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Abstract

The use of phase differences from Gabor filter responses is a well established tech-
nique for the computation of stereo disparity. It achieves the subpixel estimation of
disparity without applying a correspondence search. However, the success of the phase
approach has not been thoroughly analyzed. Here, we study the effects of varying filter
frequency on the disparity estimation and we compare it to the use of the instantaneous
frequency. The analytical results on several models of intensity and disparity variation
yield disparity estimates robust against variations in the filter-wavelength and a new
technique for frequency tuning of the quadrature filter pairs that considerably reduces
the problem complexity.
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Optimization of Stereo Disparity Estimation Using the
Instantaneous Frequency

Summary page
(a) What is the original contribution of this work?

This paper studies the use of local phase differences for stereo disparity computation. The
robustness of phase methods has been repeatedly shown in experiments but has not been
thoroughly analyzed yet. Furthermore, its application presumes the selection of the ap-
propriate central frequency of the Gabor-filters involved. Here, we analytically study the
behavior of the disparity estimate with respect to the central frequency and the associated
bandwidth. We will show that the instantaneous frequency enables a disparity computation
independent of the central frequency over a wide range of scales. The practical effects are
the reduced number of Gabor-filters covering the frequency space and the robustness against
spatial disparity variation and disparity differences in the left and the right image.

(b) What is the most closely related work by others and how does this work
differ?

The most closely works are the studies of Maki et al. [10], Langley et al. [8] and Fleet-Jepson
[4].

Maki et al. [10] studied the discrepancy between actual phase of the signal and the local phase
computed from Gabor-responses. However, they did not derive an analytical expression for
a simple signal like the one in our work and in [8]. The focus of the study was the effect of
bandwidth size on the disparity error. The instantaneous frequency issue was not addressed.

Langley et al. [8] found a similar formula like ours for the above mentioned discrepancy
with a sinusoidal input. However, they delved into the quadrature approximation without
studying the relation between scale, disparity and instantaneous frequency.

Fleet and Jepson [4, 3] studied extensively the scale behavior of the local phase and its
derivative (instantaneous frequency). The stability of phase was analyzed with respect to
singularities and the spatial linearity of the local phase. However, the emphasis was on
the singularities whereas our findings concern the global variation of disparity error and
instantaneous frequency with respect to scale. Last but not least, our study leads to a
practical implication which substantially reduces the algorithmic complexity.
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The use of phase differences from Gabor filter responses is a well established tech-
nique for the computation of stereo disparity. It achieves the subpixel estimation of
disparity without applying a correspondence search. However, the success of the phase
approach has not been thoroughly analyzed. Here, we study the effects of varying filter
frequency on the disparity estimation and we compare it to the use of the instantaneous
frequency. The analytical results on several models of intensity and disparity variation
yield disparity estimates robust against variations in the filter-wavelength and a new
technique for frequency tuning of the quadrature filter pairs that considerably reduces
the problem complexity.

1 Introduction and related work

The computation of stereo disparity is a necessary step before depth reconstruction from
two views of the environment. The majority of the approaches is based on searching for the
maximum correlation between an area in the left image and the area in the second image (cf.
[2] for an extensive review) that corresponds to the projection of the same scene point. If the
cameras are calibrated and the epipolar geometry is known this search is one-dimensional
along the epipolar line in the right image corresponding to a point in the left image. Area-
based approaches find the best correlation between two areas in the original or band-pass
filtered images. Feature-based approaches first extract characteristic gray-value structures in
both images which are then matched by applying a similarity criterion. Both groups suffer
under the necessity of a search which increases the complexity and makes an explicit analysis
intractable.

The paradigm of active vision introduced new prospects in stereoscopic vision. Real-time
constraints on the complexity of the disparity computation are necessary in order to achieve
a reactive behavior. Thus, techniques requiring a search for every image position are not
appealing for real-time responses. On the other hand, active vision enables the control of the
mechanical degrees of freedom of a stereo set-up. The vergence control of a camera yields
a decrease on the disparity magnitude in a considerable area around the fixation point.
Small disparities can now be computed with local techniques using only the responses of
appropriate filters. It was shown that the local disparity variation can be computed from
the intensity derivatives [5, 6]. However, a more general filter-based approach exhibited the
most robust performance until now: the phase-based approach introduced in [11, 12] and

further developed and studied in [3, 8, 13, 14, 10].

The phase-based disparity computation may be apparently justified by the shift-theorem for
the Fourier-transform of an image. However, the shift-theorem is exact only for a globally



constant disparity. To capture varying disparity, all approaches apply the local spectral
representation of the complex-valued Gabor-filter responses. As we will describe later, the
shift-theorem for the phase difference of the Gabor responses is not valid even in the case of
simple sinusoidal input. A more plausible formulation of the shift-theorem [12, 3] assumes
the preservation of the local phase in the left and the right image. Application of the Taylor
expansion to the local phase yields the disparity as the ratio of phase-difference and the
first spatial derivative of the phase if the higher order disparity terms and derivatives are
neglected. The first derivative of the local phase is well known as the definition of the
instantaneous frequency of a signal [1].

The phase matching aspect of the local shift-theorem still involves the selection of the ap-
propriate frequency to compute the local phase as well as its derivative. The Gabor-filters
applied have coupled bandwidth and central frequency like wavelets so that the filter support
is small for high central frequencies and large for low ones. Thus, frequency tuning is equiv-
alent to the scale selection in the scale-space framework. Applying a bank of Gabor-filters
with different scales yields a disparity estimate for each scale. We could choose the central
frequency of the maximal energy response and compute the phase from the response of the
Gabor filter with the same central frequency. However, this is not valid for multi-component
signals and it is computationally very expensive to densely sample the scale (or frequency)
space. Furthermore, the left and the right image can have different frequency contents due
to perspective effects so that the search for the maximum response must be done for both
images.

The main contribution of this study is the result that the instantaneous frequency remains
almost the same for a wide range of scales. This fact is analytically exhibited for prototype
signals like a sinusoid and an edge. The practical implications are extremely useful: the
instantaneous frequency can be computed from a small filter-bank by sparsely sampling the
frequency-space. In a second step the disparity can be computed with a filter tuned to the
instantaneous-frequency. We show, that even if the second step is omitted the disparity error
is still low if the instantaneous frequency and a phase difference from an almost arbitrary
tuned Gabor-filter are used. We analyze the behavior of disparity with respect to the relative
bandwidth and we show that the above mentioned strategy is valid for the sizes of the filter-
supports used in real-time constrained applications. The robustness of the instantaneous
frequency is shown in stereo views with spatially varying frequency in the left and the right
images as well as in images with spatially varying scale due to perspective foreshortening.

The dependence of local phase and instantaneous frequency on scale has been extensively
studied by Fleet and Jepson [4, 3]. The emphasis was first on the effects of spatial deforma-
tions between the left and the right image on the preservation of scale. Second, they found
out that sensitivity of disparity to position and scale appears due to singularities in phase
as a function of position and scale.

Maki et al. [10] studied the discrepancy between actual phase of the signal and the local phase
computed from Gabor-responses. However, they did not derive an analytical expression for
a simple signal like the one in our work and in [8]. The focus of the study is the effect of
narrow or wide bandwidth on the discrepancy factor. The instantaneous frequency issue is
not addressed.



Langley et al. [8] found the same formula for the above mentioned discrepancy with a
sinusoidal input. However, they delved into the quadrature approximation without studying
the relation between scale, disparity and instantaneous frequency.

We give a brief introduction of phase based disparity estimation with a instantaneous and
constant frequency model in section 2. The analytical study of the local phase and the
estimated disparity for two gray-value variations is subject of sections 3 and 4. In section
5 we show that we can apply the analytical results of chapters 3 and 4 in a real world
experiment.

2 Phase-based disparity estimation

Stereo disparity has a horizontal and a vertical component but only one of them suffices to
compute the depth. As it is usual and justified in active binocular systems [7] we will use
only the horizontal disparity. The filters we apply have a two-dimensional support with a
smoothing component in the vertical direction. Therefore we restrict our analysis to disparity
estimation in 1D-signals.

Let us suppose that the disparity d is constant over the image. Then, according to the
shift-theorem of the Fourier transform a shift in spatial domain transforms to a modulation
in frequency domain:

flz) O—@ F(w) flz+d) o—@ F(w)e™. (1)
To recover the disparity as spatial shift the phase differences have to be computed:
¢i(x) — ¢n(2)
d(z) = : (2)

w
Unfortunately disparity is hardly ever globally constant so that some sort of local spectral
representation must be extracted. We apply here complex Gabor-filters with coupled band-
width and central frequency. Since a bank of Gabor filter responses samples the frequency
space we are asking whether the shift theorem still holds for the local phase extracted from
the complex Gabor responses. In this case, the mean frequency of the left and the right
image could be used in order to apply (1).

A slight variation of the shift-theorem can be obtained if we assume that local phase is
preserved in the left and the right image [9, 3]

oz 4+ d) — o (x) = 0. (3)

A Taylor series expansion of ¢(x + d) leads to :
éi(x +d) = ¢i(x) + d(x) - d + O(d*) (4)
The spatial shift d of the signal in the left image is defined in a first order approximation as:

d(z) = % (5)



The derivative ¢, () of the local phase is well known [1] as instantaneous or local frequency
of the signal. Often the instantaneous frequency wj,s is defined as the average of (¢j(x) +
& (x))/2. We will next elucidate the importance of the phase derivative in the task of
disparity estimation.

We use the following definition of the Gabor impulse response

1

2o

Gla50,w,) = e et (6)

The bandwidth factor ¢ = ﬁ of the filter relates its support o with the frequency w,. For
example a bandwidth factor ¢ = 0.33 yields a full bandwidth of one octave. Normally we
choose the bandwidth factor ¢ in the interval (0.2,0.7) in order to obtain from four down to
one oscillations of the Gabor-harmonic inside the filter support.

We denote the Gabor filter responses by f,(x) = G(x;0,w,) * f(2). The magnitude or local
energy of the right image response is r(x) = |f,.(2)| and that of the left image is [(x). The
phases are denoted ¢, () = arg[f,.(x)] for the right and ¢;(«) for the left image.

The results in disparity estimation with a phase based approach using Gabor filters depends
strongly on the instantaneous frequencies of the signals due to the bandpass characteristic
of the Gabor filter. We treat here two cases, the case of a sinusoid and the case of an edge
modelled as a superposition of sinusoidal functions.

In the sinusoidal case the left and right signals read
T.(x) = sin(wer)
Ti(x) = sin(wo(x + di))
where d;,. is the true disparity. The edge signals are given by following expansions

sin(3wox)  sin(Swox)
3 5

Eiz) = sin(wol(z + dyy)) + Sin(3“0(§ +di)) | Sin(5wo(5x +dy))

E.(z) = sin(wox) +

We will study the case of a linear ground-truth disparity d;.(x) = Az + B analytically and
the case of a quadratically varying disparity in simulations. Last we will apply our theory
on real stereo images with known ground-truth.

3 Analysis of a sinusoidal pattern

In the case of a sinusoidal pattern the local phase ¢;/.(z) and its derivative gb;/r(:zj) are
functions of the Gabor-filter parameter w,,t, the signal frequency wy = 27 /Mg and the
parameters A, B of the disparity variation. Our goal is to study the effects of the above
parameters on the instantaneous frequency wj,s; and the disparity estimate d(z).
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The convolutions of the harmonic functions 7, /() with the Gabor filter G(x;w,,t) yield
responses with phases ¢, /(z) = arg[G * T, ;i(x)] e.q:

tanh(o?wow, /2)

tan(wox)

¢r(x) = arctan(—

(7)

The corresonding first derivative of the local phase with respect to x reads:

tanh(20%wow
qb;,(l’) = o (cos(ZwSx)g)
(1 o Cosh(2cr2w0wg))

(8)

The same expressions are obtained for the left signal with &y = wo(A + 1) instead of wy and
the phase shifted by a constant offset wgB.

Without loss of generality we assume that wi™* > w;"*" for the case of a sinusoid, which
means that the signal wavelength is smaller than the filter wavelength. The violation of this
assumption is shown in Fig. 1.
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Fig. 1: Nonlinear behavior of the local phase corresponding equation to (7) if wy < wy instead of our
assumption wg'®® > wre®. left: ¢(x + Ar + B) and right: ¢,(z) (wo = 1/6,wy = 1/3,0 = 1.9 and
A=03,B=0)

To improve the intuitive understanding of the above expressions we use wavelengths mea-
sured in pixels instead of frequencies with Ao = 27 /wy for the signal and A, = 27 /w, for the
Gabor-filter, respectively.

For the disparity computation in eq. (5) we use the average of the left and right signal

4
(¢)(x) + ¢l (x))

as the instantaneous wavelength A5 () of the Gabor response [3]. Langley et al. [9] defined
a magnitude weighted sum of the local phase derivatives instead of the average.

)\mst(l’) = (9)
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Fig. 2: Behavior of the instantaneous frequency Ajns:(2) (left) and the local energy as a function of the
Gabor wavelength A, (right) (¢t = 0.66, A, = 50 pixel) for a sinusoidal signal with Ag = 30 pixel.

We observe in eq. (8) and in Fig. 2 that the instantaneous wavelength spatially oscillates
cos(2wo )
cosh(202wowy)
the instantaneous wavelength oscillates between \g — 25% < Aipst(2) < Ao + 33%. However,
the spatial average over a local region (Fig. 2, left) is still equal to Ao, as expected according

to the theory on instantaneous frequency.

with a frequency 2wy due to the fraction in eq. (8). In the special case A\, = A\gt?

We observe in eq. (8) that w;,s is equal to the signal frequency wy only if tanh(20wow,) is
approximately one. This condition can be achieved if

Ay > Aot?. (10)

If this inequality is satisfied the instantaneous wavelength represents the signal wavelength
Ainst 2 Ag of the signal over a wide region in the Gabor parameter space (A, 1) (see Fig. 3).

In Fig. 2 (right) we observe as expected that the maximum of the local energy achieves
its maximum if the Gabor-filter wavelength A, at a given pixel z coincides with the signal
wavelength Ag. The practical effect is crucial: If we rely on a maximum response analysis
in order to find the optimal scale we have to filter with different wavelengths to capture
the variation of the responses in Fig. 2 (right). If we compute the instantaneous frequency
just one filter response suffices to obtain the optimal scale with a negligible error if not
exact when X\, > Agt? is satisfied. We will also see in the next section that the influence of
the wavelength-bandwidth ratio ¢ has also minor effects. The instantaneous wavelength is
constant over the major part of the parameter space (A, ).

The computation of the instantaneous wavelength leads directly to an estimate of the optimal
scale without any maximum search over different filter responses which is computational
expensive especially for real time implementations.



3.1 Accuracy of disparity estimation in sinusoids

We address the accuracy of the disparity estimation for two models: the constant model
using the filter frequency in eq. (2) and the instantaneous model using eq. (5). We choose

the true disparity dy.(¢) = Az + B with A = 0.1 and B = 1. The choice of the disparity

gradient A # 0 yields a scaling by ﬁ of the signal wavelength Ay in the left view.
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Fig. 3: Absolute error (geom. in pixel) of disparity estimation at position x=0 as a function of bandwidth
factor ¢ and Gabor wavelength A,. The signal wavelength is Ay = 30 pixel and the true disparity is one
pixel.(left) The error increases for the instantaneous model, if A, & Agt?. (right) The error for the constant
model is generally much more higher with the exception, if Ag & Ag.

We analytically compute the disparity for both models and use the absolute error Adys(x) =
|dir(2) — dese()] to compare both models for a given position @ = 0 where d;,.(0) = 1. Fig.3
shows the variation of the absolute disparity error at * = 0 as a function of the Gabor-filter
parameters (A;,t). The range (A,,t) = (10...63,0.2...0.7) of these parameters is according to
the implementation in a hierarchical scheme in a real-time architecture.

In Fig.3 (left) we observe that the absolute disparity error is very low if the instantaneous
frequency is used and condition (10) is satisfied. The phase difference ¢;(x) — ¢,(x) and
the instantaneous wavelength are nearly independent of the Gabor-filter wavelength A, and
strongly dependent on the signal wavelength Ay for a wide variation of the bandwidth factor
t. The constant model Fig.3 (right) is not able to deal with phase differences independent
of A, and this leads directly to an error Adgs(x) ~ |A, — Ao| in disparity estimation.

The use of the instantaneous model (5) definitely leads to better results than the constant
model (2). The relative error varies from 5% to 7% in the instantaneous and 0.1% to 100%
in the constant model. The error of the instantaneous model is due to the disparity gradient
A and will be analyzed next.

In Fig. 4 we show the disparity error as a function of filter wavelength and spatial position
for the instantaneous model (left) and the constant model (right). For the majority of filter
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Fig. 4: Absolute error in disparity estimation for the instantaneous model (left) and the constant model
(right) as a function of position x and Gabor-filter wavelength A;. The disparity is linear d¢, = Az 4+ B with
A =0.1, B=1 and the bandwidth factor is { = 0.33. The signal wavelength is Ao = 30 pixel.

wavelengths the instantaneous model outperforms the constant model. However, we notice
that the absolute error in the constant model is very low independently of x if A, = Aq.

\Wavel engt h

Fig. b: Difference Adconst. — Adinse () of the absolute errors in disparity estimation using the instantaneous
and the constant model as a function of the filter wavelength and the spatial position z (left) and as a
function of the disparity gradient A and the Gabor-filter wavelength A, (right). Negative values indicate
that the constant model achieves a lower error than the instantaneous model for this small region near

Ag ~ Ao.

We will inspect closer a small neighborhood at A, &~ Xo. In Fig. 5 (left) we show the
difference in the errors between the constant and the instantaneous models where negative



values indicate a lower error. We see that for the area between the two straight iso-contours
the constant model exhibits lower error than the instantaneous one. The more the tuning
wavelength differs from the ground-truth frequency the better becomes the instantaneous
model. The variation with respect to = is coupled with the disparity gradient A. In Fig. 5
(right) the error difference is plotted as a function of the disparity gradient A and the
wavelength range in the immediate neighborhood of the signal wavelength. The error in the
instantaneous model increases with the disparity gradient A. Due to the decreasing signal
wavelength Ao = Ao/(A+ 1) in the left image, the instantaneous wavelength as the average
of the right and left instantaneous wavelength (see definition. 9) is only an approximation
for small disparity gradients in the signals. The absolute error for the instantaneous model
can be estimated by Adgps() ~ AL-H derived from the difference between the instantaneous
wavelengths in the left and the right signals.

4 Analysis in case of an edge

In order to guarantee that our superposition edge model (7) acts as an edge during filtering
we restrict the filter wavelengths to be smaller than half the maximum wavelength of the
AQ—O. This restriction is illustrated in Figure 6. In fact, what we
are doing is to sample the edge spectrum [(w) ~

superposition model: A, <

% at the positions wg, 3wy and 5wy.

-100 50 100

-100 -50 29 50 100

Fig. 6: The edge function with wavelength Ag = 120 pixel (left) and the odd part of the Gabor-filter with
Ag = b0 pixel < Ag/2, t = 0.33 (right).

Convolving symbolically ! the Gabor-filter with the edge functions E,(z) leads to much
longer analytical expressions for the local phase ¢;(x), ¢,(«) and the instantaneous wave-
length A;,: than in the sinusoid case. We will show the plots instead of bothering the reader
with page-long formulas.

! Using the symbolic package MAPLE.



We show in Fig. 7 the instantaneous wavelength and the energy as a function of the filter-
wavelength A,. The inherent frequencies of the signal are manifested as local plateaus and
local maxima in the instantaneous wavelength and the local energy, respectively.
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Fig. 7: (left) Behavior of the instantaneous wavelength A;,5¢ with Ag=120 pixel and (right) the local energy
at an edge as functions of the Gabor-filter wavelength A, at position z = 0.

4.1 Accuracy of disparity estimation at an edge

The assumptions and definitions are applied as in the case of an edge. The behavior of the
disparity error as a function of filter-wavelength A, and ¢ is the same as in the sinusoidal case
(Fig. 3). To avoid replication we show the effect of filter-bandwidth on the disparity error
in the instantaneous model (Fig. 8 left) and in the constant model (Fig. 8 left), respectively.

0. 0008

0. 0006 0.5

0. 0004

0. 0002

20 40 60 80 100 120 20 40 60 80 100 120
Wavel engt h Wavel engt h

Fig. 8: Absolute error Adgap,(2) at position =0 as a function of Gabor-filter wavelength A, for the instan-
taneous (left) and the constant model (right). (t=0.4 edge wavelength is Ag=120 pixel, dy,=1 pixel).
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Using the instantaneous model the relative error decreased from 10% - 70 % to ~ 0 %- 0.1
% in comparison to the constant model.

We next study the reasons for the high error in the constant model which increases even
more in the neighborhood of an edge. The local phase does not behave linearly in the
neighborhood of an edge. Although the disparity may be constant the phase difference is
not constant and varies with Ag/2, the wavelength corresponding to the considered signal

region (Fig. 9 left).

On the other hand, the phase derivative is also oscillating because the inequality A, > Agt?
concerning the sinusoidal case is no more valid. The filter wavelengths are always larger than
Ao due to the superposition model applied. Therefore, we observe the oscillating pattern in
the instantaneous frequency (Fig. 9 right) with the same period Ao/2, as that of the phase
difference (Fig. 9 left). When the phase difference is divided by the phase derivative to obtain
the disparity the two oscillating patterns cancel because they have almost the same offset
regarding x. This cancelation explains the law error in the instantaneous model and is the
reason for the high error of the constant model, too. The disparity errors still oscillates with
high magnitude because the phase difference is divided by a spatially constant frequency.

s\

\\\\\\\\\\

9 5077710060 wavel engt h x =50 770060 vavel ength

Fig. 9: The oscillations of the phase difference (left) and the phase derivative (right) with a frequency (/s 2wy)
as a function of the Gabor-filter wavelength A, and the position #. (¢ = 0.66, A = 120 and B = 1 pixel.)

5 Simulations with perspective foreshortening

In the previous sections we could treat all expressions analytically because we assumed
spatially linear disparity. In this section we will study a quadratic disparity model in order
to describe the perspective effects of a viewed slanted plane. We will again find out that
the expressions concerning the simple sinusoid in section 3 are still useful if we assume
nonlinear disparity. Fixating to a point of a flat surface leads to an approximately second
order disparity model d(z) = Cz*+4 Az. By fixation the disparity near the center is vanished
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Fig. 10: On the left of the figure we show superimposed the signal of the left view (dotted line) and that
of the right view (continuous line). The reader can observe the vanishing disparity in the center due to
fixation. On the right we show the instantaneous wavelength (average of the left and right phase derivatives)
as a function of spatial position z with a Gabor-filter of wavelength A\, = 63 pixel (left), computed in a
simulation.

and the wavelengths in both signals (left/right) are similar. The obtained stereo signals are
shown on the left of Fig. 10. The measured instantaneous wavelength A;,s; for one of the
Gabor-filter wavelengths is shown in Fig. 10 (right). The decrease of A5 is overlayed by an
oscillation in & due to the small violation of the inequality constraint (10).

Disparity Disparity

! T T ! T
0.000 0. 100 o0.200 0.300 0.400 0.511 0.000 0. 100 o0.200 0.300 0.400 0.511

x (10e3) x (10e3)

Fig. 11: True disparity (continuous smooth line), disparity estimate for the instantaneous model (dotted line)
and disparity estimate for the constant model (continuous line far from the ground truth) for a Gabor-filter
Ag=063 pixel are shown on the left. On the right we show the same curves but for a Gabor filter tuned to
the center instantaneous frequency Ajpse(2 = 256)

This oscillation affects also the error in the disparity plotted on the left of Fig.11 obtained
by both models for a Gabor filter with wavelength A;=63 pixels. We repeat the same curves
on the right of Fig.11 but this time obtained from filtering with a Gabor with wavelength
equal to the instantaneous wavelength at the center. We observe that the constant model
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1 (x)

performs better but does not reach the performance of the instantaneous model which is an
order of magnitude closer to the ground-truth at almost every position in the image. The
results (Fig.11) emphasize that the instantaneous model provides good results without a
special filter tuning.

5.1 Application to real images

Fig. 12: Stereo images of our lab with some well structured regions at the wall. The system fixates the black
cross. The white line indicates the 1D-signal used in further plots.

We will apply the methods of the previous section at a real stereo image pair which contains
edges and textured areas (Figure 12). The stereo system fixates the black cross at the wall.
The true disparity in Fig. 13 is computed from the simulation by calibrating the extrinsic
and intrinsic camera parameter in relation to the wall. Due to the errors resulting from the
erroneous calibration an exact quantitative comparison is not possible. In the following we
will use this calibration result as ground-truth.

Real signal I/r Disparity Disparity

204
|
2
2

5.000  ©.100  0.200  0.300 _ ©.400 0.511 5.000  ©.100  0.200  0.300  ©.400 0.511 5.000  ©.100  0.200  0.300  ©.400 0.511
pixel (10e3) x (10e3) x (10e3)

Fig. 13: Signals (1/r) of the real images with different amplitudes at row 260 through the image center (left).
True and estimated disparity for a Gabor-filter (A;=63 pixel, {=0.66) (middle) and a Gabor-filter tuned
(Ag=bb pixel, t=0.33) to the instantaneous wavelength A;,.+(x = 256) (right). The smooth line represents
the true disparity.

The results in Fig. 13 for this row (and others) are nearly the same as in the simulation.
The instantaneous model provides a good approximation of the true disparity with both
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Gabor-filters (Fig. 13 middle). The constant model (Fig. 13 right) has to be tuned to the
measured instantaneous wavelength A;,5:(256)=>55 of the row center in order to get a good
local approximation near the center. The zero disparities outside the center are regions of
unreliable phase information where the Gabor-filter response is below a chosen threshold
(15% of the magnitude maximum).

Both models were also applied in the entire image without tuning. The disparity map
(Fig. 14) on the left is the ground truth masked with a confidence map of areas of stable
phase information which is always necessary in such approach. The instantaneous and the
constant disparity model are shown on the middle and left of Fig. 14, respectively.

Fig. 14: Qualitative results in disparity estimation: (left) the true disparity map of the images pair. (middle)
Disparity map estimated with the instantaneous model, (right) disparity map estimated with the constant

model (A;=63 pixel, t=0.33).

6 Conclusions

We have analytically studied the behavior of the constant and the instantaneous model for
disparity estimation using complex Gabor- filters. The instantaneous model has a superior
performance over the entire spectrum of filter-wavelengths whereas the constant model results
are not useful at all over the most wavelengths. Until now the procedure was to optimize by
tuning near the frequency of maximal response. This procedure could be computationally
expensive and can fail if such an unique maximum does not exist. Tuning the filters to the
instantaneous frequency improves their performance, a step that in most cases is not even
necessary. Taking the phase differences over the instantaneous frequency performs perfectly
for most filter-wavelengths.
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