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Abstract

In this paper a biologically plausible and efficient object recog-
nition system (called ORASSYLL) is introduced which is based on a
set, of a priori constraints motivated by findings of developmental psy-
chology and neurophysiology. These constraints are concerned with
the organisation of the input in local and corresponding entities, the
interpretation of the input by its transformation in a highly struc-
tured feature space and the evaluation of features extracted from an
image sequence by statistical evaluation criteria. In the context of
the bias/variance dilemma the functional role of a priori knowledge
within ORASSYLL is discussed. In contrast to systems in which ob-
ject representations are defined manually the introduced constraints
allow an autonomous learning from complex scenes.

1 Introduction

The necessity of the existence of a certain amount of a priori knowledge within a
system which has to deal with a high dimensional learning problem such as object
recognition, is well-founded in, e.g. (Geman et al., 1995; Abu-Mostafa, 1995).
However, the definite selection and formalisation for a specific task domain is
still an open question. Many artificial object recognition systems implicitly apply
a certain amount of a priori knowledge. The aim of the work presented here is
to put the concrete choice of predetermined structural constraints in the focus of
attention.
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(ERBCHRX CT930097).



Plausible requirements for predetermined structural constraints are discussed
and definitions of suitable constraints for object recognition are given. Further-
more, their formalisation within an artificial system called ORASSYLL (Object
Recognition with Autonomous learned and Sparse SYmbolic representations
based on Local Line detectors) is discussed. I will claim that findings of de-
velopmental psychology and neurophysiology indicate that the human visual sys-
tem already possesses certain structural constraints at birth and supports their
definition. The study of the primate’s visual system enables us to look at the
result of an evolutionary learning algorithm which has established predetermined
structural constraints which may be extracted up to a certain degree from exper-
imental data and which can be realized within technical systems. As a result of
this controlled application of a prior:i knowledge and in contrast to approaches
applying a manually designed object representation, within ORASSYLL model-
based representations can be extracted autonomously or with only little manual
intervention within a perception—action—cycle.

This work is organised as follows: In section 2 arguments for the necessity of
a priori constraints are summarised and the relation of evolutionary learning and
individual learning are discussed. Motivated by genetically determined structure
in the human brain and observations of the behaviour of newborns and infants
(described in section 3), I will define constraints for visual learning on which the
object recognition system ORASSYLL is based (section 4). These constraints are
concerned with the organisation of the input in local and corresponding entities
utilising interaction of action and perception (section 4.1), the interpretation of
the input by its transformation in a highly structured feature space resulting in a
sparse object representation (section 4.2) and the evaluation of features extracted
from an image sequence by statistical evaluation criteria (section 4.2). A technical
description of ORASSYLL focussing on the learning of object representations and
on the role of the introduced constraints is given in section 5.

2 The Bias/Variance Dilemma

Learning is inherently faced with the bias/variance dilemma (Geman et al., 1995):
If the starting configuration of the system has many degrees of freedom, it can
learn from and specialise to a wide variety of domains, but it will in general
have to pay for this advantage by having many internal degrees of freedom —the
“variance” problem. On the other hand, if the initial system has few degrees
of freedom it may be able to learn efficiently but there is great danger that the
structural domain spanned by those degrees of freedom does not cover the given
domain of application at all —the “bias” problem. As a conclusion (Geman et al.,
1995) argue “bias needs to be designed to each particular problem”. This conclu-
sion is the starting point of this paper in which I will suggest concrete choices of
bias in terms of structural constraints which are realized within ORASSYLL.

If artificial neural networks are considered as being caught in the variance part
of the bias/variance dilemma, another type of object recognition system suffering
from too much bias exists. These systems can be called “model based systems”,



see, e.g., (Yuille, 1991; Lanitis et al., 1997). As an example, (Lanitis et al., 1997)
can successfully locate faces by matching a manually defined face model with a
certain number of free parameter enabling the adaptation to a specific face in a
specific pose. Because the model of the face is defined manually, each time the
algorithm is applied to a new object class, a new representation has to be designed
manually again. In this way, for example in (Cootes et al., 1995), resistors are
localised within the framework of the object representation in (Lanitis et al.,
1997).

Each concrete choice of a priori knowledge is a crucial point. A wrong choice
may lead to the exclusion of good solutions in the search space. An amount of
predetermined knowledge that is too restricted may result in an increase of the
search space, leading to unrealistic learning time and bad generalisation. This
trade—off requires firstly that the a prior: constraints should, on the one hand,
be powerful in the sense that they cover essential structure of the problem they
deal with. Secondly, they should be general, such that they can be applied in
many situations and do not restrict the system to deal only with very specific
sub—problems. Of course, these two necessary properties are not sufficient to give
a unique definition for structural constraints. Indeed there is a certain amount
of arbitrariness, and a proof for THE a priori constraints (e.g., based on the
statistics of the input data of the visual system and a precise definition of the
task it has been designed for), is far beyond the stage of visual science today and
of course far beyond the scope of this work.

How can we escape the bias/variance dilemma? The existence of a pattern
recognition system — the human visual system — able to deal with its surround-
ings efficiently and with sufficient adaptivity raises hope about this possibility.
The predetermined structural constraints have evolved during evolution and ap-
pear to be well suited to organise visual experience. Therefore they seem to cover
essential structure of the physical world and it is a valuable opportunity to look
at results of biology to become inspired for suitable definitions of constraints. In
this sense, nowadays the Kantian idea (Kant, 1781) to establish a table of a priori
constraints which organises perception can be supported, guided and justified by
a good amount of neuropysiological and psychophysical data which is discussed
in the next section.

3 The Development of the Visual System

To motivate the constraints applied within ORASSYLL, a short description of
the development of human visual skills is given. 1 will restrict myself to the
aspects which are relevant for predetermined structural knowledge applied within
ORASSYLL. In subsection 3.1 the observable (regarding the behaviour of infants)
or “outer” development of the human visual system is summarised. In subsection
3.2 some aspects of the neurophysiological or “inner” correlate of this development
are described. Both ways of description, “inner” and “outer”, give evidence
that the human brain neither is a blank table nor a system which is completely
determined at birth but confirm that structural knowledge is already existent and



guides post-natal learning.

3.1 Developmental Psychology of Visual and Gripping Abil-
ities
Newborns already possess a remarkable set of visual abilities. They are able to
distinguish lines (Rauh, 1995) and colours (Jones-Molfese, 1992). Movement, high
contrast, and faces are “interesting features” to which the newborn infant directs
its attention (Goren, 1975). Furthermore, newborns are able to follow (clumsily)
a moving object by rotating their head and eyes (Rauh, 1995). Spelke (Spelke,
1993) demonstrated that the Gestalt principle “common fate” is already utilised
by infants of an age of four months but also demonstrated the appearance of the
Gestalt principles “collinearity” and “parallelism” at an age of seven months.
The process of gaining control of arms and hands and their interaction with the
visual system develops within the first six months. At approximately 4-6 months
an infant can perform a visually controlled movement of its arms and hands.
Infants under the age of 4 months mainly characterise an object by its movement
or position. They perceive an object as “something at a certain position” or
“something moving with a certain velocity”. Objects have no “above, below,
left, right, in front or behind” (Bower, 1971). In coincidence with gaining visual
control about their movement the object representation of infants starts to be
based on higher features, such as, form and size (Bower, 1971). An interesting
analogy of ORASSYLL and human aquisition of object representation is the use
form features by infants at an age when they are able to carry out a perception—
action—cycle which is also necessary within the artificial system presented here
(see section 4.1).

3.2 Development of the Visual System: Neurobiology

The relation of intrinsic properties of brain areas to extrinsic influences on the
structure of the cortex is a controversially discussed question. As an extreme view-
point (Creutzfeld, 1977) proposed that all cortical neurons are initially equipo-
tent and that laminar and areal differences in the organisation of the cortex are
induced exclusively by extrinsic influence. There exist indeed impressive phenom-
ena of extrinsic effects on structuring of brain areas (see e.g., (Sur et al., 1988;
Blakemore and Cooper, 1970)). However, also a considerable number of coun-
terexamples show the restricted adaptivity of the visual system, e.g., in the case
of strabism and astigmatism (Atkinson and Braddick, 1989). Furthermore, the
evolution of complex structures without post—natal visual experiences, e.g., orien-
tation maps (Wiesel and Hubel, 1974; Gédecke and Bonhoeffer, 1996), confirms
the importance of genetic predetermination.

In (Kriiger, 1998b) I give a short overview about the results of research about
the cortogenesis of the visual system which are relevant for the choices of con-
straints within ORASSYLL. Summarising the most important items, it is argued
that the connections of brain areas and the receptive field size of neurons in dif-



ferent areas are largely predetermined and established at birth. Even the features
extracted in some areas (orientation, movement and colour) (Wiesel and Hubel,
1974; Godecke and Bonhoeffer, 1996), i.e., the coarse sensitivity of neurons, are
basically initiated before the first post—natal visual experience. Other features,
such as extraction of disparity information, depend on extrinsic influence and
do not develop without it. Input dependent fine tuning and local normalisation
processes (parallel to the development of lateral synaptical connections) develop
during the first months of visual experience. The arrangement of features in com-
putational maps (Knudsen et al., 1987) is a major principle applied throughout
the brain, both in the early stages of visual processing (Hubel and Wiesel, 1979)
as well as in higher stages (Tanaka, 1993) and probably, at least for area V1, is
genetically determined (see (Wiesel and Hubel, 1974; Godecke and Bonhoeffer,
1996)).

The utilisation of Gestalt principles (such as, collinearity and parallelism) also
evolves with visual experience (see section 3.1), possibly making use of statistical
properties of natural images (see also (Phillips and Singer, 1997)). It is an inter-
esting “by-product” of ORASSYLL that the Gestalt principles collinearity and
parallelism can be detected as significant relations of the class of natural images
after interpreting the Gabor wavelets according to the constraints applied within
ORASSYLL (see section 4.2 and (Kriiger, 1998a)).

Developmental psychology and neurophysiological research give indications
for the impressive adaptivity of the visual system and its capability to extract
significant information from experience. Both ways of description also indicate
a large amount of genetic prestructuring. Maybe the important question is not
so much the relative weight of genetic predetermination and adaptation but a
precise definition of the predetermined structural constraints. The experiments
in striate cortex (Wiesel and Hubel, 1974; Gédecke and Bonhoeffer, 1996) already
give good hints about predetermined structures, such as feature choices and their
organisation in computational maps.

4 The a priori Constraints

Inspired by the constraints imposed by the human visual system (as described in
section 3), in this section predetermined structural constraints for visual learning
are introduced which will be realized within ORASSYLL. Each pattern recogni-
tion system has to apply a certain amount of a priori knowledge. What may be
different in this work is that these structural constraints are put into the focus of
attention and are the starting point of designing the object recognition system.
For the constraints I will discuss analogies to constraints imposed by the human
visual system (see also table 1) and differences and relations to design choices in
other systems.

I do not assume that the constraints introduced here are complete in the
sense that they cover all necessary constraints for an object recognition system
which is as efficient as the human visual system. Firstly, here the focus is on



Constraint

‘ Analogy in Visual System

| Functional Role within ORASSYLL

PL1 localised receptive fields (Hubel and Wiesel, 1979) | reducing complexity by splitting
Independence the input space in subspaces
PL2 interaction of arm movement and perception learning with comparable entities
Correspondence | (perception—action—cycle)

(Rauh, 1995; Koenderink, 1992)

PF1 Feature
Selection

genetically determined orientation sensitive
Gabor-shaped neurons
(Wiesel and Hubel, 1974; Jones and Palmer, 1987)

reduction of search space by forcing
description by specific features
with symbolic meaning

PF2 Feature
Arrangement

genetically determined order of orientation
maps in V1 (Wiesel and Hubel, 1974)
or (Godecke and Bonhoeffer, 1996)

combination of similar and
separation of dissimilar entities
by a metric

PF3 Hierarchical
Processing

applied within whole cortex
(see, e.g. (Oram and Perrett, 1994))

sharing of resources, speed up of
feature processing

PF4
Sparse Coding

equal response probability of neurons across
images and low response probability for a
single image (Palm, 1980; Field, 1994),
date spread in V1 compared to ganglia cells

low memory requirements and high
storage capacity, reduction of space of
relations within object representations,
speed up of matching

PE1 Maximal
Discrimination

speed up of learning by internal
evaluation of features instead of e.g.,
error back-propagation

PE2 Minimal
Redundancy

transformation of redundancy of input data
into cognitive maps (Barlow, 1961)

reduction of redundancy by
representing similar entities by one
entity utilizing metric

Table 1: Constraints (first column), analogy in human visual system (second
column) and functional role within ORASSYLL (third column).

shape processing and other clues such as colour or disparity information are ig-
nored. Secondly, in its current form ORASSYLL is a 2D—approach. Thirdly,
for object representation on higher stages of visual processing (higher than V1)
additional constraints (e.g., Gestalt principles) probably have to be taken into
account. However, the constraints utilised within ORASSYLL are already suf-
ficient to extract autonomously 2D-representations of objects from images and
these representations can be applied to difficult vision tasks.

The a priori constraints can be divided into constraints concerning the or-
ganisation of the input (PL1-2, subsection 4.1), constraints concerning feature
selection, feature organisation, and feature processing (PF1-4, subsection 4.2),
and constraints concerning statistical feature evaluation (PE1-2, subsection 4.3).
Their relationship to biological and psychological findings and their functional
role within ORASSYLL is summarised in table 1.

4.1 Locality and the Correspondence Problem

The system’s input is spatially organised: the input is divided into non—overlapping
subparts (PL1: independence) and reflects a certain consistency of moving ob-
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Figure 1: a) The robot arm with the camera. b) The “retinal” images produced
by following the robot arm holding a toy-duck. c,i—iv) Significant Features
per Instance extracted in an rectangular region (shown in b,i). c,v) Learned
representation. d) Training data and learned representation for a toy car.

jects in time (PL2: correspondence). This organisation of the input decreases the
relevant feature space and facilitates learning.

PL (Locality)

(1) (Independence) Features at distant locations are assumed to be indepen-
dent.

(2) (Correspondence) Only features corresponding to the same landmark for
different examples of the same object class are used for learning.

PL1: The first part of the constraint PL already implies the locality of features:
a local feature, i.e., a feature which describes a quality of a local part of an
image, does not interact with features corresponding to other landmarks. Corre-
sponding to the limited receptive field size of neurons in V1 the features will be
local (see PF1). It has been demonstrated that local filters similar to the filters
applied within ORASSYLL are the result of feature extraction by Independent
Component Analysis (Bell and Sejnowski, 1996).

The splitting of the feature space in smaller independent subspaces is a design
principle of many artificial systems (e.g., (Alpaydin and Jordan, 1996; Wiskott
et al., 1997)), nevertheless others (e.g., (Turk and Pentland, 1991)) apply global
functions to the input image.



PL2: The second part of PL comprises a fundamental problem of vision, the
“correspondence problem”. For any learning algorithm, it is indispensable to
ensure that comparable entities (i.e., comparable landmarks) are used as training
data. Looking at a single image of an object makes it difficult to distinguish
between features corresponding to the background and features corresponding
to the object; if the object to be learned is moving, a number of factors will
produce high variation in the data: i) Translation of the object leads to the
appearance of corresponding landmarks at different positions in the image and
varying background and scale; i) Rotation may lead to the occurrence of very
dissimilar views of the same object; i) Variation of illumination causes shadows
on the object and amplifies or diminishes the occurrence of textures or edges.

A sensible learning of a certain view of an object seems to be impossible if
not at least some of these sources of variation are eliminated. The easiest way
is to solve the correspondence problem manually, but of course this is a serious
restriction. At least for one instance of an object class, interaction of motor
control and vision can help to create controlled training data: By moving an
object with a robot arm and following the object by keeping fixation relative to
the robot hand using its known 3D position, training data is produced in which
a certain view of an object is shown with varying background and illumination
but with corresponding landmarks in the same pixel position within the image
(see figure 1a,b). The method is comparable to an arm movement and grasping
controlled by vision such as 4-6 months old infants are able to (see section 3.1)
and reflects the strong relation between action and perception (Koenderink, 1992;
Sommer, 1997). Interestingly the infants’ concept of objects changes dramatically
at this stage of development (see section 3.1). The ability to create a situation in
which an object appears under controlled conditions may help, as in the object
recognition system, to learn a suitable representation of objects.

4.2 Feature Selection and Feature Organisation

The spatially organised input is transformed to a structured feature space, or, in
other words, the input is seen through the “glasses” of this feature space. The a
priori constraints introduced here are concerned with the choice of features itself
and their transformation to a more “symbolic” meaning (PF1: feature selection),
their inter-relation (PF2: feature arrangement), their computation (PF3: hier-
archical processing) and their role within the object representation (PF4: sparse
coding). An important difference to other object recognition systems is the ex-
ploitation of a rich structure of the feature space for learning: The locality of
features and the mechanism described in figure 1 ensures that only comparable
local entities are input for learning. These features can be compared by a metric
of the feature space. Interestingly, the specific interpretation of Gabor wavelet
responses within ORASSYLL allows for the detection of Gestalt principles in the
input data.

PF (Feature Assumptions)



Figure 2: Path corresponding to a banana wavelet. a: Arbitrary wavelet. b:
Symbolic representation by the corresponding curve. c: Visualisation of a repre-
sentation of an object class.

(1) (Feature Selection) Significant features of a localised area of the two—dimensional
projection of the visual world are localised (curved) line segments.

(2) (Feature Metric) A metric defines a distance between these features indicat-
ing the differences in their properties orientation, curvature and position.

(3) (Hierarchical Processing) These features are computed from simpler features
in a hierarchical fashion.

(4) (Sparse Coding) An object is coded as a sparse and spatially ordered ar-
rangement of these features.

PF1: In ORASSYLL Gabor or banana wavelets and their symbolic analogue,
“(curved) local line segments”, are used as basic features which are given a priori
(see figure 2). The restriction to Gabor or banana wavelets gives a significant
reduction of the search space. Instead of allowing, e.g., all linear filters as possible
features (as realized, e.g., in the scalar—product of a back propagation neuron), a
restriction to a small subset is imposed. Neurophysiological experiments (Wiesel
and Hubel, 1974) (see also section 3.2) show that also the human visual system
makes certain kind of feature choices before their first acts of postnatal visual
experience.

Within the framework of ORASSYLL it has been shown in (Kriiger, 1998a)
that the Gestalt principles collinearity and parallelism can be detected and de-
scribed as second order statistics of normalised Gabor wavelet responses. This
non-linear normalisation was initially developed to solve a certain subproblem
within ORASSYLL: The comparison of a symbolic feature with a certain posi-
tion within the grey-level image. The normalisation transforms Gabor wavelet
responses such that they express the system’s confidence for the presence or ab-
sence of a local line segment, i.e., it represents their interpretation in terms of
constraint PF1. Surprisingly, this transformation effects the second order statis-
tics of Gabor wavelet responses significantly (see figure 3a—d). Looking only at
the non—normalised Gabor wavelet responses the Gestalt principles collinearity
and parallelism are barely detectable (see figure 3e—f).
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Figure 3: The cross—correlation of pairs of normalised Gabor wavelet responses
(a—d) and unmodified Gabor wavelet responses (e-h) of four orientations on a
large set of natural images: a,e) horizontal - horizontal, b,f) horizontal - diagonal,
c,g) horizontal - vertical, d,h) horizontal - diagonal. The x- and y-axes represent
the separation of the kernels (labeling of all axes for a-h is the same than in a) and
the z-axis represents the correlation. In a) parallelism and collinearity are clearly
visible: Collinearity is detectable as ridge in the first diagram and parallelism
appears as global property expressed in the flat part of the surface in the first
diagram clearly above the surfaces corresponding to non—parallel orientations.

PF2: In ORASSYLL, the ordered arrangement of features is achieved by a metric
defining a distance between features indicating their differences in the properties
orientation, curvature and position. This metric organisation is essential for learn-
ing in the object recognition system, because it allows to cluster similar features
and thus to determine representatives for such clusters.

PF3: In the visual cortex of primates hierarchical processing of features of
increasing complexity and increasing receptive field size occurs. In the object
recognition system the main advantage of hierarchical processing (see figure 4)
is speed—up and reduction of memory requirements. Hierarchical processing is a
widely used principle, realized in most of the neural network systems.

PF4: Sparse coding is discussed as a coding scheme realized in the primate’s
visual system (Field, 1994). A sparse representation can be defined as a coding
of an object by a small number of binary features taken from a large feature space.
In ORASSYLL an expansion of the feature space is forced by extracting a number
of features for each pixel. For the representation of an object only about 1078
of all available features are required. In this sense, the objects (see, e.g., figure
2¢) are represented sparsely. ORASSYLL differs in this aspect to many other
object recognition systems which apply compact representations (e.g., (Turk and
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Pentland, 1991)). The sparseness of representation allows a fast matching because
only a few features have to be checked within an image. Furthermore the space
of possible feature relation within the object representation is reduced in a sparse
representation. Taking into account that important aspects are coded by these
relations (e.g., Gestalt relations), this potentially facilitates learning within the
space of multiple order relations.

4.3 Evaluation of Features

In contrast to the constraints (PF1-PF4) which define the feature space itself,
now two criteria are introduced for the selection of “good” features to represent
an object class. These constraints enable the system to use multiple visual expe-
riences of instances of the same object class to extract significant information. In
contrast to, e.g., back-propagation ((Rumelhart et al., 1986)), in which a “global”
criteria is optimised, the two constraints represent criteria which guide and speed
up the learning algorithm by evaluating intermediate stages of processing (see
also the discussion of the “credit assignement problem” in, e.g. (Arbib, 1994)).

PE (Evaluation)

(1) (Maximal Discrimination) Features are preferred whose values on images
vary little within classes and vary much between classes.

(2) (Minimal Redundancy): Redundant information shall be eliminated from
the system.

PE1, PE2: Analogies to the constraints PE1 and PE2 cannot be detected by
biological experiments, as it is possible for the constraints PF1-PF4. However,
(Barlow, 1961) discusses redundancy reduction as an important principle under-
lying the transformation of sensory messages in the brain. Furthermore, both

constraints are applied implicitly in many pattern recognition algorithms (see,
e.g., (Fisher, 1923; Kriiger, 1997)).

5 Description of the Object Recognition System

In this section I will give a technical description of ORASSYLL which is based on
the a priori constraints introduced in section 4. Here it is not my aim to give a
detailed technical description of the whole system but to describe how the applied
constraints enable learning of object models for realistic and difficult tasks (for
details concerning the complete system, see (Kriiger, 1998b; Kriiger and Peters,

2000)).

5.1 The Feature Space

In this subsection the realization of the constraints PF1-PF4 (introduced in sec-
tion 4) is described. By utilising these constraints the input is transformed into
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Figure 4: Hierarchical processing: The more complex banana wavelet on the left
is approximated by the weighted sum of Gabor wavelets on the right.

a metrically organised feature space. Images are interpreted as an assemble of
spatially organised local line segments which are processed hierarchically.
Gabor and Banana Wavelets: A banana wavelet B® is a complex—valued
function, parameterized by a vector b of four variables b = (f,,c,s) expressing
the attributes frequency (f), orientation (), curvature (c) and elongation (s).!
It can be understood as a product of a curved and rotated complex wave function
F ’E and a stretched two-dimensional Gaussian G° bent and rotated according to
F® (see figure 2a).

Banana wavelets are generalised Gabor wavelets (for Gabor wavelets see, e.g.,
(Daugman, 1985)), they possess additional to frequency and orientation the pa-
rameters curvature and elongation. The approach introduced here does not ne-
cessitate the usage of banana wavelets and is also applicable with Gabor Wavelets
(see figure 5d,i,ii,iv for object representations with only straight line segments).
The Feature Space: The six-dimensional space of vectors ¢ = (Z, 5) is called
the feature space with ¢ representing the wavelet BP with its center at pixel
position ¥ in an image. PF2 is realized by a metric d(¢, ). Two coordinates
C1, Co are expected to have a small distance d when their corresponding kernels
are similar, i.e., they represent similar features. For the exact definition of the
metric first a distance measure is defined for the orientation—curvature subspace
(o, ¢) expressing the Moebius topology thereof. Setting

d((a, 1), (o, ) =
min {\/(a1a2)2 + (0172@)2, \/((CVIWQ)C\!Q)z + (014;2@)2’ \/((a1+:2)a2)2 + (61_1_62)2}

2 2
€a € €a €c

on the subspace (a,c). Then a distance measure on the complete coordinate
space is defined by

d(gl, 62) -

J (@ -, —w)?, (h—f)

(51— 82)2_

2
€

2
d ) ; ) 2 +
6% 65 + 6% + ((011 Cl) (012 CQ))

(1)

The values € = (e, €y, €y, €q, €, €5) define a cube of volume 1 in the features
space, i.e. they define the weights for the different properties such as orientation
and curvature. In the standard settings € = (4,4,0.01,0.3,0.4, 3.0) is used.

Non—Linear Transformations of the Filter Responses The feature pro-
cessing of ORASSYLL consists of a two-step non-linear transformation of the

For Gabor wavelets b is reduced to (f, a)
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complex filter responses. In the first step, the magnitude of the filter response
is extracted after the convolution of B® with the image I. In contrast to the
complex filter response oscillating with phase, the magnitude of the response is
more stable under slight variation of position, see (P6tzsch et al., 1996). A filter
B causes a strong response at a certain pixel position when the local structure
of the image at that pixel position is similar to B°.

The magnitude of the filter responses depends significantly on the strength of
edges in the image. However, here I am only interested in the presence and not in
the strength of edges. Thus, in a second step a function N( ) normalises the real
valued filter responses 7(¢) into the interval [0,1]. The value N (r(¢)) represents
the likelihood of the presence or absence of a local line segment corresponding to

=

¢ = (2o, b). This normalisation is based on the “Above Average Criterion”:

A AC aline segment corresponding to the banana wavelet ¢ is present if the corre-
sponding banana wavelet response is distinctly above the average response.

The normalisation is realized by mapping 7(¢) by a sigmoid function N. N (r(¢))
returns a small value, when r(é) is below an average response E and a high value
if it is close to the maximum response Max. Both parameters, average E and
maximum Maz, are computed using local and global information. Because of
this locality, they vary with pixel position. The influence of the normalisation to
the second order statistics of Gabor wavelet responses is demonstrated in figure
3.

Approximation of Banana Wavelets by Gabor Wavelets: To reduce com-
putational requirements for the extraction of the large feature space an algo-
rithm to approximate banana wavelets from Gabor wavelets and banana wavelet
responses from Gabor wavelet responses is defined (see figure 4). By this hierar-
chical processing (PF3) a speed up to a factor 5 can be achieved.

5.2 Learning

In this subsection a sparse object representation (PF4) is extracted from single
images or image sequences. Features caused from background structure or illumi-
nation can be eliminated by a learning scheme which makes use of the structure
of the feature space (PF1, PF2). The learning algorithm applies the evaluation
criteria PE1 and PE2 as internal criteria to determine significant features for an
object class. It presupposes the correspondence of local landmarks in different
images (PL1, PL2) which can be achieved by interaction of perception and action.
Extracting Significant Features Per Instance: Here the aim is to extract the
local structure in an image in terms of (curved) local line segments. A significant
feature per instance of an object is defined by two qualities. Firstly it has to
cause a strong response (C1), secondly it has to represent a maximum within
a local area of the feature space (C2). Figure lc,i-iv, 5b,d) and 7b,i-iv)) show
the significant features per instance for some objects. Each wavelet is described
by a curve with same orientation, curvature and size. Lower frequencies are
represented as thicker line segments.

13
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Figure 5: One-shot learning: Row a) and c) show the objects to be learned in front
of homogeneous background. Row b) and d) show the extracted representations.

For all objects a rectangular grid was roughly positioned on the object as in the
first image a,i).

In terms of analogy to the processing in area V1 in the mammalian visual sys-
tem C1 may be interpreted as the response of a certain column which indicates
the general presence of a feature, whereas C2 represents the inter-columnar com-
petition giving a more specific coding of this feature (Oram and Perrett, 1994).
Therefore, the feature space is divided in locally distinct columns (PL1) in which
related features (or features with close distance (PF2)) are represented.
One—shot learning: By positioning a rectangular grid on an object (see figure
5a,i) in front of homogeneous background and extracting significant features per
instance as described above, suitable representations of objects can be extracted.
These representations were already successfully applied to difficult discrimination
tasks. For instance, for a difficult 10—class problem in hand posture classification
a recognition rate of 80% could be achieved with representations extracted from
single images (see row 2 in table 2).

Clustering: In case of non-homogeneous background and uncontrolled illumi-
nation one shot—learning would create representations with line segments corre-
sponding to background (see figure 1c,i-iv). In this case a more sophisticated
learning scheme has to be applied: After extracting the significant features per
instance in different pictures an algorithm to extract invariant local features for
a class of objects is applied. Here the task is the selection of the relevant features
for the object class from the noisy features extracted from the training examples
(see figure 7b,i-iv and 1lc,i-iv). A significant feature should be independent of
background, illumination or accidental qualities of a certain example of the ob-
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Figure 6: Clustering: a) Distribution of the significant features per instance
extracted at a certain landmark. b) Codebook initialisation. ¢) Codebook vectors
after learning. d) Substituting sets of codebook vectors with small distance by
their center of gravity. e) Counting the number of elements within a certain
radius. f) Deleting codebook vectors representing insignificant features.

ject class, i.e., it should be invariant under these transformations (PE1). This
is realized within the algorithm by measuring the probability of occurrence of
features in a local area of the feature space for different examples. The metric
(PF2) allows the grouping of similar features into one bin, but it also allows the
reduction of redundant information (PE2) by avoiding multiple similar features
in the learned representation. In this way it becomes possible to learn sparse
object representations (PF4) in very difficult situations (see figure 7). The cor-
respondence problem (PL2) is assumed to be solved, i.e., it is assumed that the
position of certain landmarks of an object to be known on pictures of different
examples of these objects. In figure 7 corresponding landmarks are determined
manually, in figure 1 this manual intervention is substituted by motor controlled
feedback

The learning algorithm works as follows (illustrated for two dimensions in
figure 6): a) Let Z be a set of pictures of different examples of a class of objects
of certain orientation and approximately equal size. I%F) represents a local area
in the j-th image in Z with the k-th landmark as its center. Let 5}; be the i-th
significant feature per instance extracted in the area IG#)_ All & for a specific
k are collected in one set S*¥. b) Then the LBG-vector quantisation algorithm
(Linde et al., 1980) is applied to S* (see figure 6). After vector quantization a
codebook C! expresses the vectors 523- with a certain number ne1 of code book
vectors ¢; € C' C C,¢ : 1,...,nc (figure 6b).

The LBG-algorithm reduces the distortion error, i.e., the average error occur-
ring when all elements of S* are replaced by the nearest codebook vector in C*.
In case of high densities of elements 5¥; in S* it may be advantageous in terms of
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the distortion error to have code book vectors ¢ and ¢’ with small distance d(¢, ¢)
(PF2). But the significant features for a certain class of objects are expected to
express independent qualities (L1), i.e., they are expected to have large distances
in the feature space. c,d) Therefore a smaller codebook C? is constructed in
which the & ¢’ € C! with close distances are replaced by their center of gravity:
Let r; € IRT be fixed. For all ¢ € C' the number of & € C! with distance
d(¢,¢') < ry (figure 6¢) is computed. If there exists at least one such ¢’ # ¢ all
the codebook vectors in C! with d(é,¢’) < r; are substituted by their center of
gravity (figure 6d). C? now represents a code book with less or equal number of
elements than C, with redundant codebook vectors being eliminated. e,f) Now
the important features for the k-th landmark of a certain object can be defined
as those codebook vectors ¢ € C? for which a certain percentage p of E?j exists
with d(¢, %) < r, (figure 6e,f).

Autonomous Learning: To achieve correspondence (PL2) and to avoid
manual intervention the mechanism described above can be applied. Then the
flexible grid can be substituted by a rectangular grid and the interaction of the
camera and the motor controlled feedback ensures that landmarks are positioned
at corresponding pixel position on the object (see figure 1) and the very same
learning algorithm as described in section 5.2 for manually defined landmarks can
be applied (see figure 1v for autonomously learned representations).

5.3 Matching

To use the learned representation for location and classification of objects
Elastic Graph Matching (EGM) (Lades et al., 1993; Wiskott et al., 1997) is
used. To apply EGM a similarity function between a graph labelled with the
learned local line segments and a certain position in the image is defined. It
simply averages local similarities. These local similarities express the system’s
confidence whether a pixel in the image represents a certain landmark. The
graph is adapted in position and scale by optimising the total similarity. The
graph with the highest similarity determines the size and position of the objects
within the image.

In a nutshell the local similarity is defined as follows: For each learned feature
and pixel position in the image it is simply checked whether the corresponding
normalised filter response (see section 5.1) is high or low, i.e., the corresponding
feature is present or absent. Because of the sparseness (PF4) of the representation
only a few of these checks have to be made, therefore the matching is fast. Because
it is only made use of the important features, the matching is efficient.

Simulations: The test sets of hand postures contain images of 10 different
hand postures in front of homogeneous background with controlled illumination
(table 1, row 1-3, 240 images) and with a second set containing images with inho-
mogeneous background and varying illumination (row 4-6, 200 images). Match-
ing with ten representations (one for each hand posture) takes 9.5 seconds and
recognition rate was 93% (first row). The simulations corresponding to second
row were performed with representations extracted by one-shot learning. The
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Figure 7: a) Pictures for training. b,i—iv): Significant features per instance de-
scribing beside relevant information also accidental features such as background,
shadow or surface textures. b,v) The learned representation.

performance is still remarkably high (80%). The performance with the bunch
graph approach as described in (Triesch and von der Malsburg, 1996) is given in
the third row. Results for the test set with uncontrolled background and illumi-
nation is shown in row 4-6. For the first test set performance within the bunch
graph approach (Wiskott et al., 1997; Triesch and von der Malsburg, 1996) is
comparable to ORASSYLL. For the second and more difficult set, performance
of ORASSYLL is significantly better.

In (Loos et al., 1998) face detection with binarised banana wavelets was per-
formed on a very large data set (more than 700 pictures) with size variation of
faces between 40 and 60 pixel, inhomogeneous background and uncontrolled illu-
mination. For this set performance was 95%. For the problem of face-finding it
has been demonstrated in (Kriiger, 1998b) that performance could be increased
from 54% to 77% compared to the bunch graph approach on an extremely diffi-
cult test set with a significant speed up. It also could be performed successfully
matching with cans, toys and other objects. Especially in case of uncontrolled
illumination and inhomogeneous background significant improvement compared
to (Lades et al., 1993; Wiskott et al., 1997) could be achieved. Furthermore, in
(Kriiger, 1998b; Kriiger and Peters, 2000) ORASSYLL was compared extensively
to the older system (Lades et al., 1993; Wiskott et al., 1997) as well as to a bunch
of other object recognition systems.

6 Conclusion and Outlook

ORASSYLL is founded on reflections about the necessity, structure and the
amount of a priori knowledge an artificial vision system might require. Genet-
ically determined structures of the human visual system and findings of devel-
opmental psychology supported the definition of predetermined structural con-
straints within ORASSYLL. In contrast to model-free methods within ORAS-
SYLL the input is organised within a perception—action—cycle and transformed
into a highly structured feature space. Learning is not only based on trial-and-
error but guided by internal statistical criteria. As a result of this controlled ap-
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‘ Matching Results for Hand Posture Classification ‘

Representation Transformation Performance

nb. reps rep approx sec. || sec. match Recog.
1) 10 standard no approx 17.0 9.5 93 %
2) 10 one instance approx 4.9 12.4 80 %
3) 10 bunch graph 0.9 18.0 93 %
4) 10 standard no approx 17.0 9.5 90 %
5) 10 standard approx 4.9 9.5 80 %
6) 10 bunch graph 0.9 18.0 65 %

Table 2: Matching results for face finding and hand posture recognition (for
interpretation see text).

plication of a priori knowledge and in contrast to approaches applying a manually
designed object representation (e.g., (Yuille, 1991)), model-based representations
can be extracted autonomously or with only little manual intervention. These
representations were applied for difficult discrimination tasks.

An important problem remains the integration of higher stages of object rep-
resentation from which much less is known compared to our knwoledge of striate
cortex (for an overview see, e.g., (Hoffman, 1980)). It is possible that a key to
formalise these higher levels of visual processing is the finding and formalising of
appropriate a priori constraints. This will be a challenging task for ongoing and
future research.

Acknowledgements: 1 would like to thank Christoph von der Malsburg, Laurenz
Wiskott, Michael Potzsch, Niklas Liidtke, Wolfgang Banzhaf and Ladan Shams
for fruitful discussion.
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