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Abstract 1 Introduction and Motiva-

In multi-dimensional signal processing the Clifford
Fourier transform (CFT or in the 2-D case: quater-
nionic Fourier transform/QFT) is a consequent ex-
tension of the complex valued Fourier transform.
Hence, we need a fast algorithm in order to com-
pute the transform in practical applications. Since
the CFT is based on a corresponding Clifford alge-
bra (CA) and CAs are not commutative in general,
we cannot simply apply the n-dimensional decima-
tion method as in the complex case. We propose a
solution for this problem for real signals. The idea
is to embed the CFT in a different algebra which
is isomorphic to the m-fold Cartesian product of
the complex numbers. Since this approach only
works for real signals, we have to develop a differ-
ent method for Clifford valued signals. We present
two ways of calculating the CFT: one using the
just mentioned transform for real signals and one
approach using 1-D FFTs similar to row-column
transforms in the 2-D case. All described algo-
rithms are explicitly formulated for the 3-D case
(8-D CA) and the asymptotic complexities are cal-
culated. On modern computers all floating point
operations except for divisions and square-roots are
performed in the same time. Therefore, we always
consider the whole number of floating point opera-
tions.

*This work was supported by the DFG (So-320/2-1).
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The signal theory which is applied in image pro-
cessing up to now is a simple ’blow-up‘ extension
of the classical one-dimensional signal theory. Since
the complex valued signal theory includes several
drawbacks for dimensions higher than two, there is
a need for an intrinsic n-D signal theory.

e In the n-D complex signal theory Hermite sym-
metry is lost (n > 1). That means that we
have no simple symmetry property of the spec-
trum of a real signal any more.

e The commonly used analytic signal has neg-
ative frequencies. Since the spectrum does
not contain enough redundancy, we cannot de-
scribe the signal with positive frequencies only.

e The phase concept is intrinsically one-
dimensional. A complex number cannot have
more than one phase. For multi-dimensional
signal processing one phase is not sufficient.

These signal theoretic facts yield several practical
drawbacks.

e There is no linear approach for the detection
of junctions and corners which is comparable
to the detection of lines and edges.

e Some distortion only appear for higher dimen-
sions, e.g., rotations. The complex signal the-
ory does not include powerful concepts for
dealing with these new distortions.



e The filter design is far from being isotropic.
The response of a filter is closely related to its
orientation.

Our idea is to develop a hypercomplex signal the-
ory which solves the mentioned problems [5, 16].
We hope that an extended algebraic framework
yields more powerful tools for multi-dimensional
signal processing. In order to make experiments
we need fast algorithms for working with the hy-
percomplex Fourier transforms. These algorithms
will be presented in the following.

2 Basics

In this section we present some algebraic frame-
work about quaternions and Clifford algebras (see
e.g. [15, 17]). Furthermore, we define the quater-
nionic Fourier transform and the Clifford Fourier
transform.

2.1 Algebraic Framework

The algebra of quaternions which is denoted by H
is formed by three imaginary units i, j, k where

=52 =k=-1 )
ij=—ji=k . (2)

These formulae induce the quaternionic product.
Addition and difference is defined component-wise.
Therefore, the quaternions form an associative but
non-commutative algebra (a so called skew field).
A general quaternion ¢ = a + b2 4+ ¢j + dk consists
of four independent coefficients.

The generalization of complex numbers and
quaternions is the Clifford Algebra. In our case,
a Clifford Algebra of dimension 2" is denoted by
Ro,,. That means that we have an underlying n-
D vectorspace with Euclidean norm!. From the n
basis elements we can construct 27 — 1 imaginary
units where

e the n basis elements ey, ..., e, square to —1

e we have (’;) imaginary units of the form
€q€p = —€p€q = €gp

INote that the signature of a basis element of a Clifford
algebra is the inverse of the quadratic form of the corre-
sponding vectorspace element, see [14].

e we have (g) imaginary units of the form
€3€hc = €qabc

e up to one unit e, .

Therefore, a general Rg ,, element is a 2”-D vector.
The product on Rg 5, is defined by the relations be-
tween the basis elements and the distributive law.

2.2 Definition of the QFT/CFT

Based on the just introduced algebraic framework,
we can define the quaternionic Fourier transform.

Definition 1 (QFT) The Quaternionic Fourier
Transform (QFT) is defined by

Fq(u,v):/ e f(x y)e IV dr dy  (3)
RZ

This definition can be found in [4, 10, 11].

The QFT is quaternionic Hermite symmetric.
That means that the quaternionic spectrum of a
real signal has a real part which is symmetric wrt.
both coordinate axes and imaginary parts which
are symmetric/antisymmetric wrt. the coordinate
axes:

wrt. z-axis wrt. y-axis
real part symmetric symmetric
i-part antisymmetric symmetric
j-part symmetric antisymmetric
k-part antisymmetric | antisymmetric

Table 1: Hermite symmetry of the QFT

The generalization of the QFT is the Clifford
Fourier transform.

Definition 2 (CFT) The Clifford Fourier Trans-
form (CFT) is defined by

n

Fe(u)= [ fla) [[e o>

R~

(4)

7j=1

This definition can be found in [4, 3].

The CFT is Clifford Hermite symmetric, which is
the systematic extension of the quaternionic Her-
mite symmetry. In particular, the spectrum of a
real signal is completely contained in one orthant.



2.3 Fast Algorithms by DOT

The decimation of time method (for a 1-D signal)
is based on two effects. Firstly, the discrete Fourier
transform of a signal does not change, if zeroes are
inserted between the signal values (see Fig. 1).
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Figure 1: Spectra of a signal with and without in-
serted zeroes

Secondly, we need the shift theorem of the
Fourier transform. For a shift of one position in
spatial domain we obtain the phase factor e=%27%
in frequency domain.

Using this two effects, we can decompose the 1-D
signal f into two signals f, and f, (see Fig. 2). The
zeroes of f. and of the shifted version of f, can be
omitted without changing the spectra. Therefore,
we obtain the spectrum of f by adding the spectra
of the partial signals, where the second spectrum
must be multiplied by ¢>™* in order to eliminate
the shift operation.
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Figure 2: Decimation of time

If we decompose a two-dimensional spectrum,

we obtain four addends, where one is unshifted,
two are shifted wrt. one coordinate and one is
shifted wrt. both coordinates. Together with the
re-ordering at the beginning?, we obtain the fol-
lowing data-flow graph:
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Figure 3: Data-flow in a 2-D decomposition

3 Fast Hypercomplex Trans-
forms

In this section, we firstly apply the DOT-method
to the QFT and we show why we cannot apply it
to the CFT3. In order to solve this problem, we
introduce a new algebra and a new hypercomplex
Fourier transform for which we develop fast algo-
rithms in the last part of this section.

3.1 FQFT but no FCFT3

Firstly, we develop a fast quaternionic Fourier
transform. The starting point for the fast algo-
rithm is the discrete QFT.

Definition 3 (DQFT) The discrete quaternionic
Fourier transform (DQFT) is defined by

N-— -1
—i2nrux /N —j2nvy/N
Fuy = E e / foye™ yIN
0

z

(5)

z=0

<
I

2By applying the bit-change-rule, we can omit that the
data must be copied during the execution of the FFT algo-
rithm.



By applying the 2-D DOT-method to the DQFT,
we obtain the following derivation

N/2-1 1

Fu,u Z Z (e_i27"“(2$1+xu)/N.

r1,y1=0 £o,yo=0

'f‘71?1+170 9U1+y06_j27m(2y1+y0)/N)

— F'j,e'u +6—i27ru/NF5’eU —|—F5’0U6_j27w/N—‘r
(6)

In order to understand the problem which occurs
in the context of fast algorithms in Clifford alge-
bra, we can reduce our considerations to the shift
theorem. The decomposition of the spectrum does
not yield any problem if the underlying algebra is
changed. Therefore, we only have to explore the
effect of shift operations in the spectrum.

For the QFT, we have the following shift theo-
rem:

+6—i27ru/NFoo e—j27rv/N
u,v :

F(z 4 & y+n) ome e 2T, v)e 2T (T)
Therefore, we obtain (6).

The question is now if we can state such a fac-
torized shift theorem for higher dimensions, too:

”
fle+&y+nz+w) o
FC(U, v, w)e—e127ru§e—e227rune—e327rww 7 (8)
The answer is obviously no, due to the non-
commutativity of Clifford algebras. We have two
ways of multiplication, this is from the left and
from the right. Therefore, we can circumvent the
problem of the non-commutativity in the quater-
nion algebra, i.e. we can factorize terms of e; to

the left and terms of e, to the right:

681(¢1+¢2)eez(¢3+¢4) — e®1¢1 (eel¢2€ez¢4)eez¢a ]

But we cannot factorize the CFT kernel if we have
more than two different imaginary units in the ex-
ponential functions because at least two terms have
to commute:

eer1é1 eez(¢2+9)eea¢3 ;é €181 0202 €303 e2f

Therefore, we cannot apply the DOT-method for
CFTn with n > 2.

3.2 Commutative Hypercomplex
Fourier Transform and its Prop-
erties

The basic idea to overcome this problem is to
embed the hypercomplex Fourier transform in a
slightly different algebra. This new algebra has to
be commutative. We reach this aim by changing
the rules for the multiplication (see [9]):

9)

Obviously, we create a commutative hypercomplex
algebra (see [21]) by these rules. Analogously to
Clifford algebras, we denote the commutative alge-
bras by H,. By the mapping

e1/ezl = e2’e1’ = e12’ .

IRIR1I®. ..
e — 1®Iil®...

ell —

we obtain an isomorphism between #,, and C®".
In the algebra #,, we can define an integral trans-
form which is similar to the CFT:

Definition 4 (HFT) The commutative hyper-
compler Fourier transform (HFT) is defined

by

_ n Ao
(m)e 27r2:]=1 ej'u;r; gn .
R~

F"(u) = (10)
This definition can be found in [12].

The HFT is hypercomplex Hermite symmetric
which means that it has the same symmetry prop-
erties as the CFT.

Actually, there are even more similarities to the
CFT. If we consider the CFT of a real signal, the
CFT only consists of ordered multiplications (or-
dered wrt. the index set of the imaginary units).
Therefore, the HFT and the CFT yield the same
coefficients and by a simple exchange of the imagi-
nary units with the same index we can obtain one
transform from the other one.

Furthermore, we have proved that the n-fold ten-
sor product of the algebra of complex numbers is
isomorphic to the 27~ !-fold Cartesian product of
complex numbers:

-1

cen = (11)



see, for example, [13]. The proof makes use of the
matrix representation of both algebras. In partic-
ular, we perform an eigenvalue transform on the
matrix representation of #H,,.

The eigenvectors of the eigenvalue transform
yield a correspondence of the HFTn and the com-
plex FTn, where ¢ = e;":

(I —e")F(u,v) + (1 +e12')F(u,—v)
2

for n = 2 and

Fh(u, v, w)
= ( ( R w)(l — e12l — e13l - eQSI)
+ F(u,v,—w)(1 — e’ + e1s’ + ea3’)
+ F(u, —v, w)(l +e12 —es’ + ess)
+ Fu,—v,—w)(1 4 e1s’ + e1s’ — es3')) /4
for n = 3.

3.3 Two Approaches for FAs

Using the HFT, we are able to introduce a straight-
forward fast algorithm, since the shift theorem of
the HFT reads

fle+&y+nz+w)

] (12)
Fh (U, v, w)e—27r(e1'u5+e2'vn+e3'ww)

Therefore, we can apply the decimation of time
method. For the case n = 3 we obtain (using the
abbreviations: w® = e~2"e1 ¥ etc.)

e’ + Fh e,

806

Fh = ph +Fh

eee oeeW
h ez h
+Fooe + F

ea h e’ es
eeoW + Foeow w

h ey es h ey’
+ P2 w® w® 4 F w® "we e ,

which yields a fast algorithm for real and H3-valued

3-D signals.

If we want to transform Rggz-valued sig-
nals, we can develop a fast algorithm by
decomposing the signal into 8 real signals

fo, f1, f2, fi2, f3, f13, f3, f123 and calculating eight

HFTs afterwards. Due to linearity we obtain the
CFT from the HFTs by:

F¢=Fl 4 e F! + e3F} +e1oFl, + esF?

+ e3Py + exs Pl + ernsFlhy |
where e.’ is substituted by e..

A second idea for developing fast algorithms is to
use complex FFT2 (FFT3) algorithms and to apply
the isomorphism between H and C2 (H3 and fC4)
This method works for real and H,- (H3-)valued
signals.

If we consider that the most FFT2/FFT3 al-
gorithms are implemented as a row-column algo-
rithm of the FFT1 (i.e. the separability of the ker-
nel is utilized, see [2, 18]) we can optimize the sec-
ond idea. We can directly apply the row-column
method to the HFT (i.e. separate the HFT kernel)
and obtain algorithms which are based on complex
FFT1s. The following table shows the number of
FFT1s needed for the HFT2 and the HF T3, respec-
tively:

| HFT2 HFT3
real 3 7
Hoys3-valued 4 12

Table 2: Number of FFT1s

Now, the question rises if we can use a similar
construction for calculating the QFT. If we sepa-
rate the QFT kernel, we obtain

wfu! = (w;fr]-f-ifi)-i-wi(}gj-i-i];k)j)w]
T ==
(Fr + jFj)w’ +i(F; + jFy)w’

which is not so surprising because we can directly
develop a fast algorithm for the QFT by decimation
of time. The question which is more interesting
is if we can apply the analogous construction for
the CFT3. The CFT3 kernel itself is separable,
of course, but the missing commutativity im-
pedes the factorization of the whole transform.
Nevertheless, by changing some signs, we obtain
the following set of equations, which yields a
row-column algorithm for the CFT3 with the same
number of FFT1s as the algorithm for the HFT3.



(fo+ fier + faea + fioe1s + faes + fizeis + fazess + frazerss)w w2 w®?
= ((fo+ fien)w® +es(fo — frae)w® +es(fs — fizer)w® +eas(fas + frazer)w® w2 w®

vy U

e &

—_——

= ( fo + f1e1 + fze2 — f1ze12 + f3e3 — f13613 + f23623 + f?123e123)we2we‘°’

= ((fo + fare)w®? +e1(f1 - f1282)we2 +es(f3 - f2382)we2 - e13(f13 + f12362)we2)we3

N U

V e

e
= (Fy + Faea+ Fre; + Fiaeis + Fzeg — Fageas — Fizers + Fraogegas)w®?
= (Fo + Faes)w® + ey(Fy — Fazes)w® + e1(Fy — Fizes)w®™ + e1a(Fia + Fiazes)w®™

4 Complexities

We have presented so far different algorithms for
calculating the 2-D and 3-D hypercomplex trans-
forms of a real or hypercomplex signal. In the fol-
lowing table the complexities of all considered algo-
rithms can be found (k = log, N). Since on mod-
ern computers, all floating point operations except
for divisions and square-roots are performed in the
same time (see [22, 20, 8]), we have only considered
the total number of operations. Furthermore, we
have omitted the possibility of calculating the hy-
percomplex spectra of a real signal from the Hartley
transform of the signal.

algorithm operations
FQFT/FHFT?2 real” 6k N2
FQFT/FHFT2 hypercomplex 24k N?
2-D row-column real™* 7.5kN?
2-D row-column hypercomplex 20kN?
FHFT3/FCFT3 real” 11.5kN3
FHFT3 hypercomplex 92k N3
3-D row-column real™* 17.5kN3
3-D row-column hypercomplex 60kN3
FCFT3 by 8 FHFT3 (real) 92k N3

*optimized real transforms (e.g. overlapping [6, 7])
*FFT1 with 2.5k N operations (optimized)

Table 3: Complexities of the considered algorithms

The following diagrams visualize the results from
table 3. Note that we did not separate the sign-
permutation matrix for the 2-D DOT algorithms.
This would lower the arithmetic complexity of the
FQFT to 5kNZ2. In comparison, the FFT2 (by 2-D
DOT) has a complexity of 6.25kN? (4.25kN? with
separation) arithmetic operations. Therefore, the
graph for the FFT2 is (nearly) the same as the one
for the FQFT in Fig. 4.
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Figure 4: Complexities for transforms of real 2-D
signals



% 10 2-D transforms of hypercomplex signals
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Figure 6: Complexities for transforms of real 3-D
signals

5 Conclusion and Discussion

We can summarize the results of this paper as fol-
lows:

e The CFT is not the only transform which sep-
arates all symmetries. Therefore, the HFT has
a right to exist besides the CFT.

x 10%° 3-D transforms of hypercomplex signals
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10f FHFT3/FCFT3

number of operations
(2]

row-column
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N
Figure 7: Complexities for transforms of hypercom-
plex 3-D signals

e The HFT is graphically even more intuitive
since the algebra H, can be interpreted as the
tensor product of n complex planes.

e We have shown that the n-D FCFT/FHFT al-
gorithms are as fast as the n-D FFT algorithms
(for real signals).

e There is a linear relation between the complex-
ity increase and the dimension of the algebra.

e The results in the table of complexities and
the corresponding diagrams show that for hy-
percomplex signals the row-column method is
superior to the decimation of time method.

e The implementation of the row-column

method is faster for real signals, too, though

its asymptotic complexity is higher.

In this paper, we have presented the algorithmic
framework which is needed for further research on
hypercomplex signal analysis. Especially the de-
sign of hypercomplex filters will be an interesting
object in future. We will try to find new signal em-
beddings in order to obtain more powerful spectral
representations (see e.g. [1, 19]). For all these ap-
proaches and the accompanying experiments, the
existence of fast algorithms i1s of fundamental im-
portance.
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