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Abstract

We introduce a robotic vision system which is able to extract object repre-
sentations autonomously utilizing a tight interaction of visual perception and
robotic action within a perception action cycle [10, 17]. Controlled movement
of the object grasped by the robot enables us to compute the transformations
of entities which are used to represent objects and to find correspondences of
entities within an image sequence.

A general accumulation scheme allows to acquire robust information from
imperfect and partly missing information extracted from single frames of an
image sequence. Here we used this scheme with a preprocessing stage in
which 3D-line segments are extracted from stereo images. However, the ac-
cumulation scheme can be used with any kind of preprocessing as long as the
entities used to represent objects can be brought to correspondence by certain
equivalence relations such as ’rigid body motion’.

1 Introduction

Model based vision systems usually apply manually designed object representations
(see e.g., [19] or [12]). These methods usually work well but commonly have draw-
backs with the need of manual intervention for creating object representations and
the fine—tuning of these representations. Here we demonstrate an autonomous ex-
traction of object representations making use of a tight interaction of perception and
action: Accumulation of information takes place within a perception action cycle
[10, 17]. As a challenging perspective we aim at a coupled robotic vision system
which is not equipped with manually designed object representations but the ob-
ject to be manipulated is given to the robot and a representation is accumulated
autonomously (see figure 1).

Feature extraction faces the problem that semantic information extracted by
artificial systems from a single image or stereo images even under optimal conditions
is necessarily imperfect. For instance, although there exist a large amount of edge
detectors none of them is comparable to human performance. One important reason
for the extremely good performance of humans on these tasks is that the human
visual system applies constraints to interpret a certain scene or situation [6, 11]. A
situation never stands for itself but is embedded in a time continuum [7]. Therefore
an important constraint is the utilization of the coherence of objects during a rigid
body motion which allows to accumulate information over time.



Figure 1: left) top: left and right image of an object. bottom: the projected 3D rep-
resentation extracted from the stereo images. middle) Two pairs of stereo images
(top: left camera image, middle: right camera image) and the the projected 3D rep-
resentation (bottom). right) Projected 3D Representation accumulated over a set
of stereo images. Dark areas represent line segments accumulating high confidences.
Grey areas represent line segments accumulating medium or low confidences.

In this paper we suggest to accumulate object representations from image se-
quences by using the equivalence relation ’'rigid body motion’. We account for
the vagueness of semantic information extracted from single images by assigning
confidences to this information and accumulating this information over an image
sequence of a moving object. Although the information extracted from single im-
ages contain errors (see the representations on the left hand side of figure 1) a more
stable representation can be achieved by combining information from different im-
ages (see right hand side of figure 1). Because the object can change its position
and orientation and this change might be wanted because another view of the
object gives new information which might not be extractable from another view
we face the correspondence problem: Correspondences between entities describing
the object in different images (or 3D interpretations extracted from stereo images)
are not known.

Here the correspondence problem is solved within a behavior based paradigm [3,
16]. The parameter of motion are known since the robot manipulates the object and
the transformations of entities can be compensated for each frame of the sequence to
achieve correspondences. Knowing the correspondences an algorithm can be applied
to update and improve the object representation iteratively. This accumulation
algorithm is an extension of an algorithm introduced in [11, 14] which has only
dealt with 2D representation and translational motion.

2 Extraction of Object Representations from Im-
age Sequences

Our accumulation algorithm can be defined independently of the entities used to
represent objects. The algorithm also is independent of the concrete equivalence
relation or transformation used to define correspondences. It only requires an object
representation by certain entities for which a metric is defined and to which certain
transformations or equivalence relations (such as rigid body motion) can be applied.
The object establishes itself as an invariant under the equivalence relation, i.e., as
an equivalence class. The algorithm in its general form is defined in subsection 2.1.
In this paper for the representation of objects we use local three dimensional line



e € T73(e?)

Figure 2: The accumulation scheme. The entity e! (here represented as a square) is
transformed to T12(e!). Note that without this transformation it is barely unpossi-
ble to find a correspondence between the entities e! and e? because the entities show
significant differences in appearance and position. Here a correspondence between
T'2(e') and e? is found because a similar square can be found close to T"?(e') and
both entities are merged to the entity é2. The confidence assigned to é2 is set to a
higher value than the confidence assigned to e! indicated by the width of the lines of
the square. The same procedure is then applied for the next frame for which again
a correspondence has been found. By this scheme information can be accumulated
to achieve robust representations.

segments only. The extension of the system to other kind of object descriptors such
as texture, color or optical flow is part of our current research.

The concrete realization of the accumulation scheme can be divided into two
parts, preprocessing (section 2.2.1) and accumulation (section 2.2.2). The algorithm
is applied to a stereo image sequence in which the object grasped by the robot
is shown to the system in various positions and orientations (see figure 1). A
representation is accumulated over the stereo image sequence (see figure 1 right).
Although the representations extracted from one stereo image pair shows missing
line segments (left) the accumulated representation is more complete (right). Here
we give only a condensed description of the algorithm, for details see [1].

2.1 The Accumulation Scheme

Let e € E be an entity used to describe objects (for instance a 2D line segment,
a structure tensor [9] extracted from an image, 3D line segments extracted from a
stereo image pair or any other kind of object descriptor) and d(e, e’) be a distance
measure on the space of entities E. Furthermore, let T' be a transformation or
equivalence relation, for instance a rigid body motion or the projective transforma-
tion corresponding to a rigid body motion. If e’ is an entity extracted from frame
i of a sequence of events then T"*!(e?) is the transformation T%*! from the i th
to the i + 1 the frame applied to e’.

Let €'t be an entity extracted from the i+1 th frame of the sequence we say that
e’ and e't! are likely to correspond to each other if d(T(e?),ei*!) is small. Often
it might not be possible to find an exact correspondence with d(T'(e?),e'*!) = 0.
For example, if we want to compare local image patches in two images knowing
the exact projective transformation corresponding to the rigid body motion of an
object from the first to the second frame, the corresponding image patches can not
be expected to be exactly equal because of factors such as noise during the image
acquisition, changing illumination, non—Lambertian surfaces or discretization errors.
The problem may even become more severe when we extract more complex entities
such as 3D or 2D line segments or 3D surface patches. Therefore it is advantageous
to formalize a confidence of correspondence by a metric.

The accumulation of information can now simply be achieved by the following
update rule: If there exists an entity e’*! in the i+1-th frame for which d(T'(e?), ')
is small (i.e. a correspondence is likely) then merge T'(e?) and e™*! by some kind



of average operator /71 = merge(T'(e?), e’*!) and set the confidence for é'*! to a
higher value than the confidence assigned to e’. If there exists no entity e’*! in
the i+1-the frame for which d(T(e?), e'*!) is small, the confidence for entity e’ to
be part of the object is decreased. In Figure 2 a schematic representation of the
algorithm is shown for two iterations.

2.2 Application of the Accumulation Scheme to a Represen-
tation with 3D-line segments

In this section we apply the accumulation scheme introduced above to object rep-
resentations consisting of local 3D line segments. For these entities the change of
the transformation (i.e., T7%*1(e)) can be computed explicitly (for details see [1]).

2.2.1 Extraction of a 3D Representation from Stereo Images

In the preprocessing step a 3D representation of the object grasped by the robot
and presented at a certain position and orientation is extracted. The orientation
of the object differs in each stereo image pair (figure 1). The object representation
consists of local 3D line segments and is extracted using calibrated cameras and
epipolar geometry. First, in each single image lines are extracted using the orien-
tation sensitive Hough transformation [15]. The Hough lines are divided into local
line segments according to local information indicating evidence for the existence of
a local line segment at a certain pixel position in the image by evaluating gradient
information. In our implementation the entity ’local line segment’ can only be ex-
tracted when there is local support (a high magnitude of the gradient) and global
support (the line segment is part of a Hough line). Second, correspondences of line
segments in the two stereo images are found. The epipolar constraint is used to
reduce the search problem to a one-dimensional problem. On the epipolar line cor-
responding to a certain line segment the best match is defined as the corresponding
entity. For finding the best match a similarity combining gray level information (by
evaluating the correlation of image patches) and semantic information (evaluating
the differences in the orientation of the found line segments) are used.!

In most cases the correspondence of 2D line segments defines a 3D line segment.
In some cases, when the 2D line segments are close to a ’critical plane’ [4, 8] the
correspondences do not uniquely define a 3D line segment and a 3D representation
of parts of the object can not be extracted. Note that by moving the object, 3D-line
segments which can not be extracted in one frame (because they are too close to
the critical plane) move out of the critical plane so that they can be part of the
final representation. Here the haptic control of the object allows the creation of
situations in which critical features can be extracted.

The representation extracted from a single stereo image pair usually is not per-
fect (see figure 1), there are many missing parts (because of the critical plane,
correspondences not found, not detected Hough lines or not extracted 2D line seg-
ments in one of the two stereo images) and some 'wrong’ line segments (because of
wrong correspondences or wrong 2D line segments extracted during preprocessing).
Here we face the problem that semantic information can not be extracted with suf-
ficient accuracy from single or stereo images which is also one of the the reasons for
the need of manually designed object representations in many artificial systems.

To achieve a suitable representation autonomously and to overcome the need

IThis kind of preprocessing faces the problem that for small edges Hough lines often can not
be found so that they do not occur in the object representation extracted from one stereo image
pair. Therefore we aim to use the local image operator introduced in [5] to overcome this problem.
Furthermore, with this operator we may also integrate matching with semantic and grey value
information within one framework.



of manual intervention we accumulate evidence over a self generated stereo image
sequence within a perception action cycle as described in the next subsection.

2.2.2 Accumulation of Object Representations in Stereo Image Sequences

z z
v
|
| 7
| /
1 7/
9 v
| p
| 4
T Y Yy
) |
|
xr X

Figure 3: Left: Spherical coordinates. Right: Difference in orientation d,

The object representation computed from the first stereo image pair consists of
a list £ of 3D line segments | = (p, v), i.e., a line segment is described by its position
p = (z,y, z) and by the unit vector v indicating the orientation of the line segment
(see figure 3 left). For these entities a metric d(I,1") can be defined which gives low
values for similar line segments and high values for dissimilar line segments.

Definition of the Metric: We define a metric between two line segments by
evaluating their orientation difference d, and spatial difference d,,. Given I = (p,v)
and I' = (p’,v'). The orientation difference is simply defined as

dy(1,1") := arccos(v - v'),

i.e. as the angle between v and v’ (see figure 3 right).

For the distance measure d, we have, because of the aperture problem (see e.g.
[13]), also to take the orientation of a line segment into account: The translation of
a line segment along the axis spanned by v should not increase the distance between
two line segments as long as it is less then half of the length of the line segment. In
the following we define an elliptical unit sphere, i.e. we allow in the v direction a
larger translation than orthogonal to v (see figure 4 left).

To compare p and p’ we need the coordinates of p’ of p’ in the coordinate
system spanned by p and v (p be the origin and v the x axis). For this we first
translate p’ by —p and then perform the rotation which maps v on the z—axis.
This rotation can be well described by quaternions [2]. The rotation axis is

q' . V+ e,
IV + ea|

with e, being the vector (1,0,0). The rotation angle is = which yields the quaternion

q = cos 5 + q'sin 3§ i.e., we have a simple reflection. Now we gain the coordinates
of p' in the system spanned by p and v by the formula
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Figure 4: Left: Elliptical sphere in 2D. Right: Symmetry does not hold for f,:
The midpoint of the diagonal elliptical area is in the horizontal elliptical area but
not the other way round.

We define a distance measure between | and I’ (taking into account an elliptical
deformation) by

2
1
l7l’ = ! + 512 + 512
Since this measure is not symmetric (see figure 4 right) we define
dp(l7 ll) = mln{fp(la ll): fp(lla I)}

as the final metric. Now we are able to say that line segment [and I’ do correspond

-

to each other when d,(I,1’) and dp(fl’) are smaller then certain thresholds s, and

Sp-

Accumulation: A rigid body movement M of the robot can be described by six
parameters 3 € IRS, three describing translation and the others describing rotation.
Let MP(L) be the list of local line segments £ representing the object moved by

MP. Let £' be the list of local line segments extracted from a new stereo image
pair. In this image pair the object is shown after a movement whose parameters 5
are known. For our algorithm the correspondences between the representations £’
and £ can easily be aghieved by applying the rigid body motion MP to the stored
representation £: M?(L) ~ £' and comparison of the line segments by applying
the above defined metric. B

After achieving correspondences the two representations M?(£) and £’ can be
merged by the accumulation scheme defined above: For each line segment [; in

MPB(L) we search for a line segment [}, in £’ which is close to I; according to our
metric d. If such a corresponding line segment has been found a value ¢;, indicating
the confidence of the system that [; is part of the object, is increased, otherwise it is

decreased. Line segments in £’ to which no correspondences in ME(C) do exist are
included in the accumulated representation with only low confidences. After a cou-
ple of iterations with different views of the object the accumulated representation
becomes more and more stable (see figure 1 right). It is even possible to segment
objects from the background: Since the background is fixed and not changing ac-
cording to the equivalent relation rigid body motion line segments corresponding to
the background do vanish after a few iterations (see figure 5) and only line segments
corresponding to the object and gripper remain.



Figure 5: Accumulation of an object representation (first and fifth iteration). Line
segments corresponding to the background vanish after a few iterations. Left: one
of the stero images. Middle: Representation extracted from one stereo image pair.
Right: Accumulated representation.

3 Conclusion and Outlook

We showed that our algorithm is able to accumulate autonomously representations
utilizing self controlled movements within a perception action cycle. For the future
a robot systems equipped with the ability to extract efficient object representations
in a normal environment promises more flexible applications of robot vision systems.
Instead of being equipped with manually defined representations the robot may use
its own ability as a basis for manipulation and recognition. An important pre
stage of our algorithm would be a behavior which allows to achieve haptic control
over new objects and which positions the robot arm and the camera such that
the accumulation process can start. We are currently implementing such a basic
competence.

Also the integration of additional cues such as optic flow, color, texture and
haptic cues is part of our current and future research. Qur accumulation algorithm
can be applied to all of these entities as long as certain the equivalance relation
can be applied to them and a metric can be defined for them. A further important
step is the application of the accumulated representation for matching or tracking
tasks. In this contex, a promising method for pose estimation has been defined in
our group [18] which we aim to apply to our representations.

Finally we aim to build a system equipped with some basic competencies (such
as the introduced accumulation scheme) which starts a bootstrapping process in
which knowledge of the world is extracted by own motivation and experience. We
think that gaining haptic control over the object is one essential prerequisite of such
a system in which perception and action have to be closely connected to support
each other.
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