
3D-Interpretation of Juntions from2D-Correspondenes in a Calibrated StereoSystemMaro Hahn, Norbert Kr�ugerLehrstuhl f�ur kognitive SystemeInstitut f�ur InformatikChristian{Albrehts{Universit�at zu KielPreusserstrasse 1-9, 24105 Kiel, Germanymaro.hahn�ela-nautik.om, nkr�ks.informatik.uni-kiel.deAbstrat. We present a method for 3D juntion interpretation. The in-terpretations inlude loation, number of edges, and their orientations.Prerequisites are 2D interpretations of juntions in a general formatfound in stereo pairs. These juntions must be sets of interseting edgesand not olusion events. We give a method for mathing suh 2D jun-tions that uses the semantis of the juntions. Using alibrated ameraswe further show how to determine 3D juntion loation and 3D edgeorientation. The �nal 3D interpretations allow for ambiguities.1 IntrodutionWe present a system for mathing 2D juntions and for interpreting the result-ing 3D juntions. The interpretation onsists of determining the loation of thejuntion, the number of edges, and their orientations. Our methods allow forambiguous juntions, i. e. juntions having edges with di�erent degrees of er-tainty. The methods are desribed in the order of their appliation to images.Using sets of juntions derived from two images taken with alibrated ameras,we show how 3D juntions and edges an be obtained. Thereafter the results ofexperiments are given. Finally we disuss the results and possible extensions ofthe presented methods.In [5℄ we desribe our methods for the generation, �ltering, and mergingof 2D juntion hypotheses. The preproessing steps yield 2D juntions j =(x ; f(�1; 1); :::; (�n; n)g) that onsist of a loation x and an arbitrary num-ber of edges (see �gure 1). Eah edge is desribed by its orientation � and theon�dene . A on�dene is always in the unit interval [0; 1℄, with 1 for a ertainedge and 0 for a non-existing edge. Any other method that produes juntionswith suh a struture an be used for deteting and evaluating 2D juntions.There exists a big variety of algorithms for 2D juntion detetion and 2D jun-tion interpretation. Juntion detetion methods were proposed by Kithen andRosenfeld [6℄, Morave [9℄, Felsberg and Sommer [3℄, among others. Juntion
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xx1x2x3 �11�22 �3 3(a)(b)()Fig. 1. General juntion model for our method. Edge lengths are proportional to on-�denes.lassi�ation methods have been proposed by Rohr [11℄, Mihaelis and Som-mer [8℄, Parida, Geiger and Hummel [10℄, and others. However, for 3D juntioninterpretation we have not found any work in the literature.2 Generating 3D Juntion Hypotheses and Analysis ofDepth and OrientationIf two edges in two images are known to be images of the same real world edge,this an be suÆient to determine the orientation of the real world image. Underertain irumstanes, whih will be explained later, it is not fully possible todetermine the orientation, but only the plane that ontains the real world edge.The �rst step to determine 3D loation and orientation is to �nd orre-sponding features, in our ase juntion hypotheses and their edges, in at leasttwo images. This orrespondene problem involves a searh within all used im-ages and an be simpli�ed, espeially if the projetion matries are known. Forexample the epipolar line [7℄ gives information about the part of an image wherethe orresponding feature must be. After the orrespondene problem is solved,the 3D loation an be determined using standard methods [2℄.To solve the orrespondene problem, we developed two methods that use thesemanti information as yielded above. The semanti 2D information is neessaryto ahieve a 3D interpretation. Other mathing methods like template mathingdo often only evaluate gray sale information without assigning any semantis toit, so they annot �nd edge orrespondenes. Thus it is not possible to derive edgeorientations. Nevertheless, it an be shown that the use of gray sale informationis advantageous for mathing 2D juntions.2.1 Edge-Based Juntion MathingTo math a juntion in a �rst image with another one in a seond image, weompare the on�dene and orientations of the edges of both juntions. Under theassumption that both ameras are lose together, have similar orientations, andthe imaged juntion is in a suÆient distane from both ameras, it follows thatorresponding edges will have similar appearane in both images, thus having



similar orientations and on�denes. The juntion mathing proess involvesseveral steps. The �rst one is to math the edges. Thereafter, the similarity ofthe edge haraterizations is determined and the e�et of unmathed edges isassessed. If the epipolar geometry was established, we hek the distane of thejuntion from the epipolar line. The weighted distane and the edge set similarityyield a measure for the probability of a juntion math.To math the edges of two juntions, we proess only the orientations (see�gure 2). For this we use a matrix. Eah row of this matrix represents an edge ofthe �rst juntion, and eah olumn represents to an edge of the seond juntion.The elements of the matrix are the angular di�erenes between the orientationsof the edges denoted by row and olumn. The minimal entry of this matrix givesthe �rst edge orrespondene. The used olumns and rows are disarded anda new minimal element is seleted, yielding another edge orrespondene. Thisproess is repeated until the matrix beomes fully marked. Note that this shemealso handles juntions with di�erent numbers of edges.
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1.573.55 5.54 0.321.703.33 5.68 1.25 0.13 1.76 2.173.05 1.85 0.22 2.131.06 2.44 2.21 0.14left juntion right juntion evaluation matrixFig. 2. Sample of a edge mathing: The orientations of the edges are given in radians.The mathes, in order of their �nding, are (1.57, 1.70), (5.54, 5.68), and (3.55, 3.33).(Rows 1, 3, and 2.)Thereafter we assess the edge mathes and mismathes. The assessment of agiven edge orrespondene should be high, if both orientation and on�dene ofthe edges are similar. This riterium is implemented using a simple heuristi. Onall assessments, we apply an ordered weighting averaging (OWA) operator [12℄.OWA operators an be steered to behave like the minimum or the maximumfuntion, or any weighted average in between. In this ase, we set it to behavealmost like the minimum funtion. The rationale behind this reasoning is thatall orrespondenes should be good, thus yielding high assessments.If the juntions had di�erent numbers of edges, the assessments of the edgesfor whih no orrespondenes were established is ombined with a maximum-likeOWA operator. Finally, we subtrat the seond value from the �rst one. A highpositive value represents a good math.If the epipolar geometry was established, the distane of the juntion loationto the epipolar line is also omputed. This distane is weighted by a Gaussianbell urve. Thus only juntions that are within a few pixels distane to the



epipolar line yield a signi�ant weighting. The distane assessment and the edgeorrespondene assessment are of di�erent nature. Therefore we use a weightedsum to ombine both for the �nal evaluation of the math.This method is muh faster than template mathing. Template mathingrequires roughly as many neighborhood omparisons as the image diameter isin pixels, while there are usually only up to two dozen juntions found in animage. Furthermore, this method does not have signi�ant runtime penalties ifepipolar geometry annot be established due to unalibrated ameras. In suh aase, however, more mismathes will be made. In the following setion we extendour method to inorporate gray sale information, whih an be advantageousin determining juntion mathes.2.2 Feature-Based Juntion Mathing Using Gray Sale InformationThe method given above does not make any use of the underlying gray saleinformation. However, this information may be very useful in distinguishing be-tween math or mismath, see �gure 3(a). Therefore we use the edges to dividethe neighborhood of a juntion into `setors'. We do not evaluate small areaslose to the edge orientations due to smearing e�ets.
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(a) (b) ()Fig. 3. (a) Two juntions with similar edges, but very di�erent gray sale informationbetween the edges. Usually real world juntions do not yield suh di�erent images underthe given assumptions. (b) Example of the weighting funtion for a juntion with threeedges with orienations of 90Æ, 220Æ and 290Æ, a border area of 11.5Æ to both sides ofthe edges and parameters b = 3 and  = 5 as a 3D plot; () As gray sale oded (smallvalues: light, high values: dark). The distane is measured in pixels.For eah setor a weighted average gray level is omputed. The weightingfator depends on the distane to the loation of the juntion and is a generalized,



rotated form of Plank's formula (see �gure 3(b), () for an example of theweighting funtion for a juntion with three edges). Plank's formula originatesfrom physis [1℄; our use is motivated by its general shape, whih is lose to zeronear the origin, thereafter rises sharply, and �nally dereasing slowly to zero.This takes into aount the smearing e�ets of di�erently olored areas lose tothe juntion and the dereasing likelihood of distant regions ontributing to thedesription of a juntion.We establish orrespondenes between the set of setors using the same teh-nique as in the previous setion. Furthermore we hek whether the setors havethe same order around both juntions. Finally we orrelate the average gray salelevels of the mathed setors of the juntions. Sine this orrelation onstitutesa re�nement of the �rst mathing method, its assessment is only fatored intothe semanti evaluation of the edges, not into the loational math derived fromthe distane of the 2D juntions from the epipolar line.2.3 Computing the Orientation of EdgesOne a math is established using the methods of the previous subsetion, weuse the alibration information from the ameras to ompute the loation of thejuntion in 3D. This is done with standard methods [2℄. If two orrespondingedges are found, their loation in the image, together with the optial enter ofthe amera, allow the omputation of the 3D orientation of the 3D edge. Theedges of the orresponding juntion must all meet in one 3D point, juntionsthat arise from olusion events annot be handled by our method. Eah imagededge plus the optial enter of the amera spans a plane that ontains the realworld edge. The intersetion of these planes is parallel to the real world edge(see �gure 4(a)). If by oinidene both planes are parallel, it is not possibleto determine the orientation exatly, but only the plane that ontains the edge.Translations of the ameras or the real world juntion do not hange the setup.The orientation of the ameras has to be taken into aount. We assume thatthe pixels are quadrati, otherwise a simple orretion has to be applied [4℄.The retinal plane of the amera has to be embedded into the 3D worldoordinate system. For this the retinal plane beomes the xy-plane of the 3Dworld oordinate system and the optial enter is on the positive z-axis. Notethat the world oordinate system is right-handed while the embedded ameraoordinate system is left-handed. Thus the sign of the y omponent has to behanged.To de�ne the orientation of a plane we need either a normal vetor or twovetors v and w that span the plane (see �gure 4(b)). We hoose v to be in thediretion of the imaged edge and w to be in the diretion of the optial enterfrom the loation of the juntion in the image. These vetors an be omputedwith the intrinsi parameters of the amera. The vetor v is easily omputedfrom the orientation � of the imaged edge.The seond vetor w0 is the vetor from the loation of the juntion to theintersetion of the optial axis with the retinal plane. The omponents of thisvetor are measured in pixel. Sine the third omponent is the foal length,



PSfrag replaements � ��1 �2I1 I2 XYZ xx PSfrag replaements f ww0xx0 v�(a) (b)Fig. 4. (a): Setup for omputing the orientation of an 3D edge; (b): The plane asspanned by the two vetors v;wwhih is measured in meter, we orret it by the number of pixels per meterto yield the foal length in pixels. The seond vetor w is the sum of the foallength and w0. The vetors v and w de�ne the plane normal vetor to whihthe the inverse amera rotation has to be applied. These steps have to be donefor both planes. Finally, the edge orientation vetor r is the intersetion of twoplanes. The transformation of the resulting unit diretion vetor into spherialoordinates gives the angles � and �. Thus a 3D edge is given as E = (�; �; ).The on�dene is omputed as the mean of the on�denes of the orresponding2D edges.We already mentioned that this method does not work if both planes areparallel. This is the ase if the real world edge is loated in the plane thatontains the real world juntion and the optial enters of both involved ameras(see �gure 5). We all this plane the ritial plane. Due to measurement androunding errors it an happen that the orientation vetor is below the projetionof the ritial plane in one image and above it in the other, if the angle betweenthe planes beomes very small. In suh ases we an only give the orientation ofthe ritial plane and not the full edge orientation as a result.2.4 Semanti Interpretation of the Found Juntion HypothesesThe edge information of the merged juntion hypotheses an be used to har-aterize the juntion hypotheses. It may be that one or more of the edges areartifats and do not orrespond to real edges. To allow for suh unertainties,our assessment uses the following strategy:We divide the edge set into all possible pairs of subsets. For eah set of pro-edges Ep (those supposed to be real edges supporting a ertain assessment), weapply a minimum-like OWA operator to the on�denes of the edges in the set,



PSfrag replaements rE Xre1 re2r1 r2nR1 R2C1 C2Fig. 5. Con�guration of the ritial planethus ensuring that all on�denes are rather high. For eah set of ontra-edges E(those supposed to be artifats) we apply a maximum-like OWA operator. Fora good assessment, the �rst value will be high and the seond will be low. Thusthe di�erene (Ep;E) will be a good measure of the quality of an assessment.Again, eah juntion hypothesis must have at least two pro-edges.The full assessment a ontains the loation x of the juntion hypothesis, theset of pro-edges Ep, and a on�dene  derived from both pro-edges Ep andontra-edges E: a = (x;Ep; (Ep;E)). We disard assessments with very lowon�denes. In most ases there is only one assessment with a high on�dene,however ambiguous ases may yield two or more assessments with signi�anton�denes.3 Experimental ResultsWe took stereo pairs of many objets, among them our alibration objet (aube with retangular markers). The mathing methods were evaluated on thisobjet. We ompared the found orrespondenes with the hand-determined or-respondenes. Our feature-based mathing found the orret math in 89.4% ofthe ases, and in every ase the orret math was among the �rst 8 proposedmathes. The feature- and gray-sale-based mathing was orret in 86.4% of theases; again the orret math was among the �rst 8 proposed mathes. Therewere 265 juntions evaluated.Sine the sides of the retangles on our alibration ube are parallel to theaxes of the world oordinate system, we an easily determine the orientationalerrors by evaluating the value of the largest omponent of the unit vetor inthe diretion of an edge. We noted that the orientational error of the edgesdepends on the loational error of the juntion: If the loation was determinedwith an error of less than 5 mm, the angular error was 10.1 degree. The angularerror of the edges rose to about 30 degree for juntions where the loation wasdetermined with an error of 65 to 70 mm.
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