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Optimization of Stereo Disparity Estimation Using theInstantaneous FrequencySummary page(a) What is the original contribution of this work?This paper studies the use of local phase di�erences for stereo disparity computation. Therobustness of phase methods has been repeatedly shown in experiments but has not beenthoroughly analyzed yet. Furthermore, its application presumes the selection of the ap-propriate central frequency of the Gabor-�lters involved. Here, we analytically study thebehavior of the disparity estimate with respect to the central frequency and the associatedbandwidth. We will show that the instantaneous frequency enables a disparity computationindependent of the central frequency over a wide range of scales. The practical e�ects arethe reduced number of Gabor-�lters covering the frequency space and the robustness againstspatial disparity variation and disparity di�erences in the left and the right image.(b) What is the most closely related work by others and how does this workdi�er?The most closely works are the studies of Maki et al. [10], Langley et al. [8] and Fleet-Jepson[4].Maki et al. [10] studied the discrepancy between actual phase of the signal and the local phasecomputed from Gabor-responses. However, they did not derive an analytical expression fora simple signal like the one in our work and in [8]. The focus of the study was the e�ect ofbandwidth size on the disparity error. The instantaneous frequency issue was not addressed.Langley et al. [8] found a similar formula like ours for the above mentioned discrepancywith a sinusoidal input. However, they delved into the quadrature approximation withoutstudying the relation between scale, disparity and instantaneous frequency.Fleet and Jepson [4, 3] studied extensively the scale behavior of the local phase and itsderivative (instantaneous frequency). The stability of phase was analyzed with respect tosingularities and the spatial linearity of the local phase. However, the emphasis was onthe singularities whereas our �ndings concern the global variation of disparity error andinstantaneous frequency with respect to scale. Last but not least, our study leads to apractical implication which substantially reduces the algorithmic complexity.2



Optimization of Stereo Disparity Estimation Using theInstantaneous FrequencyAbstractThe use of phase di�erences from Gabor �lter responses is a well established tech-nique for the computation of stereo disparity. It achieves the subpixel estimation ofdisparity without applying a correspondence search. However, the success of the phaseapproach has not been thoroughly analyzed. Here, we study the e�ects of varying �lterfrequency on the disparity estimation and we compare it to the use of the instantaneousfrequency. The analytical results on several models of intensity and disparity variationyield disparity estimates robust against variations in the �lter-wavelength and a newtechnique for frequency tuning of the quadrature �lter pairs that considerably reducesthe problem complexity.1 Introduction and related workThe computation of stereo disparity is a necessary step before depth reconstruction fromtwo views of the environment. The majority of the approaches is based on searching for themaximum correlation between an area in the left image and the area in the second image (cf.[2] for an extensive review) that corresponds to the projection of the same scene point. If thecameras are calibrated and the epipolar geometry is known this search is one-dimensionalalong the epipolar line in the right image corresponding to a point in the left image. Area-based approaches �nd the best correlation between two areas in the original or band-pass�ltered images. Feature-based approaches �rst extract characteristic gray-value structures inboth images which are then matched by applying a similarity criterion. Both groups su�erunder the necessity of a search which increases the complexity and makes an explicit analysisintractable.The paradigm of active vision introduced new prospects in stereoscopic vision. Real-timeconstraints on the complexity of the disparity computation are necessary in order to achievea reactive behavior. Thus, techniques requiring a search for every image position are notappealing for real-time responses. On the other hand, active vision enables the control of themechanical degrees of freedom of a stereo set-up. The vergence control of a camera yieldsa decrease on the disparity magnitude in a considerable area around the �xation point.Small disparities can now be computed with local techniques using only the responses ofappropriate �lters. It was shown that the local disparity variation can be computed fromthe intensity derivatives [5, 6]. However, a more general �lter-based approach exhibited themost robust performance until now: the phase-based approach introduced in [11, 12] andfurther developed and studied in [3, 8, 13, 14, 10].The phase-based disparity computation may be apparently justi�ed by the shift-theorem forthe Fourier-transform of an image. However, the shift-theorem is exact only for a globally1



constant disparity. To capture varying disparity, all approaches apply the local spectralrepresentation of the complex-valued Gabor-�lter responses. As we will describe later, theshift-theorem for the phase di�erence of the Gabor responses is not valid even in the case ofsimple sinusoidal input. A more plausible formulation of the shift-theorem [12, 3] assumesthe preservation of the local phase in the left and the right image. Application of the Taylorexpansion to the local phase yields the disparity as the ratio of phase-di�erence and the�rst spatial derivative of the phase if the higher order disparity terms and derivatives areneglected. The �rst derivative of the local phase is well known as the de�nition of theinstantaneous frequency of a signal [1].The phase matching aspect of the local shift-theorem still involves the selection of the ap-propriate frequency to compute the local phase as well as its derivative. The Gabor-�ltersapplied have coupled bandwidth and central frequency like wavelets so that the �lter supportis small for high central frequencies and large for low ones. Thus, frequency tuning is equiv-alent to the scale selection in the scale-space framework. Applying a bank of Gabor-�lterswith di�erent scales yields a disparity estimate for each scale. We could choose the centralfrequency of the maximal energy response and compute the phase from the response of theGabor �lter with the same central frequency. However, this is not valid for multi-componentsignals and it is computationally very expensive to densely sample the scale (or frequency)space. Furthermore, the left and the right image can have di�erent frequency contents dueto perspective e�ects so that the search for the maximum response must be done for bothimages.The main contribution of this study is the result that the instantaneous frequency remainsalmost the same for a wide range of scales. This fact is analytically exhibited for prototypesignals like a sinusoid and an edge. The practical implications are extremely useful: theinstantaneous frequency can be computed from a small �lter-bank by sparsely sampling thefrequency-space. In a second step the disparity can be computed with a �lter tuned to theinstantaneous-frequency. We show, that even if the second step is omitted the disparity erroris still low if the instantaneous frequency and a phase di�erence from an almost arbitrarytuned Gabor-�lter are used. We analyze the behavior of disparity with respect to the relativebandwidth and we show that the above mentioned strategy is valid for the sizes of the �lter-supports used in real-time constrained applications. The robustness of the instantaneousfrequency is shown in stereo views with spatially varying frequency in the left and the rightimages as well as in images with spatially varying scale due to perspective foreshortening.The dependence of local phase and instantaneous frequency on scale has been extensivelystudied by Fleet and Jepson [4, 3]. The emphasis was �rst on the e�ects of spatial deforma-tions between the left and the right image on the preservation of scale. Second, they foundout that sensitivity of disparity to position and scale appears due to singularities in phaseas a function of position and scale.Maki et al. [10] studied the discrepancy between actual phase of the signal and the local phasecomputed from Gabor-responses. However, they did not derive an analytical expression fora simple signal like the one in our work and in [8]. The focus of the study is the e�ect ofnarrow or wide bandwidth on the discrepancy factor. The instantaneous frequency issue isnot addressed. 2



Langley et al. [8] found the same formula for the above mentioned discrepancy with asinusoidal input. However, they delved into the quadrature approximation without studyingthe relation between scale, disparity and instantaneous frequency.We give a brief introduction of phase based disparity estimation with a instantaneous andconstant frequency model in section 2. The analytical study of the local phase and theestimated disparity for two gray-value variations is subject of sections 3 and 4. In section5 we show that we can apply the analytical results of chapters 3 and 4 in a real worldexperiment.2 Phase-based disparity estimationStereo disparity has a horizontal and a vertical component but only one of them su�ces tocompute the depth. As it is usual and justi�ed in active binocular systems [7] we will useonly the horizontal disparity. The �lters we apply have a two-dimensional support with asmoothing component in the vertical direction. Therefore we restrict our analysis to disparityestimation in 1D-signals.Let us suppose that the disparity d is constant over the image. Then, according to theshift-theorem of the Fourier transform a shift in spatial domain transforms to a modulationin frequency domain:f(x) F (!) f(x+ d) F (!)ei!d: (1)To recover the disparity as spatial shift the phase di�erences have to be computed:d(x) = �l(x)� �r(x)! : (2)Unfortunately disparity is hardly ever globally constant so that some sort of local spectralrepresentation must be extracted. We apply here complex Gabor-�lters with coupled band-width and central frequency. Since a bank of Gabor �lter responses samples the frequencyspace we are asking whether the shift theorem still holds for the local phase extracted fromthe complex Gabor responses. In this case, the mean frequency of the left and the rightimage could be used in order to apply (1).A slight variation of the shift-theorem can be obtained if we assume that local phase ispreserved in the left and the right image [9, 3]�l(x+ d) � �r(x) = 0: (3)A Taylor series expansion of �l(x+ d) leads to :�l(x+ d) = �l(x) + �0l(x) � d +O(d2) (4)The spatial shift d of the signal in the left image is de�ned in a �rst order approximation as:d(x) = �l(x)� �r(x)�0l(x) (5)3



The derivative �0l=r(x) of the local phase is well known [1] as instantaneous or local frequencyof the signal. Often the instantaneous frequency !inst is de�ned as the average of (�0l(x) +�0r(x))=2. We will next elucidate the importance of the phase derivative in the task ofdisparity estimation.We use the following de�nition of the Gabor impulse responseG(x;�; !g) = 1p2��e�x2=2�2e�i!gx (6)The bandwidth factor t = 1!g� of the �lter relates its support � with the frequency !g. Forexample a bandwidth factor t = 0:33 yields a full bandwidth of one octave. Normally wechoose the bandwidth factor t in the interval (0:2; 0:7) in order to obtain from four down toone oscillations of the Gabor-harmonic inside the �lter support.We denote the Gabor �lter responses by fg(x) = G(x;�; !g) � f(x). The magnitude or localenergy of the right image response is r(x) = jfg;r(x)j and that of the left image is l(x). Thephases are denoted �r(x) = arg[fg;r(x)] for the right and �l(x) for the left image.The results in disparity estimation with a phase based approach using Gabor �lters dependsstrongly on the instantaneous frequencies of the signals due to the bandpass characteristicof the Gabor �lter. We treat here two cases, the case of a sinusoid and the case of an edgemodelled as a superposition of sinusoidal functions.In the sinusoidal case the left and right signals readTr(x) = sin(!0x)Tl(x) = sin(!0(x+ dtr))where dtr is the true disparity. The edge signals are given by following expansionsEr(x) = sin(!0x) + sin(3!0x)3 + sin(5!0x)5El(x) = sin(!0(x+ dtr)) + sin(3!0(x+ dtr))3 + sin(5!0(x+ dtr))5We will study the case of a linear ground-truth disparity dtr(x) = Ax+ B analytically andthe case of a quadratically varying disparity in simulations. Last we will apply our theoryon real stereo images with known ground-truth.3 Analysis of a sinusoidal patternIn the case of a sinusoidal pattern the local phase �l=r(x) and its derivative �0l=r(x) arefunctions of the Gabor-�lter parameter !g; t, the signal frequency !0 = 2�=�0 and theparameters A;B of the disparity variation. Our goal is to study the e�ects of the aboveparameters on the instantaneous frequency !inst and the disparity estimate d(x).4



The convolutions of the harmonic functions Tr=l(x) with the Gabor �lter G(x;!g; t) yieldresponses with phases �r=l(x) = arg[G � Tr=l(x)] e.q:�r(x) = arctan(�tanh(�2!0!g=2)tan(!0x) ) (7)The corresonding �rst derivative of the local phase with respect to x reads:�0r(x) = !0 tanh(2�2!0!g)(1� cos(2!0x)cosh(2�2!0!g)) (8)The same expressions are obtained for the left signal with ~!0 = !0(A+1) instead of !0 andthe phase shifted by a constant o�set !0B.Without loss of generality we assume that !max0 � !maxg for the case of a sinusoid, whichmeans that the signal wavelength is smaller than the �lter wavelength. The violation of thisassumption is shown in Fig. 1.
-3

-2

-1

0

1

2

3

-100 -50 0 50 100x

-3

-2

-1

0

1

2

3

-100 -50 0 50 100xFig. 1: Nonlinear behavior of the local phase corresponding equation to (7) if !0 < !g instead of ourassumption !max0 > !maxg . left: �l(x + Ax + B) and right: �r(x) (!0 = 1=6; !g = 1=3; � = 1:9 andA = 0:3; B = 0.)To improve the intuitive understanding of the above expressions we use wavelengths mea-sured in pixels instead of frequencies with �0 = 2�=!0 for the signal and �g = 2�=!g for theGabor-�lter, respectively.For the disparity computation in eq. (5) we use the average of the left and right signal�inst(x) = 4�(�0l(x) + �0r(x)) (9)as the instantaneous wavelength �inst(x) of the Gabor response [3]. Langley et al. [9] de�neda magnitude weighted sum of the local phase derivatives instead of the average.5



29.6

29.8

30.0

30.2

30.4

Lambda

-100 -50 0 50 100
x

0.0

0.2

0.4

0.6

0.8

1.0

Energy

20 40 60 80 100
WavelengthFig. 2: Behavior of the instantaneous frequency �inst(x) (left) and the local energy as a function of theGabor wavelength �g (right) (t = 0:66; �g = 50 pixel) for a sinusoidal signal with �0 = 30 pixel.We observe in eq. (8) and in Fig. 2 that the instantaneous wavelength spatially oscillateswith a frequency 2!0 due to the fraction cos(2!0x)cosh(2�2!0!g) in eq. (8). In the special case �g = �0t2the instantaneous wavelength oscillates between �0 � 25% < �inst(x) < �0 + 33%. However,the spatial average over a local region (Fig. 2, left) is still equal to �0, as expected accordingto the theory on instantaneous frequency.We observe in eq. (8) that !inst is equal to the signal frequency !0 only if tanh(2�2!0!g) isapproximately one. This condition can be achieved if�g > �0t2: (10)If this inequality is satis�ed the instantaneous wavelength represents the signal wavelength�inst � �0 of the signal over a wide region in the Gabor parameter space (�g; t) (see Fig. 3).In Fig. 2 (right) we observe as expected that the maximum of the local energy achievesits maximum if the Gabor-�lter wavelength �g at a given pixel x coincides with the signalwavelength �0. The practical e�ect is crucial: If we rely on a maximum response analysisin order to �nd the optimal scale we have to �lter with di�erent wavelengths to capturethe variation of the responses in Fig. 2 (right). If we compute the instantaneous frequencyjust one �lter response su�ces to obtain the optimal scale with a negligible error if notexact when �g > �0t2 is satis�ed. We will also see in the next section that the inuence ofthe wavelength-bandwidth ratio t has also minor e�ects. The instantaneous wavelength isconstant over the major part of the parameter space (�g; t).The computation of the instantaneous wavelength leads directly to an estimate of the optimalscale without any maximum search over di�erent �lter responses which is computationalexpensive especially for real time implementations.6



3.1 Accuracy of disparity estimation in sinusoidsWe address the accuracy of the disparity estimation for two models: the constant modelusing the �lter frequency in eq. (2) and the instantaneous model using eq. (5). We choosethe true disparity dtr(x) = Ax + B with A = 0:1 and B = 1. The choice of the disparitygradient A 6= 0 yields a scaling by 1(A+1) of the signal wavelength �0 in the left view.
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values indicate a lower error. We see that for the area between the two straight iso-contoursthe constant model exhibits lower error than the instantaneous one. The more the tuningwavelength di�ers from the ground-truth frequency the better becomes the instantaneousmodel. The variation with respect to x is coupled with the disparity gradient A. In Fig. 5(right) the error di�erence is plotted as a function of the disparity gradient A and thewavelength range in the immediate neighborhood of the signal wavelength. The error in theinstantaneous model increases with the disparity gradient A. Due to the decreasing signalwavelength ~�0 = �0=(A + 1) in the left image, the instantaneous wavelength as the averageof the right and left instantaneous wavelength (see de�nition. 9) is only an approximationfor small disparity gradients in the signals. The absolute error for the instantaneous modelcan be estimated by �dabs(x) � AA+1 derived from the di�erence between the instantaneouswavelengths in the left and the right signals.4 Analysis in case of an edgeIn order to guarantee that our superposition edge model (7) acts as an edge during �lteringwe restrict the �lter wavelengths to be smaller than half the maximum wavelength of thesuperposition model: �g � �02 . This restriction is illustrated in Figure 6. In fact, what weare doing is to sample the edge spectrum I(!) � 1! at the positions !0, 3!0 and 5!0.
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We show in Fig. 7 the instantaneous wavelength and the energy as a function of the �lter-wavelength �g. The inherent frequencies of the signal are manifested as local plateaus andlocal maxima in the instantaneous wavelength and the local energy, respectively.
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Using the instantaneous model the relative error decreased from 10% - 70 % to � 0 %- 0.1% in comparison to the constant model.We next study the reasons for the high error in the constant model which increases evenmore in the neighborhood of an edge. The local phase does not behave linearly in theneighborhood of an edge. Although the disparity may be constant the phase di�erence isnot constant and varies with �0=2, the wavelength corresponding to the considered signalregion (Fig. 9 left).On the other hand, the phase derivative is also oscillating because the inequality �g � �0t2concerning the sinusoidal case is no more valid. The �lter wavelengths are always larger than�0 due to the superposition model applied. Therefore, we observe the oscillating pattern inthe instantaneous frequency (Fig. 9 right) with the same period �0=2, as that of the phasedi�erence (Fig. 9 left). When the phase di�erence is divided by the phase derivative to obtainthe disparity the two oscillating patterns cancel because they have almost the same o�setregarding x. This cancelation explains the law error in the instantaneous model and is thereason for the high error of the constant model, too. The disparity errors still oscillates withhigh magnitude because the phase di�erence is divided by a spatially constant frequency.
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Fig. 10: On the left of the �gure we show superimposed the signal of the left view (dotted line) and thatof the right view (continuous line). The reader can observe the vanishing disparity in the center due to�xation. On the right we show the instantaneous wavelength (average of the left and right phase derivatives)as a function of spatial position x with a Gabor-�lter of wavelength �g = 63 pixel (left), computed in asimulation.and the wavelengths in both signals (left/right) are similar. The obtained stereo signals areshown on the left of Fig. 10. The measured instantaneous wavelength �inst for one of theGabor-�lter wavelengths is shown in Fig. 10 (right). The decrease of �inst is overlayed by anoscillation in x due to the small violation of the inequality constraint (10).
Fig. 11: True disparity (continuous smooth line), disparity estimate for the instantaneous model (dotted line)and disparity estimate for the constant model (continuous line far from the ground truth) for a Gabor-�lter�g=63 pixel are shown on the left. On the right we show the same curves but for a Gabor �lter tuned tothe center instantaneous frequency �inst(x = 256)This oscillation a�ects also the error in the disparity plotted on the left of Fig.11 obtainedby both models for a Gabor �lter with wavelength �g=63 pixels. We repeat the same curveson the right of Fig.11 but this time obtained from �ltering with a Gabor with wavelengthequal to the instantaneous wavelength at the center. We observe that the constant model12



performs better but does not reach the performance of the instantaneous model which is anorder of magnitude closer to the ground-truth at almost every position in the image. Theresults (Fig.11) emphasize that the instantaneous model provides good results without aspecial �lter tuning.5.1 Application to real images
Fig. 12: Stereo images of our lab with some well structured regions at the wall. The system �xates the blackcross. The white line indicates the 1D-signal used in further plots.We will apply the methods of the previous section at a real stereo image pair which containsedges and textured areas (Figure 12). The stereo system �xates the black cross at the wall.The true disparity in Fig. 13 is computed from the simulation by calibrating the extrinsicand intrinsic camera parameter in relation to the wall. Due to the errors resulting from theerroneous calibration an exact quantitative comparison is not possible. In the following wewill use this calibration result as ground-truth.
Fig. 13: Signals (l/r) of the real images with di�erent amplitudes at row 260 through the image center (left).True and estimated disparity for a Gabor-�lter (�g=63 pixel, t=0.66) (middle) and a Gabor-�lter tuned(�g=55 pixel, t=0.33) to the instantaneous wavelength �inst(x = 256) (right). The smooth line representsthe true disparity.The results in Fig. 13 for this row (and others) are nearly the same as in the simulation.The instantaneous model provides a good approximation of the true disparity with both13



Gabor-�lters (Fig. 13 middle). The constant model (Fig. 13 right) has to be tuned to themeasured instantaneous wavelength �inst(256)=55 of the row center in order to get a goodlocal approximation near the center. The zero disparities outside the center are regions ofunreliable phase information where the Gabor-�lter response is below a chosen threshold(15% of the magnitude maximum).Both models were also applied in the entire image without tuning. The disparity map(Fig. 14) on the left is the ground truth masked with a con�dence map of areas of stablephase information which is always necessary in such approach. The instantaneous and theconstant disparity model are shown on the middle and left of Fig. 14, respectively.
Fig. 14: Qualitative results in disparity estimation: (left) the true disparity map of the images pair. (middle)Disparity map estimated with the instantaneous model, (right) disparity map estimated with the constantmodel (�g=63 pixel, t=0.33).6 ConclusionsWe have analytically studied the behavior of the constant and the instantaneous model fordisparity estimation using complex Gabor- �lters. The instantaneous model has a superiorperformance over the entire spectrum of �lter-wavelengths whereas the constant model resultsare not useful at all over the most wavelengths. Until now the procedure was to optimize bytuning near the frequency of maximal response. This procedure could be computationallyexpensive and can fail if such an unique maximum does not exist. Tuning the �lters to theinstantaneous frequency improves their performance, a step that in most cases is not evennecessary. Taking the phase di�erences over the instantaneous frequency performs perfectlyfor most �lter-wavelengths.

14



References[1] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal-part 1:Fundamentals. Proceedings of the IEEE, 80:520{539, 1992.[2] U.R. Dhond and J.K. Aggarawal. Structure from stereo - a review. IEEE Trans. Syst. Man.and Cyber., 19, 1489-1510 1989.[3] D. J. Fleet, A. D. Jepson, and M. R. M. Jenkin. Phase-based disparity measurement. CVGIP:Image Understanding, 53(2), 3 1991.[4] D.J. Fleet and A.P. Jepson. Stability of phase information. IEEE Trans. Pattern Analysisand Machine Intelligence, 15:1253{1268, 1993.[5] J. Garding and T. Lindeberg. Direct computation of shape cues using scale-adapted spatialderivative operators. International Journal of Computer Vision, 17:163{191, 1996.[6] D.G. Jones and J. Malik. Computational framework for determining stereo correspondencefrom a set of linear spatial �lters. Image and Vision Computing, 10:699{708, 1992.[7] E. Krotkov and R. Bajcsy. Active vision for reliable ranging: Cooperating focus, stereo, andvergence. International Journal of Computer Vision, 11:187{203, 1993.[8] K. Langley, T.J. Atherton, R.G. Wilson, and M.H.E. Larcombe. Vertical and horizontaldisparities from phase. In Proc. First European Conference on Computer Vision, pages 315{325. Antibes, France, Apr. 23-26, O.D. Faugeras (Ed.), Lecture Notes in Computer Science427, Springer-Verlag, Berlin et al., 1990.[9] K. Langley, T.J. Atherton, R.G. Wilson, and M.H.E. Larcombe. Vertical and horizontaldisparities from phase. In Proc. 1st ECCV, pages 315{325, 1990.[10] A. Maki, L. Bretzner, and J.-O. Eklundh. Local fourier phase and disparity estimation: Ananalytical study. In V. Hlavac et al. (Ed.), Proc. Int. Conf. Computer Analysis of Images andPatterns CAIP, Prag, pages 868{874, 1995.[11] W.M. Miller. Video image stereo matching using phase-locked loop techniques. In Proc. IEEEInt. Conf. on Robotics and Automation, pages 112{117, 1986.[12] T.D. Sanger. Stereo disparity computation using gabor �lters. Biol.Cybernetics, 59:405{418,1988.[13] W. M. Theimer and H. P. Mallot. Phase-based binocular vergence control and depth recon-struction using active vision. CVGIP: Image Understanding, 60(2):343{358, 12 1994.[14] C.J. Westelius, H. Knutsson, J. Wiklund, and C.F. Westin. Phased-based disparity estimation.In J.L. Crowley and H.I.Christensen, editors, Vision as Process, pages 157{178. SpringerVerlag, Berlin et al., 1994. 15


