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Abstract. We present a method for 31) junction interpretation. The in-
terpretations include location, number of edges, and their orientations.
Prerequisites are 2D interpretations of junctions in a general format
found in stereo pairs. These junctions must be sets of intersecting edges
and not occlusion events. We give a method for matching such 2D junc-
tions that uses the semantics of the junctions. Using calibrated cameras
we further show how to determine 3D junction location and 3D edge
orientation. The final 31) interpretations allow for ambiguities.

1 Introduction

We present, a system for matching 2D junctions and for interpreting the result-
ing 3D junctions. The interpretation consists of determining the location of the
junction, the number of edges, and their orientations. Our methods allow for
ambiguous junctions, i. e. junctions having edges with different degrees of cer-
tainty. The methods are described in the order of their application to images.
Using sets of junctions derived from two images taken with calibrated cameras,
we show how 3D junctions and edges can be obtained. Thereafter the results of
experiments are given. Finally we discuss the results and possible extensions of
the presented methods.

In [5] we describe our methods for the generation, filtering, and merging
of 2D junction hypotheses. The preprocessing steps yield 2D junctions j =
(x;{(¢1,¢1), .., (dn, cn)}) that consist of a location x and an arbitrary num-
ber of edges (see figure 1). Each edge is described by its orientation ¢ and the
confidence c. A confidence is always in the unit interval [0, 1], with 1 for a certain
edge and 0 for a non-existing edge. Any other method that produces junctions
with such a structure can be used for detecting and evaluating 2D junctions.

tion interpretation. Junction detection methods were proposed by Kitchen and
Rosenfeld [6], Moravec [9], Felsherg and Sommer [3], among others. Junction



Fig. 1. General junction model for our method. Fdge lengths are proportional to con-
fidences.

classification methods have been proposed by Rohr [11], Michaelis and Som-
mer [8], Parida, Geiger and Hummel [10], and others. However, for 3D junction
interpretation we have not found any work in the literature.

2 Generating 3D Junction Hypotheses and Analysis of
Depth and Orientation

If two edges in two images are known to be images of the same real world edge,
this can be sufficient to determine the orientation of the real world image. Under
certain circumstances, which will be explained later, it is not fully possible to
determine the orientation, but only the plane that contains the real world edge.

The first step to determine 3D location and orientation is to find corre-
sponding features, in our case junction hypotheses and their edges, in at least
two images. This correspondence problem involves a search within all used im-
ages and can be simplified, especially if the projection matrices are known. For
example the epipolar line [7] gives information about the part of an image where
the corresponding feature must be. After the correspondence problem is solved,
the 3D location can be determined using standard methods [2].

To solve the correspondence problem, we developed two methods that use the
semantic information as yielded above. The semantic 2D information is necessary
to achieve a 3D interpretation. Other matching methods like template matching
do often only evaluate gray scale information without assigning any semantics to
it, so they cannot find edge correspondences. Thus it 18 not possible to derive edge
orientations. Nevertheless, it can be shown that the use of gray scale information
is advantageous for matching 2D junctions.

2.1 Edge-Based Junction Matching

To match a junction in a first image with another one in a second image, we
compare the confidence and orientations of the edges of both junctions. Under the
assumption that both cameras are close together, have similar orientations, and
the imaged junction is in a sufficient distance from both cameras, it follows that
corresponding edges will have similar appearance in both images, thus having



similar orientations and confidences. The junction matching process involves
several steps. The first one is to match the edges. Thereafter, the similarity of
the edge characterizations is determined and the effect of unmatched edges is
assessed. If the epipolar geometry was established, we check the distance of the
junction from the epipolar line. The weighted distance and the edge set similarity
yield a measure for the probability of a junction match.

To match the edges of two junctions; we process only the orientations (see
figure 2). For this we use a matrix. Each row of this matrix represents an edge of
the first junction, and each column represents to an edge of the second junction.
The elements of the matrix are the angular differences between the orientations
of the edges denoted by row and column. The minimal entry of this matrix gives
the first edge correspondence. The used columns and rows are discarded and
a new minimal element is selected, yielding another edge correspondence. This
process 1s repeated until the matrix becomes fully marked. Note that this scheme
also handles junctions with different numbers of edges.
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Fig. 2. Sample of a edge matching: The orientations of the edges are given in radians.
The matches, in order of their finding, are (1.57, 1.70), (5.54, 5.68), and (3.55, 3.33).
(Rows 1, 3, and 2.)

Thereafter we assess the edge matches and mismatches. The assessment of a
given edge correspondence should be high, if both orientation and confidence of
the edges are similar. This criterium is implemented using a simple heuristic. On
all assessments, we apply an ordered weighting averaging (OWA) operator [12].
OWA operators can be steered to behave like the minimum or the maximum
function, or any weighted average in between. In this case, we setf it to behave
almost like the minimum function. The rationale behind this reasoning is that
all correspondences should be good, thus yielding high assessments.

If the junctions had different numbers of edges, the assessments of the edges
for which no correspondences were established is combined with a maximum-like
OWA operator. Finally, we subtract the second value from the first one. A high
positive value represents a good maftch.

If the epipolar geometry was established, the distance of the junction location
to the epipolar line is also computed. This distance is weighted by a Gaussian
bell curve. Thus only junctions that are within a few pixels distance to the



epipolar line yield a significant weighting. The distance assessment and the edge
correspondence assessment are of different nature. Therefore we use a weighted
sum to combine both for the final evaluation of the match.

This method 1s much faster than template matching. Template matching
requires roughly as many neighborhood comparisons as the image diameter is
in pixels, while there are usually only up to two dozen junctions found in an
image. Furthermore, this method does not have significant runtime penalties if
epipolar geometry cannot be established due to uncalibrated cameras. In such a
case, however, more mismatches will be made. In the following section we extend
our method to incorporate gray scale information, which can be advantageous
in determining junction matches.

2.2 Feature-Based Junction Matching Using Gray Scale Information

The method given above does not make any use of the underlying gray scale
information. However, this information may be very useful in distinguishing be-
tween match or mismatch, see figure 3(a). Therefore we use the edges to divide
the neighborhood of a junction into ‘sectors’. We do not evaluate small areas
close to the edge orientations due to smearing effects.
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Fig. 8. (a) Two junctions with similar edges, but very different gray scale information
between the edges. Usually real world junctions do not yield such different images under
the given assumptions. (b) Fxample of the weighting function for a junction with three
edges with orienations of 90°, 220° and 290°, a border area of 11.5° to both sides of
the edges and parameters b = 3 and ¢ = 5 as a 3D plot; (c) As gray scale coded (small
values: light, high values: dark). The distance is measured in pixels.

For each sector a weighted average gray level is computed. The weighting
factor depends on the distance to the location of the junction and 1s a generalized,



rotated form of Planck’s formula (see figure 3(b), (¢) for an example of the
weighting function for a junction with three edges). Planck’s formula originates
from physics [1]; our use is motivated by its general shape, which is close to zero
near the origin, thereafter rises sharply, and finally decreasing slowly to zero.
This takes into account the smearing effects of differently colored areas close to
the junction and the decreasing likelihood of distant regions contributing to the
description of a junction.

We establish correspondences between the set of sectors using the same tech-
nique as in the previous section. Furthermore we check whether the sectors have
the same order around both junctions. Finally we correlate the average gray scale
levels of the matched sectors of the junctions. Since this correlation constitutes
a refinement of the first matching method, its assessment is only factored into
the semantic evaluation of the edges, not into the locational match derived from
the distance of the 2D junctions from the epipolar line.

2.3 Computing the Orientation of Edges

Once a match 1s established using the methods of the previous subsection, we
use the calibration information from the cameras to compute the location of the
Junction in 3D. This is done with standard methods [2]. Tf two corresponding
edges are found, their location in the image, together with the optical center of
the camera, allow the computation of the 3D orientation of the 3D edge. The
edges of the corresponding junction must all meet in one 3D point, junctions
that arise from occlusion events cannot be handled by our method. Each imaged
edge plus the optical center of the camera spans a plane that contains the real
world edge. The intersection of these planes is parallel to the real world edge
(see figure 4(a)). Tf by coincidence both planes are parallel, it is not possible
to determine the orientation exactly, but only the plane that contains the edge.
Translations of the cameras or the real world junction do not change the setup.
The orientation of the cameras has to be taken into account. We assume that
the pixels are quadratic, otherwise a simple correction has to be applied [4].

The retinal plane of the camera has to be embedded into the 3D world
coordinate system. For this the retinal plane becomes the zy-plane of the 3D
world coordinate system and the optical center 1s on the positive z-axis. Note
that the world coordinate system 1s right-handed while the embedded camera
coordinate system is left-handed. Thus the sign of the y component has to be
changed.

To define the orientation of a plane we need either a normal vector or two
vectors v and w that span the plane (see figure 4(b)). We choose v to be in the
direction of the imaged edge and w to be in the direction of the optical center
from the location of the junction in the image. These vectors can be computed
with the intrinsic parameters of the camera. The vector v is easily computed
from the orientation ¢ of the imaged edge.

The second vector w’ is the vector from the location of the junction to the
intersection of the optical axis with the retinal plane. The components of this
vector are measured in pixel. Since the third component 1s the focal length,



(a)

Fig.4. (a): Setup for computing the orientation of an 3D edge; (b): The plane as
spanned by the two vectors v, w

which is measured in meter, we correct 1t by the number of pixels per meter
to yield the focal length in pixels. The second vector w 1s the sum of the focal
length and w’. The vectors v and w define the plane normal vector to which
the the inverse camera rotation has to be applied. These steps have to be done
for both planes. Finally, the edge orientation vector r is the intersection of two
planes. The transformation of the resulting unit direction vector into spherical
coordinates gives the angles 8 and ¢. Thus a 3D edge is given as £ = (¢,0;¢).
The confidence is computed as the mean of the confidences of the corresponding
2D edges.

We already mentioned that this method does not work if both planes are
parallel. This is the case if the real world edge is located in the plane that
contains the real world junction and the optical centers of both involved cameras
(see figure 5). We call this plane the critical plane. Due to measurement and
rounding errors it can happen that the orientation vector 18 below the projection
of the critical plane in one image and above it 1n the other, if the angle between
the planes becomes very small. In such cases we can only give the orientation of
the critical plane and not the full edge orientation as a result.

2.4 Semantic Interpretation of the Found Junction Hypotheses

The edge information of the merged junction hypotheses can be used to char-
acterize the junction hypotheses. Tt may be that one or more of the edges are
artifacts and do not correspond to real edges. To allow for such uncertainties,
our assessment uses the following strategy:

We divide the edge set into all possible pairs of subsets. For each set of pro-
edges E, (those supposed to be real edges supporting a certain assessment), we
apply a minimum-like OWA operator to the confidences of the edges in the set,



Fig. 5. Configuration of the critical plane

thus ensuring that all confidences are rather high. For each set of contra-edges E.
(those supposed to be artifacts) we apply a maximum-like OWA operator. For
a good assessment, the first value will be high and the second will be low. Thus
the difference ¢(E,, E.;) will be a good measure of the quality of an assessment.
Again, each junction hypothesis must have at least two pro-edges.

The full assessment a contains the location x of the junction hypothesis, the
set. of pro-edges E,, and a confidence ¢ derived from both pro-edges E, and
contra-edges E.: a = (x,E,, ¢(E,, E.)). We discard assessments with very low
confidences. Tn most cases there is only one assessment with a high confidence,
however ambiguous cases may yield two or more assessments with significant
confidences.

3 Experimental Results

We took stereo pairs of many objects, among them our calibration object (a
cube with rectangular markers). The matching methods were evaluated on this
object. We compared the found correspondences with the hand-determined cor-
respondences. Our feature-based matching found the correct match in 89.4% of
the cases, and 1n every case the correct match was among the first 8 proposed
matches. The feature- and gray-scale-based matching was correct in 86.4% of the
cases; again the correct match was among the first 8 proposed matches. There
were 26b junctions evaluated.

Since the sides of the rectangles on our calibration cube are parallel to the
axes of the world coordinate system, we can easily determine the orientational
errors by evaluating the value of the largest component of the unit vector in
the direction of an edge. We noted that the orientational error of the edges
depends on the locational error of the junction: If the location was determined
with an error of less than 5 mm, the angular error was 10.1 degree. The angular
error of the edges rose to about 30 degree for junctions where the location was
determined with an error of 65 to 70 mm.



4 Conclusion

In this paper we presented a method for extracting and modelling junctions
in 3D. The method is independent of the 2D junction preprocessing as long
as it allows for an interpretation of 2D junctions as a center x with edges of
orientations ¢; and confidences ¢;.

Potential improvements include active systems to do more thorough surveys
of single junctions and algorithms that establish a global description of a given
scene out, of the found junctions. To find correspondences of 2D junctions in
stereo images, we use semantic information and gray scale information in sepa-
rate stages of the algorithm. Tt would be more convenient to apply both kinds
of information in one scheme. Structured multivectors [3] could be a suitable
framework for this kind of integration.
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