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t. We present a method for 3D jun
tion interpretation. The in-terpretations in
lude lo
ation, number of edges, and their orientations.Prerequisites are 2D interpretations of jun
tions in a general formatfound in stereo pairs. These jun
tions must be sets of interse
ting edgesand not o

lusion events. We give a method for mat
hing su
h 2D jun
-tions that uses the semanti
s of the jun
tions. Using 
alibrated 
ameraswe further show how to determine 3D jun
tion lo
ation and 3D edgeorientation. The �nal 3D interpretations allow for ambiguities.1 Introdu
tionWe present a system for mat
hing 2D jun
tions and for interpreting the result-ing 3D jun
tions. The interpretation 
onsists of determining the lo
ation of thejun
tion, the number of edges, and their orientations. Our methods allow forambiguous jun
tions, i. e. jun
tions having edges with di�erent degrees of 
er-tainty. The methods are des
ribed in the order of their appli
ation to images.Using sets of jun
tions derived from two images taken with 
alibrated 
ameras,we show how 3D jun
tions and edges 
an be obtained. Thereafter the results ofexperiments are given. Finally we dis
uss the results and possible extensions ofthe presented methods.In [5℄ we des
ribe our methods for the generation, �ltering, and mergingof 2D jun
tion hypotheses. The prepro
essing steps yield 2D jun
tions j =(x ; f(�1; 
1); :::; (�n; 
n)g) that 
onsist of a lo
ation x and an arbitrary num-ber of edges (see �gure 1). Ea
h edge is des
ribed by its orientation � and the
on�den
e 
. A 
on�den
e is always in the unit interval [0; 1℄, with 1 for a 
ertainedge and 0 for a non-existing edge. Any other method that produ
es jun
tionswith su
h a stru
ture 
an be used for dete
ting and evaluating 2D jun
tions.There exists a big variety of algorithms for 2D jun
tion dete
tion and 2D jun
-tion interpretation. Jun
tion dete
tion methods were proposed by Kit
hen andRosenfeld [6℄, Morave
 [9℄, Felsberg and Sommer [3℄, among others. Jun
tion
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)Fig. 1. General jun
tion model for our method. Edge lengths are proportional to 
on-�den
es.
lassi�
ation methods have been proposed by Rohr [11℄, Mi
haelis and Som-mer [8℄, Parida, Geiger and Hummel [10℄, and others. However, for 3D jun
tioninterpretation we have not found any work in the literature.2 Generating 3D Jun
tion Hypotheses and Analysis ofDepth and OrientationIf two edges in two images are known to be images of the same real world edge,this 
an be suÆ
ient to determine the orientation of the real world image. Under
ertain 
ir
umstan
es, whi
h will be explained later, it is not fully possible todetermine the orientation, but only the plane that 
ontains the real world edge.The �rst step to determine 3D lo
ation and orientation is to �nd 
orre-sponding features, in our 
ase jun
tion hypotheses and their edges, in at leasttwo images. This 
orresponden
e problem involves a sear
h within all used im-ages and 
an be simpli�ed, espe
ially if the proje
tion matri
es are known. Forexample the epipolar line [7℄ gives information about the part of an image wherethe 
orresponding feature must be. After the 
orresponden
e problem is solved,the 3D lo
ation 
an be determined using standard methods [2℄.To solve the 
orresponden
e problem, we developed two methods that use thesemanti
 information as yielded above. The semanti
 2D information is ne
essaryto a
hieve a 3D interpretation. Other mat
hing methods like template mat
hingdo often only evaluate gray s
ale information without assigning any semanti
s toit, so they 
annot �nd edge 
orresponden
es. Thus it is not possible to derive edgeorientations. Nevertheless, it 
an be shown that the use of gray s
ale informationis advantageous for mat
hing 2D jun
tions.2.1 Edge-Based Jun
tion Mat
hingTo mat
h a jun
tion in a �rst image with another one in a se
ond image, we
ompare the 
on�den
e and orientations of the edges of both jun
tions. Under theassumption that both 
ameras are 
lose together, have similar orientations, andthe imaged jun
tion is in a suÆ
ient distan
e from both 
ameras, it follows that
orresponding edges will have similar appearan
e in both images, thus having



similar orientations and 
on�den
es. The jun
tion mat
hing pro
ess involvesseveral steps. The �rst one is to mat
h the edges. Thereafter, the similarity ofthe edge 
hara
terizations is determined and the e�e
t of unmat
hed edges isassessed. If the epipolar geometry was established, we 
he
k the distan
e of thejun
tion from the epipolar line. The weighted distan
e and the edge set similarityyield a measure for the probability of a jun
tion mat
h.To mat
h the edges of two jun
tions, we pro
ess only the orientations (see�gure 2). For this we use a matrix. Ea
h row of this matrix represents an edge ofthe �rst jun
tion, and ea
h 
olumn represents to an edge of the se
ond jun
tion.The elements of the matrix are the angular di�eren
es between the orientationsof the edges denoted by row and 
olumn. The minimal entry of this matrix givesthe �rst edge 
orresponden
e. The used 
olumns and rows are dis
arded anda new minimal element is sele
ted, yielding another edge 
orresponden
e. Thispro
ess is repeated until the matrix be
omes fully marked. Note that this s
hemealso handles jun
tions with di�erent numbers of edges.
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tion right jun
tion evaluation matrixFig. 2. Sample of a edge mat
hing: The orientations of the edges are given in radians.The mat
hes, in order of their �nding, are (1.57, 1.70), (5.54, 5.68), and (3.55, 3.33).(Rows 1, 3, and 2.)Thereafter we assess the edge mat
hes and mismat
hes. The assessment of agiven edge 
orresponden
e should be high, if both orientation and 
on�den
e ofthe edges are similar. This 
riterium is implemented using a simple heuristi
. Onall assessments, we apply an ordered weighting averaging (OWA) operator [12℄.OWA operators 
an be steered to behave like the minimum or the maximumfun
tion, or any weighted average in between. In this 
ase, we set it to behavealmost like the minimum fun
tion. The rationale behind this reasoning is thatall 
orresponden
es should be good, thus yielding high assessments.If the jun
tions had di�erent numbers of edges, the assessments of the edgesfor whi
h no 
orresponden
es were established is 
ombined with a maximum-likeOWA operator. Finally, we subtra
t the se
ond value from the �rst one. A highpositive value represents a good mat
h.If the epipolar geometry was established, the distan
e of the jun
tion lo
ationto the epipolar line is also 
omputed. This distan
e is weighted by a Gaussianbell 
urve. Thus only jun
tions that are within a few pixels distan
e to the



epipolar line yield a signi�
ant weighting. The distan
e assessment and the edge
orresponden
e assessment are of di�erent nature. Therefore we use a weightedsum to 
ombine both for the �nal evaluation of the mat
h.This method is mu
h faster than template mat
hing. Template mat
hingrequires roughly as many neighborhood 
omparisons as the image diameter isin pixels, while there are usually only up to two dozen jun
tions found in animage. Furthermore, this method does not have signi�
ant runtime penalties ifepipolar geometry 
annot be established due to un
alibrated 
ameras. In su
h a
ase, however, more mismat
hes will be made. In the following se
tion we extendour method to in
orporate gray s
ale information, whi
h 
an be advantageousin determining jun
tion mat
hes.2.2 Feature-Based Jun
tion Mat
hing Using Gray S
ale InformationThe method given above does not make any use of the underlying gray s
aleinformation. However, this information may be very useful in distinguishing be-tween mat
h or mismat
h, see �gure 3(a). Therefore we use the edges to dividethe neighborhood of a jun
tion into `se
tors'. We do not evaluate small areas
lose to the edge orientations due to smearing e�e
ts.
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(a) (b) (
)Fig. 3. (a) Two jun
tions with similar edges, but very di�erent gray s
ale informationbetween the edges. Usually real world jun
tions do not yield su
h di�erent images underthe given assumptions. (b) Example of the weighting fun
tion for a jun
tion with threeedges with orienations of 90Æ, 220Æ and 290Æ, a border area of 11.5Æ to both sides ofthe edges and parameters b = 3 and 
 = 5 as a 3D plot; (
) As gray s
ale 
oded (smallvalues: light, high values: dark). The distan
e is measured in pixels.For ea
h se
tor a weighted average gray level is 
omputed. The weightingfa
tor depends on the distan
e to the lo
ation of the jun
tion and is a generalized,



rotated form of Plan
k's formula (see �gure 3(b), (
) for an example of theweighting fun
tion for a jun
tion with three edges). Plan
k's formula originatesfrom physi
s [1℄; our use is motivated by its general shape, whi
h is 
lose to zeronear the origin, thereafter rises sharply, and �nally de
reasing slowly to zero.This takes into a

ount the smearing e�e
ts of di�erently 
olored areas 
lose tothe jun
tion and the de
reasing likelihood of distant regions 
ontributing to thedes
ription of a jun
tion.We establish 
orresponden
es between the set of se
tors using the same te
h-nique as in the previous se
tion. Furthermore we 
he
k whether the se
tors havethe same order around both jun
tions. Finally we 
orrelate the average gray s
alelevels of the mat
hed se
tors of the jun
tions. Sin
e this 
orrelation 
onstitutesa re�nement of the �rst mat
hing method, its assessment is only fa
tored intothe semanti
 evaluation of the edges, not into the lo
ational mat
h derived fromthe distan
e of the 2D jun
tions from the epipolar line.2.3 Computing the Orientation of EdgesOn
e a mat
h is established using the methods of the previous subse
tion, weuse the 
alibration information from the 
ameras to 
ompute the lo
ation of thejun
tion in 3D. This is done with standard methods [2℄. If two 
orrespondingedges are found, their lo
ation in the image, together with the opti
al 
enter ofthe 
amera, allow the 
omputation of the 3D orientation of the 3D edge. Theedges of the 
orresponding jun
tion must all meet in one 3D point, jun
tionsthat arise from o

lusion events 
annot be handled by our method. Ea
h imagededge plus the opti
al 
enter of the 
amera spans a plane that 
ontains the realworld edge. The interse
tion of these planes is parallel to the real world edge(see �gure 4(a)). If by 
oin
iden
e both planes are parallel, it is not possibleto determine the orientation exa
tly, but only the plane that 
ontains the edge.Translations of the 
ameras or the real world jun
tion do not 
hange the setup.The orientation of the 
ameras has to be taken into a

ount. We assume thatthe pixels are quadrati
, otherwise a simple 
orre
tion has to be applied [4℄.The retinal plane of the 
amera has to be embedded into the 3D world
oordinate system. For this the retinal plane be
omes the xy-plane of the 3Dworld 
oordinate system and the opti
al 
enter is on the positive z-axis. Notethat the world 
oordinate system is right-handed while the embedded 
amera
oordinate system is left-handed. Thus the sign of the y 
omponent has to be
hanged.To de�ne the orientation of a plane we need either a normal ve
tor or twove
tors v and w that span the plane (see �gure 4(b)). We 
hoose v to be in thedire
tion of the imaged edge and w to be in the dire
tion of the opti
al 
enterfrom the lo
ation of the jun
tion in the image. These ve
tors 
an be 
omputedwith the intrinsi
 parameters of the 
amera. The ve
tor v is easily 
omputedfrom the orientation � of the imaged edge.The se
ond ve
tor w0 is the ve
tor from the lo
ation of the jun
tion to theinterse
tion of the opti
al axis with the retinal plane. The 
omponents of thisve
tor are measured in pixel. Sin
e the third 
omponent is the fo
al length,
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omputing the orientation of an 3D edge; (b): The plane asspanned by the two ve
tors v;wwhi
h is measured in meter, we 
orre
t it by the number of pixels per meterto yield the fo
al length in pixels. The se
ond ve
tor w is the sum of the fo
allength and w0. The ve
tors v and w de�ne the plane normal ve
tor to whi
hthe the inverse 
amera rotation has to be applied. These steps have to be donefor both planes. Finally, the edge orientation ve
tor r is the interse
tion of twoplanes. The transformation of the resulting unit dire
tion ve
tor into spheri
al
oordinates gives the angles � and �. Thus a 3D edge is given as E = (�; �; 
).The 
on�den
e is 
omputed as the mean of the 
on�den
es of the 
orresponding2D edges.We already mentioned that this method does not work if both planes areparallel. This is the 
ase if the real world edge is lo
ated in the plane that
ontains the real world jun
tion and the opti
al 
enters of both involved 
ameras(see �gure 5). We 
all this plane the 
riti
al plane. Due to measurement androunding errors it 
an happen that the orientation ve
tor is below the proje
tionof the 
riti
al plane in one image and above it in the other, if the angle betweenthe planes be
omes very small. In su
h 
ases we 
an only give the orientation ofthe 
riti
al plane and not the full edge orientation as a result.2.4 Semanti
 Interpretation of the Found Jun
tion HypothesesThe edge information of the merged jun
tion hypotheses 
an be used to 
har-a
terize the jun
tion hypotheses. It may be that one or more of the edges areartifa
ts and do not 
orrespond to real edges. To allow for su
h un
ertainties,our assessment uses the following strategy:We divide the edge set into all possible pairs of subsets. For ea
h set of pro-edges Ep (those supposed to be real edges supporting a 
ertain assessment), weapply a minimum-like OWA operator to the 
on�den
es of the edges in the set,
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riti
al planethus ensuring that all 
on�den
es are rather high. For ea
h set of 
ontra-edges E
(those supposed to be artifa
ts) we apply a maximum-like OWA operator. Fora good assessment, the �rst value will be high and the se
ond will be low. Thusthe di�eren
e 
(Ep;E
) will be a good measure of the quality of an assessment.Again, ea
h jun
tion hypothesis must have at least two pro-edges.The full assessment a 
ontains the lo
ation x of the jun
tion hypothesis, theset of pro-edges Ep, and a 
on�den
e 
 derived from both pro-edges Ep and
ontra-edges E
: a = (x;Ep; 
(Ep;E
)). We dis
ard assessments with very low
on�den
es. In most 
ases there is only one assessment with a high 
on�den
e,however ambiguous 
ases may yield two or more assessments with signi�
ant
on�den
es.3 Experimental ResultsWe took stereo pairs of many obje
ts, among them our 
alibration obje
t (a
ube with re
tangular markers). The mat
hing methods were evaluated on thisobje
t. We 
ompared the found 
orresponden
es with the hand-determined 
or-responden
es. Our feature-based mat
hing found the 
orre
t mat
h in 89.4% ofthe 
ases, and in every 
ase the 
orre
t mat
h was among the �rst 8 proposedmat
hes. The feature- and gray-s
ale-based mat
hing was 
orre
t in 86.4% of the
ases; again the 
orre
t mat
h was among the �rst 8 proposed mat
hes. Therewere 265 jun
tions evaluated.Sin
e the sides of the re
tangles on our 
alibration 
ube are parallel to theaxes of the world 
oordinate system, we 
an easily determine the orientationalerrors by evaluating the value of the largest 
omponent of the unit ve
tor inthe dire
tion of an edge. We noted that the orientational error of the edgesdepends on the lo
ational error of the jun
tion: If the lo
ation was determinedwith an error of less than 5 mm, the angular error was 10.1 degree. The angularerror of the edges rose to about 30 degree for jun
tions where the lo
ation wasdetermined with an error of 65 to 70 mm.



4 Con
lusionIn this paper we presented a method for extra
ting and modelling jun
tionsin 3D. The method is independent of the 2D jun
tion prepro
essing as longas it allows for an interpretation of 2D jun
tions as a 
enter x with edges oforientations �i and 
on�den
es 
i.Potential improvements in
lude a
tive systems to do more thorough surveysof single jun
tions and algorithms that establish a global des
ription of a givens
ene out of the found jun
tions. To �nd 
orresponden
es of 2D jun
tions instereo images, we use semanti
 information and gray s
ale information in sepa-rate stages of the algorithm. It would be more 
onvenient to apply both kindsof information in one s
heme. Stru
tured multive
tors [3℄ 
ould be a suitableframework for this kind of integration.4.1 A
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