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tWe introdu
e a roboti
{vision system whi
h is able to extra
t obje
t repre-sentations autonomously utilizing a tight intera
tion of visual per
eption androboti
 a
tion within a per
eption a
tion 
y
le [10, 17℄. Controlled movementof the obje
t grasped by the robot enables us to 
ompute the transformationsof entities whi
h are used to represent obje
ts and to �nd 
orresponden
es ofentities within an image sequen
e.A general a

umulation s
heme allows to a
quire robust information fromimperfe
t and partly missing information extra
ted from single frames of animage sequen
e. Here we used this s
heme with a prepro
essing stage inwhi
h 3D-line segments are extra
ted from stereo images. However, the a
-
umulation s
heme 
an be used with any kind of prepro
essing as long as theentities used to represent obje
ts 
an be brought to 
orresponden
e by 
ertainequivalen
e relations su
h as 'rigid body motion'.1 Introdu
tionModel based vision systems usually apply manually designed obje
t representations(see e.g., [19℄ or [12℄). These methods usually work well but 
ommonly have draw-ba
ks with the need of manual intervention for 
reating obje
t representations andthe �ne{tuning of these representations. Here we demonstrate an autonomous ex-tra
tion of obje
t representations making use of a tight intera
tion of per
eption anda
tion: A

umulation of information takes pla
e within a per
eption{a
tion{
y
le[10, 17℄. As a 
hallenging perspe
tive we aim at a 
oupled roboti
{vision systemwhi
h is not equipped with manually designed obje
t representations but the ob-je
t to be manipulated is given to the robot and a representation is a

umulatedautonomously (see �gure 1).Feature extra
tion fa
es the problem that semanti
 information extra
ted byarti�
ial systems from a single image or stereo images even under optimal 
onditionsis ne
essarily imperfe
t. For instan
e, although there exist a large amount of edgedete
tors none of them is 
omparable to human performan
e. One important reasonfor the extremely good performan
e of humans on these tasks is that the humanvisual system applies 
onstraints to interpret a 
ertain s
ene or situation [6, 11℄. Asituation never stands for itself but is embedded in a time 
ontinuum [7℄. Thereforean important 
onstraint is the utilization of the 
oheren
e of obje
ts during a rigidbody motion whi
h allows to a

umulate information over time.



Figure 1: left) top: left and right image of an obje
t. bottom: the proje
ted 3D rep-resentation extra
ted from the stereo images. middle) Two pairs of stereo images(top: left 
amera image, middle: right 
amera image) and the the proje
ted 3D rep-resentation (bottom). right) Proje
ted 3D Representation a

umulated over a setof stereo images. Dark areas represent line segments a

umulating high 
on�den
es.Grey areas represent line segments a

umulating medium or low 
on�den
es.In this paper we suggest to a

umulate obje
t representations from image se-quen
es by using the equivalen
e relation 'rigid body motion'. We a

ount forthe vagueness of semanti
 information extra
ted from single images by assigning
on�den
es to this information and a

umulating this information over an imagesequen
e of a moving obje
t. Although the information extra
ted from single im-ages 
ontain errors (see the representations on the left hand side of �gure 1) a morestable representation 
an be a
hieved by 
ombining information from di�erent im-ages (see right hand side of �gure 1). Be
ause the obje
t 
an 
hange its positionand orientation | and this 
hange might be wanted be
ause another view of theobje
t gives new information whi
h might not be extra
table from another view |we fa
e the 
orresponden
e problem: Corresponden
es between entities des
ribingthe obje
t in di�erent images (or 3D interpretations extra
ted from stereo images)are not known.Here the 
orresponden
e problem is solved within a behavior based paradigm [3,16℄. The parameter of motion are known sin
e the robot manipulates the obje
t andthe transformations of entities 
an be 
ompensated for ea
h frame of the sequen
e toa
hieve 
orresponden
es. Knowing the 
orresponden
es an algorithm 
an be appliedto update and improve the obje
t representation iteratively. This a

umulationalgorithm is an extension of an algorithm introdu
ed in [11, 14℄ whi
h has onlydealt with 2D representation and translational motion.2 Extra
tion of Obje
t Representations from Im-age Sequen
esOur a

umulation algorithm 
an be de�ned independently of the entities used torepresent obje
ts. The algorithm also is independent of the 
on
rete equivalen
erelation or transformation used to de�ne 
orresponden
es. It only requires an obje
trepresentation by 
ertain entities for whi
h a metri
 is de�ned and to whi
h 
ertaintransformations or equivalen
e relations (su
h as rigid body motion) 
an be applied.The obje
t establishes itself as an invariant under the equivalen
e relation, i.e., asan equivalen
e 
lass. The algorithm in its general form is de�ned in subse
tion 2.1.In this paper for the representation of obje
ts we use lo
al three dimensional line



PSfrag repla
ements e1 e2 T 1;2(e1)ê2 ê3e3 T 2;3(e2)Figure 2: The a

umulation s
heme. The entity e1 (here represented as a square) istransformed to T 1;2(e1). Note that without this transformation it is barely unpossi-ble to �nd a 
orresponden
e between the entities e1 and e2 be
ause the entities showsigni�
ant di�eren
es in appearan
e and position. Here a 
orresponden
e betweenT 1;2(e1) and e2 is found be
ause a similar square 
an be found 
lose to T 1;2(e1) andboth entities are merged to the entity ê2. The 
on�den
e assigned to ê2 is set to ahigher value than the 
on�den
e assigned to e1 indi
ated by the width of the lines ofthe square. The same pro
edure is then applied for the next frame for whi
h againa 
orresponden
e has been found. By this s
heme information 
an be a

umulatedto a
hieve robust representations.segments only. The extension of the system to other kind of obje
t des
riptors su
has texture, 
olor or opti
al 
ow is part of our 
urrent resear
h.The 
on
rete realization of the a

umulation s
heme 
an be divided into twoparts, prepro
essing (se
tion 2.2.1) and a

umulation (se
tion 2.2.2). The algorithmis applied to a stereo image sequen
e in whi
h the obje
t grasped by the robotis shown to the system in various positions and orientations (see �gure 1). Arepresentation is a

umulated over the stereo image sequen
e (see �gure 1 right).Although the representations extra
ted from one stereo image pair shows missingline segments (left) the a

umulated representation is more 
omplete (right). Herewe give only a 
ondensed des
ription of the algorithm, for details see [1℄.2.1 The A

umulation S
hemeLet e 2 E be an entity used to des
ribe obje
ts (for instan
e a 2D{line segment,a stru
ture tensor [9℄ extra
ted from an image, 3D{line segments extra
ted from astereo image pair or any other kind of obje
t des
riptor) and d(e; e0) be a distan
emeasure on the spa
e of entities E. Furthermore, let T be a transformation orequivalen
e relation, for instan
e a rigid body motion or the proje
tive transforma-tion 
orresponding to a rigid body motion. If ei is an entity extra
ted from framei of a sequen
e of events then T i;i+1(ei) is the transformation T i;i+1 from the i{thto the i+ 1{the frame applied to ei.Let ei+1 be an entity extra
ted from the i+1{th frame of the sequen
e we say thatei and ei+1 are likely to 
orrespond to ea
h other if d(T (ei); ei+1) is small. Oftenit might not be possible to �nd an exa
t 
orresponden
e with d(T (ei); ei+1) = 0.For example, if we want to 
ompare lo
al image pat
hes in two images knowingthe exa
t proje
tive transformation 
orresponding to the rigid body motion of anobje
t from the �rst to the se
ond frame, the 
orresponding image pat
hes 
an notbe expe
ted to be exa
tly equal be
ause of fa
tors su
h as noise during the imagea
quisition, 
hanging illumination, non{Lambertian surfa
es or dis
retization errors.The problem may even be
ome more severe when we extra
t more 
omplex entitiessu
h as 3D or 2D line segments or 3D{surfa
e pat
hes. Therefore it is advantageousto formalize a 
on�den
e of 
orresponden
e by a metri
.The a

umulation of information 
an now simply be a
hieved by the followingupdate rule: If there exists an entity ei+1 in the i+1{th frame for whi
h d(T (ei); ei+1)is small (i.e. a 
orresponden
e is likely) then merge T (ei) and ei+1 by some kind



of average operator êi+1 = merge(T (ei); ei+1) and set the 
on�den
e for êi+1 to ahigher value than the 
on�den
e assigned to ei. If there exists no entity ei+1 inthe i+1{the frame for whi
h d(T (ei); ei+1) is small, the 
on�den
e for entity ei tobe part of the obje
t is de
reased. In Figure 2 a s
hemati
 representation of thealgorithm is shown for two iterations.2.2 Appli
ation of the A

umulation S
heme to a Represen-tation with 3D{line segmentsIn this se
tion we apply the a

umulation s
heme introdu
ed above to obje
t rep-resentations 
onsisting of lo
al 3D line segments. For these entities the 
hange ofthe transformation (i.e., T i;i+1(e)) 
an be 
omputed expli
itly (for details see [1℄).2.2.1 Extra
tion of a 3D Representation from Stereo ImagesIn the prepro
essing step a 3D representation of the obje
t grasped by the robotand presented at a 
ertain position and orientation is extra
ted. The orientationof the obje
t di�ers in ea
h stereo image pair (�gure 1). The obje
t representation
onsists of lo
al 3D{line segments and is extra
ted using 
alibrated 
ameras andepipolar geometry. First, in ea
h single image lines are extra
ted using the orien-tation sensitive Hough transformation [15℄. The Hough lines are divided into lo
alline segments a

ording to lo
al information indi
ating eviden
e for the existen
e ofa lo
al line segment at a 
ertain pixel position in the image by evaluating gradientinformation. In our implementation the entity 'lo
al line segment' 
an only be ex-tra
ted when there is lo
al support (a high magnitude of the gradient) and globalsupport (the line segment is part of a Hough line). Se
ond, 
orresponden
es of linesegments in the two stereo images are found. The epipolar 
onstraint is used toredu
e the sear
h problem to a one-dimensional problem. On the epipolar line 
or-responding to a 
ertain line segment the best mat
h is de�ned as the 
orrespondingentity. For �nding the best mat
h a similarity 
ombining gray level information (byevaluating the 
orrelation of image pat
hes) and semanti
 information (evaluatingthe di�eren
es in the orientation of the found line segments) are used.1In most 
ases the 
orresponden
e of 2D line segments de�nes a 3D line segment.In some 
ases, when the 2D line segments are 
lose to a '
riti
al plane' [4, 8℄ the
orresponden
es do not uniquely de�ne a 3D line segment and a 3D representationof parts of the obje
t 
an not be extra
ted. Note that by moving the obje
t, 3D{linesegments whi
h 
an not be extra
ted in one frame (be
ause they are too 
lose tothe 
riti
al plane) move out of the 
riti
al plane so that they 
an be part of the�nal representation. Here the hapti
 
ontrol of the obje
t allows the 
reation ofsituations in whi
h 
riti
al features 
an be extra
ted.The representation extra
ted from a single stereo image pair usually is not per-fe
t (see �gure 1), there are many missing parts (be
ause of the 
riti
al plane,
orresponden
es not found, not dete
ted Hough lines or not extra
ted 2D line seg-ments in one of the two stereo images) and some 'wrong' line segments (be
ause ofwrong 
orresponden
es or wrong 2D line segments extra
ted during prepro
essing).Here we fa
e the problem that semanti
 information 
an not be extra
ted with suf-�
ient a

ura
y from single or stereo images whi
h is also one of the the reasons forthe need of manually designed obje
t representations in many arti�
ial systems.To a
hieve a suitable representation autonomously and to over
ome the need1This kind of prepro
essing fa
es the problem that for small edges Hough lines often 
an notbe found so that they do not o

ur in the obje
t representation extra
ted from one stereo imagepair. Therefore we aim to use the lo
al image operator introdu
ed in [5℄ to over
ome this problem.Furthermore, with this operator we may also integrate mat
hing with semanti
 and grey valueinformation within one framework.



of manual intervention we a

umulate eviden
e over a self generated stereo imagesequen
e within a per
eption a
tion 
y
le as des
ribed in the next subse
tion.2.2.2 A

umulation of Obje
t Representations in Stereo Image Sequen
es
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Figure 3: Left: Spheri
al 
oordinates. Right: Di�eren
e in orientation doThe obje
t representation 
omputed from the �rst stereo image pair 
onsists ofa list L of 3D line segments l = (p;v), i.e., a line segment is des
ribed by its positionp = (x; y; z) and by the unit ve
tor v indi
ating the orientation of the line segment(see �gure 3 left). For these entities a metri
 d(l; l0) 
an be de�ned whi
h gives lowvalues for similar line segments and high values for dissimilar line segments.De�nition of the Metri
: We de�ne a metri
 between two line segments byevaluating their orientation di�eren
e do and spatial di�eren
e dp. Given l = (p;v)and l0 = (p0;v0). The orientation di�eren
e is simply de�ned asdo(l; l0) := ar

os(v � v0);i.e. as the angle between v and v0 (see �gure 3 right).For the distan
e measure dp we have, be
ause of the aperture problem (see e.g.[13℄), also to take the orientation of a line segment into a

ount: The translation ofa line segment along the axis spanned by v should not in
rease the distan
e betweentwo line segments as long as it is less then half of the length of the line segment. Inthe following we de�ne an ellipti
al unit sphere, i.e. we allow in the v dire
tion alarger translation than orthogonal to v (see �gure 4 left).To 
ompare p and p0 we need the 
oordinates of p̂0 of p0 in the 
oordinatesystem spanned by p and v (p be the origin and v the x{axis). For this we �rsttranslate p0 by �p and then perform the rotation whi
h maps v on the x{axis.This rotation 
an be well des
ribed by quaternions [2℄. The rotation axis isq0 = v + exjjv + exjjwith ex being the ve
tor (1; 0; 0). The rotation angle is � whi
h yields the quaternionq = 
os �2 + q0 sin �2 i.e., we have a simple re
e
tion. Now we gain the 
oordinatesof p̂0 in the system spanned by p and v by the formulap̂0 = q(p0 � p)�q = 0� x̂0̂y 0̂z0 1A :
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PSfrag repla
ements v!1 + l2 PSfrag repla
ementsv!1 + l2Figure 4: Left: Ellipti
al sphere in 2D. Right: Symmetry does not hold for fp:The midpoint of the diagonal ellipti
al area is in the horizontal ellipti
al area butnot the other way round.We de�ne a distan
e measure between l and l0 (taking into a

ount an ellipti
aldeformation) by fp(l; l0) :=vuut 11 + l2 x̂0!2 + ŷ02 + ẑ02:Sin
e this measure is not symmetri
 (see �gure 4 right) we de�nedp(l; l0) := minffp(l; l0); fp(l0; l)gas the �nal metri
. Now we are able to say that line segment ~l and ~l0 do 
orrespondto ea
h other when do(~l;~l0) and dp(~l;~l0) are smaller then 
ertain thresholds so andsp.A

umulation: A rigid body movement M of the robot 
an be des
ribed by sixparameters ~� 2 IR6, three des
ribing translation and the others des
ribing rotation.Let M ~�(L) be the list of lo
al line segments L representing the obje
t moved byM ~�. Let L0 be the list of lo
al line segments extra
ted from a new stereo imagepair. In this image pair the obje
t is shown after a movement whose parameters ~�are known. For our algorithm the 
orresponden
es between the representations L0and L 
an easily be a
hieved by applying the rigid body motion M ~� to the storedrepresentation L: M ~�(L) � L0 and 
omparison of the line segments by applyingthe above de�ned metri
.After a
hieving 
orresponden
es the two representations M ~�(L) and ~L0 
an bemerged by the a

umulation s
heme de�ned above: For ea
h line segment lj inM ~�(L) we sear
h for a line segment l0k in L0 whi
h is 
lose to lj a

ording to ourmetri
 d. If su
h a 
orresponding line segment has been found a value 
j , indi
atingthe 
on�den
e of the system that lj is part of the obje
t, is in
reased, otherwise it isde
reased. Line segments in L0 to whi
h no 
orresponden
es in M ~�(L) do exist arein
luded in the a

umulated representation with only low 
on�den
es. After a 
ou-ple of iterations with di�erent views of the obje
t the a

umulated representationbe
omes more and more stable (see �gure 1 right). It is even possible to segmentobje
ts from the ba
kground: Sin
e the ba
kground is �xed and not 
hanging a
-
ording to the equivalent relation rigid body motion line segments 
orresponding tothe ba
kground do vanish after a few iterations (see �gure 5) and only line segments
orresponding to the obje
t and gripper remain.



Figure 5: A

umulation of an obje
t representation (�rst and �fth iteration). Linesegments 
orresponding to the ba
kground vanish after a few iterations. Left: oneof the stero images. Middle: Representation extra
ted from one stereo image pair.Right: A

umulated representation.3 Con
lusion and OutlookWe showed that our algorithm is able to a

umulate autonomously representationsutilizing self{
ontrolled movements within a per
eption{a
tion 
y
le. For the futurea robot systems equipped with the ability to extra
t eÆ
ient obje
t representationsin a normal environment promises more 
exible appli
ations of robot vision systems.Instead of being equipped with manually de�ned representations the robot may useits own ability as a basis for manipulation and re
ognition. An important prestage of our algorithm would be a behavior whi
h allows to a
hieve hapti
 
ontrolover new obje
ts and whi
h positions the robot arm and the 
amera su
h thatthe a

umulation pro
ess 
an start. We are 
urrently implementing su
h a basi

ompeten
e.Also the integration of additional 
ues su
h as opti
 
ow, 
olor, texture andhapti
 
ues is part of our 
urrent and future resear
h. Our a

umulation algorithm
an be applied to all of these entities as long as 
ertain the equivalan
e relation
an be applied to them and a metri
 
an be de�ned for them. A further importantstep is the appli
ation of the a

umulated representation for mat
hing or tra
kingtasks. In this 
ontex, a promising method for pose estimation has been de�ned inour group [18℄ whi
h we aim to apply to our representations.Finally we aim to build a system equipped with some basi
 
ompeten
ies (su
has the introdu
ed a

umulation s
heme) whi
h starts a bootstrapping pro
ess inwhi
h knowledge of the world is extra
ted by own motivation and experien
e. Wethink that gaining hapti
 
ontrol over the obje
t is one essential prerequisite of su
ha system in whi
h per
eption and a
tion have to be 
losely 
onne
ted to supportea
h other.
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