a grid consisting of approximately 40 landmarks
is placed.

3 Learning

Extracting Significant Features Per Instance: Our aim is to extract the
local structure in an image I in terms of (curved) line segments expressed by
Gabor or banana wavelets. We define a significant feature per instance of an
object by two qualities. Firstly it has to cause a strong response, secondly it has
to represent a maximum within a local area of the feature space. Figure 2 right
b,c) and left c,i-iv) show the significant features per instance for some objects
(each wavelet is described by a curve with same orientation, curvature and size).
One—shot learning: By positioning a rectangular grid on a roughly segmented
object (see figure 2 left a,i) in front of homogeneous background and extracting
significant features per instance as described above suitable representations of
objects can already be extracted. These representations are successfully applied
to difficult discrimination tasks.

Clustering: After extracting the significant features per instance in different
pictures we apply an algorithm to extract invariant local features for a class of
objects. Here the task is the selection of the relevant features for the object class
from the noisy features extracted from our training examples (see figure 2 left
¢,i-iv). We assume the correspondence problem to be solved, i.e., we assume the
position of certain landmarks of an object to be known on pictures of different ex-
amples of these objects. In some of our simulations we determined corresponding
landmarks manually, for the rest we replaced this manual intervention by motor
controlled feedback (see section 5).

In a nutshell the learning algorithm works as follows (illustrated for two
dimensions in figure 3 left): a—c) For each landmark we express the significant
features per instance of all training examples by six dimensional codebook vector
(x, b), representing the pixel position and the parameter frequency, orientation,
curvature and elongation. We optimize the codebook vectors by the LBG vec-
tor quantization algorithm [5]. d) Codebook vectors with small distances are



substituted by their center of gravity (PE2: reduction of redundancy). e,f) A
significant feature for an object class is defined as a codebook vector express-
ing many data points. That means the feature corresponding to the code book
vector or a similar feature (according to our metric d) often occurs in our train-
ing set, i.e., has high invariance (PE1). We end up with a graph with its nodes
labeled with banana wavelets representing the learned significant features (see
figure 2 left dv, ev). The edges of the graph labeled with metric relations of the
landmarks.

4 Matching

To use our learned representation for location and classification of objects
we define a similarity function between a graph labeled with the learned banana
wavelets and a certain position in the image. A total similarity averages local
similarities. The local similarity expresses the system’s confidence whether a
pixel in the image represents a certain line segment. The graph i1s adapted in
position and scale by optimizing the total similarity. The graph with the highest
similarity determines the size and position of the objects within the image.

In a nutshell the local similarity is defined as follows (for details see [3]): The
magnitude of the filter responses depends significantly on the strength of edges
in the image. However, here we are only interested in the presence and not in
the strength of edges. Thus, in a second step a function N( ) normalizes the
real valued filter responses into the interval [0, 1]. The value N (c¢) represents the
likelihood of the presence or absence of a local line segment corresponding to
¢ = (x,b). This normalization is based on the “Above Average Criterion”:

A AC aline segment corresponding to the banana wavelet ¢ is present if the corre-
sponding banana wavelet response is distinctly above the average response.

For a learned feature and pixel position in the image we simply check whether
the corresponding banana response is high or low, i.e., we look at the normalized
wavelet response N (c¢). The total similarity (which is optimized during matching)
is simply the average over all these local confidences. Because of the sparseness
(PF4) of our representation only a few of these checks have to be made, therefore
the matching is fast. Because we make use only of the important features, the
matching is efficient.

5 Simulations

Learning of Representation: Firstly we apply the learning algorithm to data
consisting of manually provided landmarks. Our training sets consist of a set
of approximately 60 examples of an object viewed in a certain pose. As objects
we use cans, faces, and hand postures. Corresponding landmarks are defined
manually on the different representatives of a class of objects for the learned
representation for hand postures.

To avoid the manual generation of ground truth we can either apply one—shot
learning (see section 3) or make use of motor controlled feedback: By moving an
object with a robot arm and following the object by keeping fixation relative to
the robot hand using its known 3D position, we produce training data in which
a certain view of an object is shown with varying background and illumination



Repres. Trafo Performance

nb. reps rep approx sec. |[sec. match Recog.
1) 10 standard ||no approx 17.0 9.5 93 %
2) 10  one instance|| approx 4.9 12.4 80 %
3) 10 bunch graph 0.9 18.0 93 %
4) 10 standard ||no approx 17.0 9.5 90 %
5) 10 standard approx 4.9 9.5 80 %
6) 10 bunch graph 0.9 18.0 65 %

Table 1. Matching results for hand posture recognition (for interpretation see text).

but with corresponding landmarks in the same pixel position within the image
(see fig 2 left b,d). Then we can apply our learning algorithm with a rectangular
grid roughly positioned on the object (see figure 2 left b,i). For the generation
of ground truth for frontal faces we recorded a sequence of pictures in which
a person 1is sitting fixed on a chair. Illumination and background is changed
as for cans. To extract representations for different scales we apply the learning
algorithm to the very same pictures of the different sequences scaled accordingly.
Matching: For the problem of face finding in complex scenes with large size
variation a significant improvement in terms of performance and speed compared
to the older system [4, 9] could be achieved. In [6] face recognition with binarized
banana wavelets was performed on a very large data set (more than 700 pictures)
with size variation of faces between 40 and 60 pixel, inhomogeneous background
and uncontrolled illumination. For this set performance was 95%.

Our test sets of hand postures contain images of 10 different hand postures
(figure 3 (right) shows the learned representations) in front of homogeneous back-
ground with controlled illumination (row 1-3, 240 images) and with a second
set containing images with inhomogeneous background and varying illumination
(row 4-6, 200 images). Matching with ten representations (one for each hand
posture) takes 9.5 seconds and recognition rate for the first set was 93% (first
row). The simulations corresponding to the second row were performed with rep-
resentations extracted by one-shot learning. The performance is still remarkably
high (80%). The performance with the bunch graph approach as described in [8]
is given in the third row. Results for the test set with uncontrolled background
and illumination is shown in row 4-6. For the first test set performance within
the bunch graph approach [9, 8] is comparable to ORASSYLL. For the second
and more difficult, set performance of ORASSYLL is significantly better.

6 Comparison with the Jet—based System

ORASSYLL has been heavily influenced by an older and well known vision
system [4, 9, 8] in the following called jet—based system, and has also been
influenced by Biederman’s comments to this older jet—based system [1]. The
system [4, 9] was very successfully applied to face recognition. High correlation
between the system’s and human’s face recognition performance has been shown
[1]. However, Biederman and his associates [1] also have shown that the system
[4, 9] has only low correlation to human object recognition.



bunch of
jets  ~m

1
—~ Symmetry: .
- . . 3 Closure:
\\ = 6‘ A 5 Pparallelism: w
\ Sl‘g %3 [6:5],[7,91,14,11]
= 7‘ Collinearity: 1 4
‘ I‘E ‘ o [1.2][13][2,4],3.4],
= [6,7],[5,9],[10,11]
o N
a: Gabor wavelet b: jet c: bunch graph a) 1 b) 5

Fig.4. Left: Representation of objects within the jet—based system: a: a
Gabor wavelet (real part). b: a jet calculated as a set of Gabor wavelets (the discs
symbolize the different frequencies and directions of k). ¢: a bunch graph. Right:
Gestalt principles as low order relations of local line segments: a: Sparse
representation of a can with local curved lines and lists of second order Gestalt relations
between. b: Smoothing and grouping of the representation in a).

As models for objects the older system also employs labeled graphs. The
edges of graphs are labeled with distance vectors between node positions. Nodes
are labeled with jets [4] or bunches of jets [9] respectively. In a bunch of jets each
jet 1s derived from the image of a different example of the view of an object.
A is bunch thus covering a variety of forms a single landmark may take. This
structure is called bunch graph [9].

Jets are derived from a set of linear filter operations in the form of convo-
lutions of the image I(x) with a set of Gabor wavelets, of different wavelength
and orientation (see figure 4 left a). A jet is formed by the set of complex values
rendered by all wavelets centered at a given position of the image (see figure 4
left b). Due to the spatial extent of the wavelets, jets describe a local area around
their position. A bunch B of jets taken at the same landmark (that is, at cor-
responding positions) of different examples of a certain view of an object class
forms a generalized representation of this landmark (see figure 4 left c).

Jet components a; (the index j standing for length and orientation of the
components’ wave vectors) are the magnitude a; of Gabor wavelet reponses. The
similarity between two jets 7 and 7’ is defined as the normalized scalar product
of the two jets:

1

—T]’ oy o : ZJ: a;0; (1)

Conceptional Differences of Object Representations in the Jet—based
System and ORASSYLL: The object representation on ORASSYLL shows
four conceptional (D1-D4) differences to the representation based on jets and
bunches of jets.

S(T,J" =

— (D1) The distinction curvature vs. straightness can be explicitly used as a
feature.
— (D2) A restriction to a specific set of binary features of high complexity

(more precisely, local (curved) line segments) is imposed for object represen-
tation.



— (D3) The object representations are sparse.
— (D4) A metric is utilized as an additional structure of the feature space.

In the next subsection we will discuss how these differences influence the
recognition process.

6.1 Comparison with Jets and Bunches of Jets: Two Arguments in
Favor of ORASSYLL for the task ’object recognition’

In this section two advantages of the object representation within ORASSYLL
are discussed.

First Argument: In a Jet Significant and Insignificant Features are
Lumped together whereas in ORASSYLL Features are Stored Sepa-
rately. Therefore Matching and Extraction of Significant Features is
Facilitated: In a jet, significant and insignificant features are lumped together.
Even when a single Gabor wavelet response gives information about the oc-
currence of a local line with a certain orientation, a jet always represents the
whole local image patch. The jet similarity (1) reflects the relative strengths
of a complete set of Gabor wavelet responses at the actual pixel position, and
therefore reflects the fit to a whole local region. For example, a local area of an
object may have an edge with a certain orientation resulting in a strong response
of the corresponding Gabor wavelet. The occurrence of an edge with different
orientation in the background causes a strong response for the Gabor wavelet
with different orientation. Because the denominator in equation (1) increases by
the “background-response”, the relative strength of Gabor wavelet responses,
and therefore the similarity (1) changes. In [3] it has been demonstrated that
— because the relative strength of Gabor wavelet responses varies significantly
with changes of background and illumination — the similarity (1) is more sensi-
tive to these sources of noise compared to the similarity function applied within
ORASSYLL.

In ORASSYLL two different distance functions for learning and matching
are used: Firstly, the metric defines a distance between features (D4). For learn-
ing, features at a close distance are grouped together within one cluster but
features at a large distance are treated as separate. The metric of the feature
space reflects the difference of properties of features such as difference in space,
curvature or orientation. This allows to distinguish between significant features
and insignificant features (e.g., corresponding to the background) and to keep
only the significant features within the object representation (see figure 2 left).
Secondly, the similarity of a binarized banana wavelet to a local image patch
(based on the Above Average Criterion) indicates the presence or absence of the
learned feature fairly independent of background and illumination (as shown in
[3]) and allows for a comparison of only the learned and significant features to
the image.

Second Argument: Coding and Detection of Important Relations such
as Collinearity, Parallelism and Symmetry is more Difficult with Jets
than with Binarized Banana Wavelets: An important issue within ORAS-
SYLL is the definition of a local criterion for the presence of a local (curved)
line. Maybe there does not even exist such a completely satisfying local crite-
rion and the presence of a local line segment depends on the context. Compared
to the older system, invariance to changes in illumination and background is



significantly higher, but still, variation occurs as it has been demonstrated in
In [2] within the framework of ORASSYLL, it could been shown that collinear-
ity and parallelism can be detected and mathematically characterized in natural
images with binarized Gabor responses. Without binarization, i.e., without a
transformation to a feature of higher complexity corresponding to a localized
line (D2), these two Gestalt principles are barely detectable in the statistics of
natural images.

A sparse representation of objects (D3) allows for the description and detec-
tion of Gestalt principles as low—order statistics of feature relations. (see figure
4 right) We suggest that this coding also facilitates the reliable recognition of
a local line segment by integrating contextual information because interactions
between features such as inhibition and reinforcement can be defined according
to Gestalt principles within the feature space. Coding of Gestalt principles with
Jjets would presuppose higher order statistics. Therefore learning and integration
of Gestalt principles becomes more difficult within the jet approach.
Acknowledgment: 1 would like to thank Christoph von der Malsburg,
Gabriele Peters, Laurenz Wiskott and Michael Potzsch for fruitful discussion.
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