
Object Recognition with Representationsbased on Sparsi�ed Gabor Wavelets used asLocal Line DetectorsNorbert Kr�ugerInstitut f�ur Informatik und praktischer MathematikChristian-Albrechts-Universit�at zu KielPreu�erstrasse 1-9, 24105 KielGermanynkr@ks.informatik.uni-kiel.deAbstract. We introduce an object recognition system (called ORAS-SYLL) in which objects are represented as a sparse and spatially orga-nized set of local (bent) line segments. The line segments correspondto binarized Gabor wavelets or banana wavelets, which are bent andstretched Gabor wavelets. These features can be metrically organized, themetric enables an e�cient learning of object representations. Learningcan be performed autonomously by utilizing motor{controlled feedback.The learned representation are used for fast and e�cient localization anddiscrimination of objects in complex scenes.ORASSYLL has been heavily in
uenced by an older and well knownvision system [4, 9], and has also been in
uenced by Biederman's com-ments to this older system [1]. A comparison of ORASSYLL and theolder system, including some remarks about the speci�c role of Gaborwavelets within ORASSYLL, is given at the end of the paper.1 IntroductionIn this paper we describe a novel object recognition system called ORAS-SYLL (Object Recognition with Autonomously learned and Sparse SYmbolicrepresentations based on Local Line detectors). In ORASSYLL representationsof object classes can be learned autonomously. The learned representations areused for a fast and e�cient localization and identi�cation of objects in compli-cated scenes.We facilitate and guide learning by carefully selected a priori knowledge.Important constraints are the restriction of features to localized (bent) linesegments (PF1), their metric organization (PF2), their hierarchical processing(PF3) and the sparse representations of objects by these features (see �gure 1).Other contraints, discussed in detail in [3], are concerned with the division ofthe feature space in independent subspaces (PL1: Independence), its temporalorganization (PL2: Correspondence) and statistical criteria for the evaluationof signi�cant features for an object class (Invariance Maximization (PE1) andRedundancy Reduction (PE2)).A cruical aspect of our work and an important di�erence to an older system[4, 9] is the speci�c application of Gabor wavelets as expressed in the constraints



PF1, PF2 and PF4. PF1 states that we apply Gabor wavelets as local linedetectors, i.e., we assign a symbolic meaning to them. This meaning also enablesthe imbedding of Gabor wavelets into a metrically organized space (PF2) as wellas for a sparse object representation (PF4).Our representation of a certain view of an object class comprises only im-portant features, learned from di�erent examples (see �gure 2 left). In section 2we formalize PF1 by assigning a local line segment to Gabor wavelets or bananawavelets respectively (see �gure 1a,b). In addition to the parameters frequencyand orientation banana wavelets possess the properties curvature and elonga-tion. The space of Gabor or banana wavelet reponses is very large. An objectcan be represented as a con�guration of a few of these features, therefore it canbe coded sparsely (PF4) (see �gure 1c). The feature space can be understood asa metric space (PF2), its metric representing the similarity of features. This met-ric is essential for feature extraction and the learning algorithm (section 3). Thebanana wavelet responses can be derived from Gabor wavelet responses by hier-archical processing (PF3) to gain speed and reduce memory requirements. Thesparse representation combined with the hierarchical feature processing allows afast and e�ective locating (section 4).In order to avoid the necessity of manual intervention for the generationof ground truth we equip the system with a mechanism which can producecontrolled training data by moving an object with a robot arm and following theobject by �xating the robot hand. The robot produces training data on which acertain view of an object is shown with varying background and illumination butwith corresponding landmarks having the same pixel position in the image (see�gure 2 left). We apply the learning algorithm to this data to extract an objectrepresentation (see �gure 2 left,v). Another way to avoid manual intervention isone{shot learning (see �gure 2 left), which already allows for the extraction ofrepresentations successfully applicable to di�cult discrimination tasks.ORASSYLL has been heavily in
uenced by an older and well known visionsystem [4, 9], and has also been in
uenced by Biederman's comments to thisolder system [1]. A comparison of ORASSYLL and the older system, includingsome remarks about the speci�c role of Gabor wavelets within ORASSYLL, isgiven in section 6.2 The Feature SpaceThe principle PF1 gives us a signi�cant reduction of the search space. Insteadof allowing, e.g., all linear �lters as possible features, we restrict ourself to a small
a) b) c) Fig. 1. a: Arbitrary wavelet. b: Corresponding path. c: Visualization of a representationof an object class. Gabor or Banana wavelets with lower frequencies are representedby line segments with larger width.
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i) ii) iii) iv)Fig. 2. Left: Autonomous learning: a) The robot arm with the camera. b) The\retinal" images produced by following the robot arm holding a toy{duck. c,i{iv)Signi�cant Features per Instance extracted in an rectangular region (shown in b,i).c,v) Learned representation. d) Training data and learned representation for a toycar. Right: One{shot learning: Row a) and c) show the objects to be learned infront of homogeneous backgound. Row b) and d) show the extracted representations.For all objects a rectangular grid was roughly positioned on the object as in the �rstimage a,i).subset. Considering the risk of a wrong feature selection it is necessary to givegood reasons for our decision. We argue that nearly any 2D{view of an objectcan be composed of localized curved lines. Furthermore, the fact that humanscan easiliy handle line drawings of objects strengthens our assumption PF1.Gabor and Banana Wavelets: A banana wavelet Bb is a complex{valuedfunction, parameterized by a vector b of four variables b = (f; �; c; s) expressingthe attributes frequency (f), orientation (�), curvature (c) and size (s). It canbe understood as a product of a rotated (and curved) complex wave functionFb and a stretched two{dimensional Gaussian Gb rotated (and bent) accordingto Fb (see �gure 1a).Our basic feature is the magnitude of the �lter response extracted by a con-volution with an image. A Gabor or banana wavelet Bb causes a strong responseat pixel position x when the local structure of the image at that pixel positionis similar to Bb (see [3]).The Feature Space: The six{dimensional space of vectors c = (x;b) is calledthe feature space with c representing the banana wavelet Bb with its center atpixel position x in an image. In [3] we de�ne a metric d(c1; c2). Two coordinatesc1; c2 are expected to have a small distance d when their corresponding kernelsare similar, i.e., they represent similar features (PF2).Approximation of Banana Wavelets by Gabor Wavelets: To reduce com-putational requirements for the extraction of the large feature space we havede�ned an algorithm to approximate banana wavelets from Gabor wavelets andbanana wavelet responses from Gabor wavelet responses (see [3]). By this hier-archical processing (PF3) we achieve a speed up to a factor 5.



a) b) c) 

d) e) f) Fig. 3. Left: Clustering: a) Distribution of the signi�cant features per instance ex-tracted at a certain landmark. b) Codebook initialization. c) Codebook vectors afterlearning. d) Substituting sets of codebook vectors with small distance by their centerof gravity. e) Counting the number of elements within a certain radius. f) Deletingcodebook vectors representing insigni�cant features. Right: Learned Representa-tions of 10 di�erent hand postures The manually provided ground truth consistsof 6 pictures per hand posture with a grid consisting of approximately 40 landmarksis placed.3 LearningExtracting Signi�cant Features Per Instance: Our aim is to extract thelocal structure in an image I in terms of (curved) line segments expressed byGabor or banana wavelets. We de�ne a signi�cant feature per instance of anobject by two qualities. Firstly it has to cause a strong response, secondly it hasto represent a maximumwithin a local area of the feature space. Figure 2 rightb,c) and left c,i{iv) show the signi�cant features per instance for some objects(each wavelet is described by a curve with same orientation, curvature and size).One{shot learning: By positioning a rectangular grid on a roughly segmentedobject (see �gure 2 left a,i) in front of homogeneous background and extractingsigni�cant features per instance as described above suitable representations ofobjects can already be extracted. These representations are successfully appliedto di�cult discrimination tasks.Clustering: After extracting the signi�cant features per instance in di�erentpictures we apply an algorithm to extract invariant local features for a class ofobjects. Here the task is the selection of the relevant features for the object classfrom the noisy features extracted from our training examples (see �gure 2 leftc,i{iv). We assume the correspondence problem to be solved, i.e., we assume theposition of certain landmarks of an object to be known on pictures of di�erent ex-amples of these objects. In some of our simulations we determined correspondinglandmarks manually, for the rest we replaced this manual intervention by motorcontrolled feedback (see section 5).In a nutshell the learning algorithm works as follows (illustrated for twodimensions in �gure 3 left): a{c) For each landmark we express the signi�cantfeatures per instance of all training examples by six dimensional codebook vector(x;b), representing the pixel position and the parameter frequency, orientation,curvature and elongation. We optimize the codebook vectors by the LBG vec-tor quantization algorithm [5]. d) Codebook vectors with small distances are



substituted by their center of gravity (PE2: reduction of redundancy). e,f) Asigni�cant feature for an object class is de�ned as a codebook vector express-ing many data points. That means the feature corresponding to the code bookvector or a similar feature (according to our metric d) often occurs in our train-ing set, i.e., has high invariance (PE1). We end up with a graph with its nodeslabeled with banana wavelets representing the learned signi�cant features (see�gure 2 left dv, ev). The edges of the graph labeled with metric relations of thelandmarks.4 MatchingTo use our learned representation for location and classi�cation of objectswe de�ne a similarity function between a graph labeled with the learned bananawavelets and a certain position in the image. A total similarity averages localsimilarities. The local similarity expresses the system's con�dence whether apixel in the image represents a certain line segment. The graph is adapted inposition and scale by optimizing the total similarity. The graph with the highestsimilarity determines the size and position of the objects within the image.In a nutshell the local similarity is de�ned as follows (for details see [3]): Themagnitude of the �lter responses depends signi�cantly on the strength of edgesin the image. However, here we are only interested in the presence and not inthe strength of edges. Thus, in a second step a function N ( ) normalizes thereal valued �lter responses into the interval [0; 1]. The value N (c) represents thelikelihood of the presence or absence of a local line segment corresponding toc = (x;b). This normalization is based on the \Above Average Criterion":AAC a line segment corresponding to the banana wavelet c is present if the corre-sponding banana wavelet response is distinctly above the average response.For a learned feature and pixel position in the image we simply check whetherthe corresponding banana response is high or low, i.e., we look at the normalizedwavelet response N (c). The total similarity (which is optimized during matching)is simply the average over all these local con�dences. Because of the sparseness(PF4) of our representation only a few of these checks have to be made, thereforethe matching is fast. Because we make use only of the important features, thematching is e�cient.5 SimulationsLearning of Representation: Firstly we apply the learning algorithm to dataconsisting of manually provided landmarks. Our training sets consist of a setof approximately 60 examples of an object viewed in a certain pose. As objectswe use cans, faces, and hand postures. Corresponding landmarks are de�nedmanually on the di�erent representatives of a class of objects for the learnedrepresentation for hand postures.To avoid the manual generation of ground truth we can either apply one{shotlearning (see section 3) or make use of motor controlled feedback: By moving anobject with a robot arm and following the object by keeping �xation relative tothe robot hand using its known 3D position, we produce training data in whicha certain view of an object is shown with varying background and illumination



Repres. Trafo Performancenb. reps rep approx sec. sec. match Recog.1) 10 standard no approx 17.0 9.5 93 %2) 10 one instance approx 4.9 12.4 80 %3) 10 bunch graph 0.9 18.0 93 %4) 10 standard no approx 17.0 9.5 90 %5) 10 standard approx 4.9 9.5 80 %6) 10 bunch graph 0.9 18.0 65 %Table 1. Matching results for hand posture recognition (for interpretation see text).but with corresponding landmarks in the same pixel position within the image(see �g 2 left b,d). Then we can apply our learning algorithm with a rectangulargrid roughly positioned on the object (see �gure 2 left b,i). For the generationof ground truth for frontal faces we recorded a sequence of pictures in whicha person is sitting �xed on a chair. Illumination and background is changedas for cans. To extract representations for di�erent scales we apply the learningalgorithm to the very same pictures of the di�erent sequences scaled accordingly.Matching: For the problem of face �nding in complex scenes with large sizevariation a signi�cant improvement in terms of performance and speed comparedto the older system [4, 9] could be achieved. In [6] face recognition with binarizedbanana wavelets was performed on a very large data set (more than 700 pictures)with size variation of faces between 40 and 60 pixel, inhomogeneous backgroundand uncontrolled illumination. For this set performance was 95%.Our test sets of hand postures contain images of 10 di�erent hand postures(�gure 3 (right) shows the learned representations) in front of homogeneous back-ground with controlled illumination (row 1{3, 240 images) and with a secondset containing images with inhomogeneous background and varying illumination(row 4{6, 200 images). Matching with ten representations (one for each handposture) takes 9:5 seconds and recognition rate for the �rst set was 93% (�rstrow). The simulations corresponding to the second row were performed with rep-resentations extracted by one-shot learning. The performance is still remarkablyhigh (80%). The performance with the bunch graph approach as described in [8]is given in the third row. Results for the test set with uncontrolled backgroundand illumination is shown in row 4{6. For the �rst test set performance withinthe bunch graph approach [9, 8] is comparable to ORASSYLL. For the secondand more di�cult, set performance of ORASSYLL is signi�cantly better.6 Comparison with the Jet{based SystemORASSYLL has been heavily in
uenced by an older and well known visionsystem [4, 9, 8] in the following called jet{based system, and has also beenin
uenced by Biederman's comments to this older jet{based system [1]. Thesystem [4, 9] was very successfully applied to face recognition. High correlationbetween the system's and human's face recognition performance has been shown[1]. However, Biederman and his associates [1] also have shown that the system[4, 9] has only low correlation to human object recognition.
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a) b) Fig. 4. Left: Representation of objects within the jet{based system: a: aGabor wavelet (real part). b: a jet calculated as a set of Gabor wavelets (the discssymbolize the di�erent frequencies and directions of k). c: a bunch graph. Right:Gestalt principles as low order relations of local line segments: a: Sparserepresentation of a can with local curved lines and lists of second order Gestalt relationsbetween. b: Smoothing and grouping of the representation in a).As models for objects the older system also employs labeled graphs. Theedges of graphs are labeled with distance vectors between node positions. Nodesare labeled with jets [4] or bunches of jets [9] respectively. In a bunch of jets eachjet is derived from the image of a di�erent example of the view of an object.A is bunch thus covering a variety of forms a single landmark may take. Thisstructure is called bunch graph [9].Jets are derived from a set of linear �lter operations in the form of convo-lutions of the image I(x) with a set of Gabor wavelets, of di�erent wavelengthand orientation (see �gure 4 left a). A jet is formed by the set of complex valuesrendered by all wavelets centered at a given position of the image (see �gure 4left b). Due to the spatial extent of the wavelets, jets describe a local area aroundtheir position. A bunch B of jets taken at the same landmark (that is, at cor-responding positions) of di�erent examples of a certain view of an object classforms a generalized representation of this landmark (see �gure 4 left c).Jet components aj (the index j standing for length and orientation of thecomponents' wave vectors) are the magnitude aj of Gabor wavelet reponses. Thesimilarity between two jets J and J 0 is de�ned as the normalized scalar productof the two jets: S(J ;J 0) = 1qPj a2jPj a02j �Xj aja0j (1)Conceptional Di�erences of Object Representations in the Jet{basedSystem and ORASSYLL: The object representation on ORASSYLL showsfour conceptional (D1{D4) di�erences to the representation based on jets andbunches of jets.{ (D1) The distinction curvature vs. straightness can be explicitly used as afeature.{ (D2) A restriction to a speci�c set of binary features of high complexity(more precisely, local (curved) line segments) is imposed for object represen-tation.



{ (D3) The object representations are sparse.{ (D4) A metric is utilized as an additional structure of the feature space.In the next subsection we will discuss how these di�erences in
uence therecognition process.6.1 Comparison with Jets and Bunches of Jets: Two Arguments inFavor of ORASSYLL for the task 'object recognition'In this section two advantages of the object representation within ORASSYLLare discussed.First Argument: In a Jet Signi�cant and Insigni�cant Features areLumped together whereas in ORASSYLL Features are Stored Sepa-rately. Therefore Matching and Extraction of Signi�cant Features isFacilitated: In a jet, signi�cant and insigni�cant features are lumped together.Even when a single Gabor wavelet response gives information about the oc-currence of a local line with a certain orientation, a jet always represents thewhole local image patch. The jet similarity (1) re
ects the relative strengthsof a complete set of Gabor wavelet responses at the actual pixel position, andtherefore re
ects the �t to a whole local region. For example, a local area of anobject may have an edge with a certain orientation resulting in a strong responseof the corresponding Gabor wavelet. The occurrence of an edge with di�erentorientation in the background causes a strong response for the Gabor waveletwith di�erent orientation. Because the denominator in equation (1) increases bythe \background{response", the relative strength of Gabor wavelet responses,and therefore the similarity (1) changes. In [3] it has been demonstrated that| because the relative strength of Gabor wavelet responses varies signi�cantlywith changes of background and illumination| the similarity (1) is more sensi-tive to these sources of noise compared to the similarity function applied withinORASSYLL.In ORASSYLL two di�erent distance functions for learning and matchingare used: Firstly, the metric de�nes a distance between features (D4). For learn-ing, features at a close distance are grouped together within one cluster butfeatures at a large distance are treated as separate. The metric of the featurespace re
ects the di�erence of properties of features such as di�erence in space,curvature or orientation. This allows to distinguish between signi�cant featuresand insigni�cant features (e.g., corresponding to the background) and to keeponly the signi�cant features within the object representation (see �gure 2 left).Secondly, the similarity of a binarized banana wavelet to a local image patch(based on the Above Average Criterion) indicates the presence or absence of thelearned feature fairly independent of background and illumination (as shown in[3]) and allows for a comparison of only the learned and signi�cant features tothe image.Second Argument: Coding and Detection of Important Relations suchas Collinearity, Parallelism and Symmetry is more Di�cult with Jetsthan with Binarized Banana Wavelets: An important issue within ORAS-SYLL is the de�nition of a local criterion for the presence of a local (curved)line. Maybe there does not even exist such a completely satisfying local crite-rion and the presence of a local line segment depends on the context. Comparedto the older system, invariance to changes in illumination and background is
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