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9.1 Introduction

In Chap. 8 the approach of the Clifford Fourier transform (CFT) and of
the quaternionic Fourier transform (QFT) have been introduced. We have
shown that the CFT yields an extended and more efficient multi-dimensional
signal theory compared to the theory based on complex numbers. Though the
CFT of a real signal does not include new information (the complex Fourier
transform is a complete transform in the mathematical sense), the Clifford
spectrum is a richer representation with respect to the symmetry concepts
of n-D signals than the complex spectrum. Furthermore, the possibility of
designing Clifford-valued filters represents a fundamental extension in multi-
dimensional signal theory. Our future aim is to develop principles for the
design of hypercomplex filters. The first method is introduced in Chap. 11,
where the quaternionic Gabor filters are explored.

One main property of Clifford algebras is the non-commutativity of the
Clifford product. This property is impractical in some cases of analytic and
numerical calculations. Some theorems are very complicated to formulate in
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higher dimensions, e.g. the affine theorem (The. 8.4.9) and the convolution
theorem (The. 8.4.3). Similar problems occur in the derivation of fast algo-
rithms (Chap. 10), because for the decimation of space method, the exponen-
tial functions need to be separated. Due to non-commutativity, the additional
exponential terms cannot be sorted, and hence, no closed formulation of the
partial spectra is obtained.

Therefore, we have generalized the approach of Davenport [58], who in-
troduces ’a commutative hypercomplex algebra with associated function the-
ory‘. Davenport uses the C? algebra (commutative ring with unity) in order
to extend the classical complex analysis for treating four-dimensional vari-
ables, which are similar to quaternions. Ell [69] applies this approach to the
quaternionic Fourier transform in order to simplify the convolution theorem.

We have picked up this idea to develop fast algorithms for the CFT
(Chap. 10). For the separation of the CFT-kernel, we need a commutative
algebra. Therefore, we have designed a new transform which is based on a dif-
ferent algebra, but yields the same spectrum as the CFT for real signals. For
hypercomplex valued signals the spectrum differs from the Clifford spectrum.

Though it seems that the commutative hypercomplex Fourier transform
(HFT) is no more than a tool for easier or faster calculation of the CFT, we
will show in this chapter, that the HFT has the same right to exist as the
CFT, because neither transform can be considered to be the correct extension
of the complex Fourier transform (both yield the complex FT in the 1-D case).
Up to now, there is no fundamental reason that determines which transform
to use. Therefore, we study the properties of both transforms.

In this chapter we show several important properties of the algebra that
generalizes Davenport’s approach. After introducing the algebraic framework,
we define the HFT and prove several theorems. We do this to motivate the
reader to make his own experiments. This chapter together with Chap. 10
should form a base for further analytic and numerical investigations.

9.2 Hypercomplex Algebras

In this section, we define the algebraic framework for the rest of the chapter.
The term hypercomplex algebra is explained and a specific four-dimensional
algebra is introduced.

9.2.1 Basic Definitions

In general, a hypercomplex algebra is generated by a hypercomplex number
system and a multiplication which satisfies the algebra axioms (see [129]).

To start with, we define what is meant by the term hypercomplex number
(see also Cha. 7):
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Definition 9.2.1 (Hypercomplex numbers). A hypercomplex number of
dimension n is an expression of the form
a=ag+ a1i1 + a2i2 +...+ an—lin—l (91)
where a; € R for all j € {0,... ,n—1} and i; (j € {1,... ,n—1}) are formal
symbols (often called imaginary units). Two hypercomplex numbers
a=ay+aiiy+ ...+ a, 191 and
b = bg + blil +...+ bn—lin—l
are equal if and only if a; = b; for all j € {0,... ,n —1}.
Take, for example, n = 2. In this case we obtain numbers of the form
ag + ayi; — this could be the complex numbers, dual numbers or double
numbers. If n = 4 we obtain numbers of the form ag+ a141 + asi2 + asziz. This

could be the quaternions or the commutative algebra which we will introduce
at the end of this section.

Definition 9.2.2 (Addition, subtraction, and multiplication). The
addition of two hypercompler numbers a and b is defined by
a+b= (ao +aii1 + ...+ anflinfl) + (bo +biig + ...+ bnflinfl)
=(ag +bo) + (a1 +b1)is + ...+ (@n_1 + bp_1)in_1 (9.2)
and their subtraction is defined by
a—b= (a() +aii1 +...+ an_lz’n_l) — (b() +biig +...+ bn—lin—l)
= (CL() — bo) + (a1 — bl)il + ...+ (an_l — bn—l)in—l . (93)

The multiplication of two hypercomplex numbers is defined by an
(n — 1) x (n — 1) multiplication table with the entries

iaisg = pg° +pPPir + .+ 2P i (9.4)
where a, B € {1,...,n —1}. The product
ab = (CL() +a1i1 + ...+ an_lin_l)(bo +biir+...+ bn—lin—l) (95)

is evaluated by using the distributive law and the multiplication table.

The sum and the difference of two hypercomplex numbers are calculated
like in an n-dimensional vectorspace with the base vectors 1,41,42,... ,in_1.
The product is more general than a vectorspace product: we can embed the
commonly used products in this hypercomplex product.

If we, for example, consider the scalar product according to the Euclidean
norm, then we have p?ﬁ =0 for j # 0 and pg® =1 for a = 6.

Standard algebra products are covered by the hypercomplex product, too.
For example, the product of the algebra of complex numbers is obtained for
n =2, pi* = —1 and pi' = 0. The quaternion product is obtained by the
following table 9.1. According to this table, we have p§/ = —1 (j = 1,2,3),
Pl =0(=1,23k=1,23), etc..
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Table 9.1. Multiplication table of the quaternion algebra

1 12 i3
1 —1 i3 —t2
2 —t3 —1 @1
13 12 —71 -1

A hypercomplexr number system of dimension n consists of all numbers
of the form (9.1) of dimension n and the operations which are defined in
(9.2),(9.3), and (9.5).

A hypercomplex number system contains even more structure than it
seems so far. In the following theorem, we show that a hypercomplex number
system forms an associative algebra.

Theorem 9.2.1 (Hypercomplex algebra). All hypercomplex number sys-
tems fulfill the following properties and therefore they are associative algebras:

1. the product is bilinear, i.e.

(au)v = a(uv) = u(av) (9.6a)
(v +w)u =vu +wu (9.6b)
u(v+w) =uv +uw (9.6¢)

2. and the product is associative, i.e.
u(vw) = (uv)w (9.7
where u,v,w are hypercomplex numbers and a € R.
Proof. The theorem is proved by elementary calculations using Def. 9.2.2. 0O

Therefore, complex numbers and their product form the algebra of com-
plex numbers, the quaternions and their product form the algebra of quater-
nions, etc..

9.2.2 The Commutative Algebra H

In the following we consider a further, specific four-dimensional hypercom-
plex algebra, which is commutative and somehow similar to the algebra of
quaternions. The new algebra denoted by Hs is formed by the space

span(l,el A €3, ey A €y4,€] Nes Ney A e4)

and the geometric product. Consequently, H, is a subalgebra of tho and we
have the following multiplication table (Tab. 9.2):

The same multiplication table is obtained for the two-fold tensor product
of the complex algebra (C ® C). In this case, we have the basis elements
{1®1,i®1,1®i,i®i}. Since Ha and C ® C have the same dimension
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Table 9.2. Multiplication table of 2

e; Nes exNey eiNesNexAey
e; Neg -1 ei;NesNeaANey —exNey
e Ney eitNesNeaNes —1 —ei1 Ne3
ei1 NesANex Ney —es ANey —e; Aes 1

and the multiplication tables! are the same, H» and C® C are isomorphic as
algebras by the mapping f2 : Ha — C®C and f(1) = 1®1, f(e1Ae3) = i®]1,
fleaNes) =1®i,and f(eg AesAes Aey) =i®i.

Since the multiplication table is symmetric with respect to the major
diagonal, the algebra H, is commutative. Furthermore, Tab. 9.2 is equal
to the multiplication table of the quaternion algebra (Tab. 9.1) in the cells
(1,1),(1,2),(1,3),(2,2) and (3,2). In particular, we obtain for (a+ib)(c+jd)
in the quaternion algebra the same coefficients as for (a+be; Aes)(c+deaNey)
in the algebra Hs:

(a +1b)(c + jd) = ac + ibc + jad + kbd (9.8a)
(a+bey ANes)(c+dex Aes) = ac+ bece; Aes + adex A ey
+ bde; Ne3 Nex Ney . (98b)

From this fact we will conclude The. 9.3.1 about the commutative hypercom-
plex Fourier transform (HFT2) of a real signal in the following section.

9.3 The Two-Dimensional Hypercomplex Fourier
Analysis

In this section, we firstly define an integral transform which is based on
the commutative algebra H, and acts on hypercomplex 2-D signals. This
transform which is denoted HFT2 yields the same spectrum as the QFT
(8.3.4) for real signals. We reformulate the affine theorem, the convolution
theorem, the symmetry theorem, and the shift theorem. Additionally, we
prove that the algebra Hs, and the two-fold Cartesian product of the complex
numbers are isomorphic as algebras (see also [58]).

9.3.1 The Two-Dimensional Hypercomplex Fourier Transform

We introduce the HFT2 according to Ell [69] in the following. Furthermore,
we make some fundamental considerations about this transform.

Definition 9.3.1 (Commutative hypercomplex Fourier transform).
The two-dimensional commutative hypercomplex Fourier transform (HFT2)
of a two-dimensional signal f(z,y) is defined by

! Note that both algebras are multilinear.
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F"(u,v) Z/ / f(z,y)e 2rizueinestyveanes) go. gy (9.9)

Note that due to the commutativity of Ha we have the identity

e—27r(wue1/\e3+yv62/\e4) — e—27rzue1/\e36—27ryve2/\e4

The commutativity implies that all commutator terms in the Campbell-
Hausdorff formula (see e.g. [211]) vanish.

As mentioned at the end of the last section, the product of two quater-
nions and the product of two Ha elements are equal if the multiplication in
the algebra H is ordered wrt. the index set of the basis. That means that
no product of the form e;e; with ¢ > j appears. This is the case for the
quaternionic Fourier transform of real signals:

Theorem 9.3.1 (Correspondence of HFT2 and QFT). The 2-D com-
mutative hypercomplex Fourier transform of a real 2-D signal f(xz,y) yields
the same coefficients as the QFT of f(z,vy).

Proof. The coeflicient of the spectra are the same, because all multiplications
have the form (9.8a,b). O

In particular, we can decompose both transforms into four real-valued
transforms: a cos-cos-transform, a cos-sin-transform, a sin-cos-transform, and
a sin-sin-transform. Then, we can take the real valued transforms as coeffi-
cients of the QFT and the HFT2 spectrum (see Def. 8.3.1):

F9 = CC{f} — SC{f}i—CS{f}j+ SS{f}k (9.10a)
Fh = CC{f} - SC{f}el A ez — CS{f}eg A €y
+ SS{f}el A €3 N €9 A e . (910b)

The HFT2 (9.9) yields a geometric interpretation concerning the spatial
and the frequency domain. If we span the spatial domain by e; and es,
i.e. each point is represented by ze; + yes = = + y, and same with the
frequency domain (ues + ves = u + v), we can rewrite (9.9) as

Fh(u,v) = / / f(z,y)emwr=+toAy) do gy (9.11)

Both, the spatial and the frequency domain are 2-D vectorspaces, which are
orthogonal with respect to each other (see Fig. 9.1).

The hypercomplex spectrum includes a scalar part, two bivector parts
(e1 Aez and ez Aey) and a four-vector part. Therefore, the spectral values are
denoted in the same algebra as the coordinates! This is an obvious advantage
of Def. 9.11 and therefore, we use this definition for proving theorems in the
following. Nevertheless, all results can easily be transferred to the Def. 9.9.

One property which is important in signal theory is the uniqueness of a
transform and the existence of an inverse transform. Otherwise, the identifi-
cation and manipulation of the signal in frequency representation would not
be possible.
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Fig. 9.1. The HFT2 visual-
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Theorem 9.3.2 (The HFT2 is unique and invertible). The HFT2 of
a signal f is unique and invertible.

Proof. In order to show the uniqueness, we prove that the kernel of the trans-
form consists of orthogonal functions. We do so by reducing the exponential
function to sine and cosine functions:

627r(u/\m+'v/\y) — e2TuAT 2TuAY
= (cos(2muz) — e A ez sin(2muz)) (cos(2mvy) — e A e4 sin(27vy))

Since the sine and cosine functions are orthogonal, the HFT2 is unique and
furthermore, the inverse transform reads

flz,y) = Fh(u, U)ez’r(‘”\“ﬂ/\”) dudv ,
R2

which can be verified by a straightforward calculation. O

One nice property of the HFT2 is the fact that both, the transform and
the inverse transform, are formulated in the same way?2. The minus sign which
we have for the complex Fourier transform and for the QFT can be omitted
for the HFT2.

If we recall the isomorphism between Hy and C ® C, we can rewrite the
HFT2-kernel as

e*QW(wuelAE3+yve2/\e4) I~ 67227rzu ® 67227ry'u . (912)

Consider now a real-valued, separable signal f(z,y) = f*(x)fY(y). Then, due
to multilinearity, the HFT2 of f(z,y) itself can be written as

2 We know such property from the Hartley transform.
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f(z,y) o—e F"(u,v) = F*(u) @ F¥(v) (9.13)

where F?(u) is the 1-D Fourier transform of the signal f(z,y) wrt. the -
coordinate and FY(v) accordingly to the y-coordinate.

This notation introduces another interpretation of the HFT2: we obtain
the HFT2 of a real, separable signal by the tensor product of the complex
1-D spectra. Note that this is not valid for hypercomplex signals, because in
that case we cannot exchange the tensor product and the product between
signal and kernel®. Nevertheless, since the coefficients of the quaternionic
spectrum and the Hy spectrum of a real signal are the same, the QFT of
a separable signal can be interpreted as the tensor product of complex 1-D
Fourier transforms wrt. to = and y as well.

9.3.2 Main Theorems of the HFT2

In this section, we consider some theorems for the HF'T2. For the QFT, some
of the main theorems are more complicated compared to those of the complex
FT. We will show that this drawback is less crucial for the HFT2.

In the shift theorem of the QFT (Eq. 8.29) one exponential factor moves
to the left (the ¢ term) and one moves to the right (the j term). This is
necessary since the algebra of quaternions is not commutative. But what can
we do for Clifford transforms of higher dimension? There are only two ways of
multiplication: one from the left and one from the right. The great advantage
of commutative algebras is the fact that neither the order nor the direction
of multiplication is relevant. Hence, the shift theorem for the HF'T yields two
exponential factors which can be placed arbitrarily or even composed in one
exponential factor:

Theorem 9.3.3 (Shift theorem). Let F"(u,v) be the HFT2 of a signal
f(z,y). Then, the HFT2 of the signal f'(z,y) = f(zx — &y — n) reads
FM (u,v) = e2m(un&+orm) ph(y, ) where & = £ey and 1 = nes.

Proof. We prove this theorem by straightforward calculation:
Fhl(u, v)

fl@ =&y —n) @ =tv/Y) gg gy

~
N

,fzmll
T / fa',y') e2m(whe'+ony’) g2n(uné+orn) g gy,
RZ

- e2r(uA£+v/\n)Fh(u, v)

<8

Hence, the theorem is proved. O

3 Note that, since we use the field R, the multilinearity is only valid for real factors.
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The shift theorem of the complex FT is closely related to the modulation
theorem. The relation is even more general: we have a so-called symmetry
theorem, which yields the Fourier transform of a signal simply by the inverse
Fourier transform of the signal. We can formulate this theorem for the HFT2
as well:

Theorem 9.3.4 (Symmetry of the HFT2). Let f(z,y) be a Ha-valued

signal and F"(u,v) its HFT2. Then, the HFT2 of Fhf(x,y) reads f1(u,v)
(where -¥ indicates the reversion of the underlying geometric algebra).

Proof. In this proof we notate the exponents in the form uxes A e; instead
of u A z. The HFT2 of F"'(z,y) reads

/ FhT(JI, y) e27r(ua:e3/\e1+vye4/\e2) dr dy

R2

= /4(f(u” U') e27r(u’ze3/\e1+v’ye4/\e2))‘r du'dv' e27r(u:ce3/\e1+vye4/\e2) dx dy
R

’ ’
— fT(UI,UI)/ eZﬂ(u zeiNez+v yeaAey) e27r(uze3/\e1+vye4/\e2) dr dy du'dv’
R2 R2

= [ fi,v")6(u—u)ow—2")du'dv' = f1(u,v)
R2
Note that in the commutative algebra H» the order of the factors is not
inverted by the reversion - (so the reversion is an automorphism in H,). O

The shift theorem together with the symmetry theorem yield the modu-
lation theorem of the HFT2 which we do not formulate explicitly.

Up to now there is no significant improvement in the formulation of the
theorems, although some formulation might be more elegant. However, the
next theorem shows that in the commutative algebra a closed formulation of
the convolution theorem is possible. The 2-D convolution is defined as follows.

Definition 9.3.2 (2-D convolution). Let f(z,y), g(z,y) be two 2-D sig-
nals. The 2-D convolution f x g is then defined by

(f*9)(z,y) =/R2f(§,n)g(w—£,y—n) dédn . (9.14)

In contrast to the convolution theorem of the QFT, the convolution the-
orem of the HFT2 can be formulated similarly to the convolution theorem of
the complex Fourier transform.

Theorem 9.3.5 (Convolution theorem of the FHT2). Let f(z,y) and
g(z,y) be two 2-D signals and let F"(u,v) and G"(u,v) be their HFT2s,

respectively. Then, the HFT2 of f x g is equivalent to the pointwise product
of F* and G*, i.e.

/ (f * ) (@, )’ "=+ dy dy = F!'(u,0)G" (u,v) (9.15)
R2
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Proof. We obtain by straightforward calculation
/ (f * 9) (=, y)e*™ "=+ dg dy
R2

= / FEg(@ — &,y —n) dE dn =00 g gy
RrR2 JR2

— / f 6 ,’7) (.’L’ y) 2 (uAE+vAn) 27r(u/\z +vAy') d§ d’l] drz' dy
R2 JR2
= F"(u,v)G"(u,v)
and therefore, the theorem is proved. O

Of course, the convolution defined in Def. 9.3.2 can be formulated for
discrete signals as well. Note that we obtain the cyclic convolution by the
pointwise product in the frequency domain and not the linear convolution.
If the latter is needed, the signal must be filled up by zeroes.

9.3.3 The Affine Theorem of the HFT2

The next theorem states an isomorphism between H» and the two-fold (Car-
tesian) product of the complex algebra (C?, see also [58]). Though this the-
orem seems to be a pure mathematical result, it will be important for the
subsequent theorems.

Theorem 9.3.6 (Hs = C?). The commutative hypercomplex algebra Ho is
isomorphic to the two-fold (Cartesian) product of the complex algebra C?.
For an arbitrary element Z = a+be; Aez +cex Aeqg +de; ANes Aes ANey we
obtain the representation (£,n) = ((a—d)+i(b+c), (a+d)+i(b—c)) € C*.

Proof. Consider the matrix representations of Z € Hy and z = (z + iy) € C

(1000 0-100 00-10 00 01
7 = 0100 +b1000 4 000 -1 +d00_10
~ %0010 000-1]"°l100 0 0-100
10001 001 010 0 1 00
==y e 1]
which can both easily be verified to be isomorphic.
The eigenvectors of the matrix representation of Z read
1 1 1 1
) i —i i
en=|_; e2= |, e = | e =|_, (9.16)

-1 -1 1 1



9. Commutative Hypercomplex Fourier Transforms 219

and since these eigenvectors are independent of the coefficients a, b, ¢, d, they
yield an eigenvalue transform which turns the matrix representation of any
Z into diagonal form. The eigenvalues read

E=(a—d)+i(b+¢) & =(a—d)—i(b+c)
n=(a+d)+i(b—c) n*=(a+d)—i(b—rc)

and therefore, the matrix multiplication yields a pointwise product on (&,7).
O

Note 9.3.1. The proof of The. 9.3.6 is only sketched because it is a special
case of The. 9.4.1. In the following, we use this theorem in a less formal
way, since we replace the i of the complex numbers by e; A ez in the fol-
lowing. The reason for this is that we can write Z = £b; + nbs now, where
by = (1—e1 /\63/\62/\64)/2 and by = (1+el /\e3/\e2/\e4)/2.

Theorem 9.3.6 can be used to state a relation between the complex Fourier
transform and the HFT2. Due to the isomorphism we can map the signal
and the kernel to C? and can perform all calculations in this representation.
Afterwards, the HF T2-spectrum can be obtained from the two complex spec-
tra. In this context, it is not surprising that the representation of the HFT2
kernel in C? consists of two Fourier kernels.

Theorem 9.3.7 (Relation between FT2 and HFT2). Let f(x,y) be a
two-dimensional Ha-valued signal and let (fe(x,y), fr(z,y)) be its represen-
tation in C?. Furthermore, let F¢(u,v) and F,(u,v) be the complex Fourier
transforms of fe(x,y) and fy(z,y), respectively. Then, the HFT2 of f(z,y)
reads

F'(u,v) = Fe(u,v)by + Fy(u, —v)by . (9.17)

Proof. We can rewrite the kernel of the HFT2 by

eZﬂ(mues/\e1+yve4/\eZ) — e27r(a:u+yv)e3/\e1 by + e27r(a:u—yv)e3/\e1b2 . (918)
Therefore, we obtain for the HFT2 of f(x,y) = fe(z,y)b1 + fn(z,y)b2 by

Fh(u,v) — /2 f(m,y) e27r(zue3/\e1+yve4/\e2) dr dy
R

= [ U@+ fyaa)
(627r(:cu+yv)e3/\e1 by + e27r(wu—yv)e3/\e1 b2) dz dy
- / fe(a,y) TV dg dy by
R2

i / Fola,y) @7V s dy by
R2
= Fe(u,v)b1 + Fp(u, —v)bo
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(note that the product in C? is evaluated pointwise (b1b» = 0) and that
the kernels in (9.18) are the kernels of the complex 2-D FTs F{-}(u,v) and

F{-}Hu,—v)). O

Note that we can obtain the HFT2 of a real signal by the complex spec-
trum because the spectra F; and F; are equal in that case. Therefore, the
extended (i.e. hypercomplex) representation of a real signal is calculated with-
out increased computational effort!

The simple calculation of the HFT2 spectrum is not the only result of the
relation between the complex FT and the HFT2. Using the last theorem, we
can state the affine theorem in a straightforward way:

Theorem 9.3.8 (Affine theorem). Let F"(u,v) be the HFT2 of a signal
f(z,y). Then, the HFT2 of the signal f'(z,y) = f(z',y') reads

1

F (u,v) =
0) = e a]

(F™(u',v")by + F™(u",v")by) (9.19)

where (z',y")! = A(z,y)?, (v, v = A= (u,v)T, and
u, —v)

(u",v”)T — Afl( )T

Proof. First, we decompose f(z,y) = fe(x,y)b1 + fy(x,y)b2. According to
The. 9.3.7 we have

F"(u,v) = F(u,v)by + Fy(u, —v)bs

where Fg(u,v) = F{fe(z,y)}(u,v) and F,(u,v) = F{fy(z,y)}(u,—v). Con-
sider now f'(z,y) = f(2',y") = fe(z',y")b1 + fr(2',y")b2. The HFT2 of f' is
obtained by

F (u,0) = F{fe(@',y')} (u,0)br + F{fo(a', ")} (u, —v)bs .

According to the affine theorem of the complex FT, we have

U9} 00) = o Fe(wv)  and

f{fn(;[;" y')}(u, —v) = @Fﬂ ('u,ll’ 'U")

and since F"(u,v)bi = F¢(u,v)bi and F"(u,v)by = F,(u,v)bs we obtain
(9.19). O

Obviously, the affine theorem is more complicated for the HFT2 than for
the complex FT. This results from the fact that the spatial coordinates and
the frequency coordinates are not combined by a scalar product. This is some
kind of drawback since the recognition of a rotated signal in frequency domain
is more complicated. On the other hand, filtering can be performed nearly
isotropic (rotation invariant), e.g. the concept of hypercomplex Gabor filters
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yields a lower energy dependency on the orientation in contrast to complex
Gabor filters (see 11).

Last but not least, let us consider the energy of an H,-valued signal. The
magnitude of a multi-vector M is obtained by |[M| = v M Mt. Consequently,
the magnitude of an Hs-valued number

h=a+be; Nes+ces Neg+de; Nes Aey Aey

also reads

|h| = Va2 + b2 + ¢+ d? = Vhht .
The energy of the HFT2 of a signal f(z,y) is then obtained by

Fh(u, v)FhT(u, v) du dv (9.20a)
R2

— / f(.'l»', y)e27r(w/\u+y/\'u) e27r(u/\w'+'u/\y')ff (.’L'I, yl) du dv dz dy dCL’I dyl
RS

= [ @i - )0 - )1 ) dedyd' dy (9.20b)
R4

= [ f@nriwy) dedy (9:200)

and therefore, the Parseval equation is satisfied by the FHT2. The energy of
the HFT2 spectrum is equal to the energy of the signal.

The last subject of this section is the derivative theorem for the HFT2.
It reads analogously to the derivative theorem of the QFT (The. 8.4.7)

% (z,y) o—e 27wue; AesF"(u,v) (9-21a)
%f(w,y) o—e 27mves AesFM(u,v) . (9.21Db)

Finally, we have transferred all global concepts of the QFT to the HFT2.

9.4 The n-Dimensional Hypercomplex Fourier Analysis

In this section we generalize the commutative hypercomplex Fourier trans-
form for arbitrary dimensions (HFTn). Firstly, we have to introduce an al-
gebraic framework which is the systematic extension of Ha: H,,.

9.4.1 The Isomorphism between H,, and the 2"~ 1-Fold
Cartesian Product of C

Consider the Clifford algebra IR;"’O and define a 2"-dimensional hypercomplex
number system based on the space which is induced by
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ij=ejNeyt; , j=1,...,n .

The basis elements of the number system are created by the following rules
(j=1,...,n, sC{1,...,n})

ijij = —1=—ip (9.22a)
ijis = isi; =igus I ¢S (9.22b)
ijis = isij = —ig(y JES . (9.22c)

Obviously, span(is| s C {1,...,n}) and the Clifford product form a com-
mutative 2"-dimensional hypercomplex algebra which is denoted H,, in the
sequel. The following lemma identifies this algebra.

Lemma 9.4.1 (C®*" = #,,). The algebra H, C Rf, , which is formed by
(9.22a,b,c) is isomorphic to the n-fold tensor product of the complex algebra.

Proof. The basis vectors i; in (9.22a) can be written as

i;=19..019i®18...01
! : (9.23)
jth position

Obviously, the basis vectors satisfy (9.22a, b and c¢) which can be verified by
straightforward calculations. O

Consider, for example, n = 3. Then, the isomorphism yields the following
correspondences of the basis elements:

ip=121R11]1

R

ih1=eNes=ilel

ir—=esNes =21QiR1
3=e3Neg=1R01®:1

t1o=e; ANesANes Ne; 21 RiR1
tli3=e;NesNesNeg=iR1Q1

93 =es NesANesANeg =21Ri1Q 1

t193 =€, ANegNes ANesANesNeg 2iRIP1

Lemma 9.4.2 (Matrix representation of C®" and H,). The matrices

I, s € P({1,...,n}) span the matriz representation of C®" (and therefore
for Hy, too). The matrices IT are defined by
=1 (9.24a)
Imfl 0
It = [ *0 Isml] (9.24b)

_Tm—1
0 -k ] (9.24c)

m —
su{m} — |:I§n1 0

4 For the sake of short writing, the indices are sometimes denoted as sets in the
sequel (e.g., 4123 = 4{1,2,3})-
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with s € P({1,...,m—1}) and 1 <m < n.

Proof. Let v = (v1,...,v,) be a vector of dimension n and diag(v) denotes
V1 0...

0 Vo 0 ...
the diagonal matrix

... 0 v,
Then, for s € P({1,...,n}) we have the following identities:

Iy = diag(1,...,1) (9.25a)
I =-Ip  withj € {l,...,n} (9.25b)
=D =-I%;,,; withjes. (9.25d)

Hence, this matrix algebra follows the same multiplication rules as H,, and
C®n. Since all three algebras are of the same dimension, they are isomorphic
as algebras. O

Consider again the case n = 3. The matrix representation of Hs is ob-
tained by:

1 00000O0GO0O0 0 0 0 0 0 0 0-1
01000000 0000O0GO0T1O0
00100000 00000100
. .l000 10000 . _l0000-1000
“=1o 0001000 “BZlo0o010000
00000100 0 0-1 0 0 0 0 0
000 0O0O0T1O0 0-1 0 0 0 0 0 0
00 00000 1 1 0 0 00 0 0 0f
0—-1 0 0 0 0 0 0] 0 0 0 0 0 0 1 0]
1 00000O0GO0O 000O0O0GO OGO 1
00 0-1 0000 000 0-100 0
i1§00100000i23§00000—100
0000 0-100 0 0-1 0 0 0 0 0
00001000 00 0-1 00 0 0
000 000 0-1 1 0000UO0O0O0
00 0000 1 0f 01 000 0 0 Of
0 0-1 0 0 0 0 0] 0 0 0 0 0 1 0 0]
00 0-1 0000 000 0-100 0
1 00000O0GO0O 0000O0GO0GO O 1
o1 000000 . _|000O0O0O0-10
=10 0000 0-10 "™ |o-1000000
000000 0-1 1 00000O0UO0O
00001000 00 0-1 00 0 0
00 0001 0 Of 0 01000 0 Of
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000 0=100 0 00010000
0000 0=1 00 0 0=1 000 0 0
00000 0-10 0-1 0.0 0 0 0 0

1000000 0-1] . _|[t0O0O0OO0O0O0O

“=11t 0000000 “ Jooo0o00001
01000000 00000 0-10
00100000 0000 0-120 0
000100 0 0 00001000

The matrix representation of H,, has eigenvectors which are independent
of the coefficients. Therefore, every element of H,, can be expressed by a
diagonal matrix, which is obtained by a fixed eigenvalue transform.

Lemma 9.4.3 (Eigenvectors and eigenvalues of C®"). Let
Ar= N k7
seP({1,...,n})

be the matriz representation of an arbitrary element of C®™. Then, the matriz
of eigenvectors (row vectors) of A™ is inductively constructed by

E' = E —lz] and (9.26a)
Em Em—l —iEm_l ” b
= |gm-1 ;gm-1 with2<m<n . (9.26b)

The corresponding vector of eigenvalues reads n" where diag(n™) = ny and
ng is inductively defined by

n =k  withteP({l,...,n}) and (9.27a)
m—1 - m—1
m UL - Zn{m}ut 0
= — e , 9.27b
nt [ 0 nt 1 +7/77{m}1ut ( )

wheret € P({m+1,...,n}) and 1 <m < n.

Proof. We prove the lemma by induction over n. Firstly, let n = 1. Then we
have
1]11
-1 _ 1
(B = 2 [z —i]
and hence,
B AN(EY) ™ = B (koI} + b I)(BY) !
_ 11— (kg =k [1 1
T2 i | |k kg | | —1
kg —iky 0 T 1
= [ 0k +ik1] = diag(n’)
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Now provide n > 1. The induction assumption reads
EM A Y BT = diag(n™!) (9.28)

for any A"~!. Furthermore,

_ 1 (Enfl)fl (Enfl)fl
ny—1 _ —
(E ) - 9 [i(E"l)l _,L-(Enfl)fl (929)
and according to Lemma 9.4.2, we obtain
Anfl — A" 1
A A?n}l A” , (9.30)

where An71 = Esép({l,...,nfl}) kslg_l and
A= Zse'P({l,...,n—l}) ksugnyI? ', Therefore, we have

ErA™ME™) !
| [En—1 —iEn-1 An 1 Anfl (En—l)—l (En—l)—l
2 _E"_l iEn—1:| |:An 1 An 1:| [i(E”_l)_l —i(E”’_l)_l]
[Er1(Ap "t —iAnt) E™ 1( An—t—iApt
BV (AT +iAnt) En (AR 4+ iAg‘l)]
|:(En—1)—1 (En—l)—1:|
i(En_l)_l —i(En_l)_l

=

_ 1 [2BMMART — AR (B 0
-2 0 2E'n.—1(A6L*1 + iAg_l)(En_l)_l
_ 77 -t _“7{,,,} 0

n(rbl,—l +Zn?;}1

= diag(n

so the induction step is proved and therefore, the lemma is proved, too. 0O

Again, we present the explicit results for the case n = 3:
m =ng = (kg — k12 — k13 — kaz) — i(k1 + k2 + ks — k123)
ne =17 = (kg + k12 + k13 — ka3) —i(—Fky + k2 + k3 + K123)
ns =15 = (ko + k12 — ki3 + kaz) —i(ky — k2 + k3 + k123)
na =105 = (kg — k12 + ki3 + ka3) (—k1 — ko + ks — ki23)

—1
-1

are the eigenvalues of the matrix representation of an arbitrary Hs element.
The matrix of eigenvectors (row-vectors) is given by:
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(1 —i—i—1—i—1-1 i
1 i—i 1—i 1-1-
1—i i 1—i-1 1—
1 i i-1—i 1 1 i
l—i—i—-1 i 1 1—i
1 i—i 1 i-1 1 i
1—i & 1 i 1-1 i
1§ i-1 i-1-1—i

E3

Theorem 9.4.1 (C®" = ! ). The n-fold tensor product of C is isomor-
phic to the 2"~'-fold Cartesian product of C.

Proof. The proof follows from Lemma 9.4.3, since the eigenvalues of any
matrix representation A™ are complex-valued and the eigenvectors do not
depend on the coefficients of A™. The vector of eigenvalues n™ = (91,... ,72n)
is Hermite symmetric (i.e.n; = n3._;, @ € {1,...,2"}). Hence, n™ is uniquely
represented by 2/2 = 2"~! complex values.

From the eigenvectors we obtain the mapping f™ which maps the matrix
representation A™ of an arbitrary element of C®" onto

diag(n") = f"(A") = E"A"(E")!

which is the matrix representation of an element of .
In order to show that f™ is a vector space isomorphism, we have to show
that the kernel of f™ is {0™}. Therefore, we must solve

FH(A™) = ErAME™) ! = o (9.31)
By multiplication of E™ from the right and (E™)~! from the left we get the
kernel

kern(f™) = (E™)"'0"E™ = 0" . (9.32)

This result already follows from rank(E™) = 2™.
In order to show that f" is an algebra isomorphism, we have to show that
JUATB") = (AN (B
— EnAn(En)flEan(En)fl

= diag(n;)diag(n’})
= diag(n{'ny, - -  Mon-17lgn—1, (Mgn—r7gn—1), -, (0i'0f)*)
= f"(A")f"(B") ,
where 0% = (ni',... ,m4n) and 9 = (pP,... ,nL) are the vectors of the
eigenvalues of A™ and B™, respectively. O

Hence, we have identified tlhe algebra H,, and additionally we have ob-
tained an isomorphism to C2"~ which will be very useful later on. Using this
algebraic framework we introduce now the HFTn.
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9.4.2 The n-Dimensional Hypercomplex Fourier Transform

In this section we introduce the HFTrn and transfer some theorems from the
two-dimensional case. Actually, all but the relation theorem and the affine
theorem are formulated for the n-D case. The relation theorem can be for-
mulated for arbitrary but fixed n. A formulation for all n would be very
technical and therefore hard to understand. The same situation holds with
the affine theorem. Additionally, due to their structure these theorems have
little practical relevance for high dimensions.

Definition 9.4.1 (n-dimensional HFT). The n-dimensional commutative
hypercomplex Fourier transform F"(u) of an n-dimensional signal f(x) is
defined by (u = (uy, ... ,uy)T, 2 = (z1,...,2,)T € R?)

Fl(u) = | f(z)e™ Zimivitientifeigng (9.33)
R~

Note that due to the commutativity of H,, we can factorize the kernel to
n exponential functions.

We do not prove every theorem of Sec. 9.3 for the n-dimensional case,
since most proofs are straightforward extensions to the HFT2. Nevertheless,
we state the most important ones informally:

— The HF Tn is unique and the inverse transform reads

f@)= [ Fh(u)e’™ Zi=ivimiciNentidny, (9.34)
R~
— As in the two-dimensional case, the HFTn of a real signal has the same
coefficients as the n-D Clifford spectrum. The reason for this lies in the fact,
that all multiplications in the CFT are ordered with respect to the index
set. Consequently, no n-blade occurring in the kernel is inverted due to
permutations. For non-permuted blades, the multiplication tables of Ry ,
and H,, are identical. If the signal is not real-valued, the spectra differ in
general, because there are products of the form e;-ejC with 7 > k in the
CFT (where e} are the basis one-vectors of Ry ). The result is then of
course —e;; instead of iy; in the algebra H,,.
— The shift theorem and the symmetry theorem read according to theo-
rems 9.3.3 and 9.3.4, respectively

(@ — €) o—e €2 Timi wiienrines ph(y) (9.35)
and
F* (@) o f(u) (9.36)

(where f(x) o— F"(u), i.e. F*(u) is the HFTn of f(x)). Note that there
is no such factorized version of the shift theorem possible for the CFT and
n > 3.
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— The n-dimensional convolution is defined by

(Fra)@ = [ F©o-ede (9:37)
and the convolution theorem reads
(f*g)(x) oo Fh(u) Gh(u) . (9.38)

— The Parseval equation is satisfied by the HFTn which can be verified by a
straightforward calculation like in the two-dimensional case.
— The derivative theorem reads

0

Er f(x) oo 2mue; Aeny i F(u) .

The only theorems for which we do not have the n-D extensions yet, are
theorems 9.3.7 and 9.3.8 (relation FT and HFT and affine theorem). Though
we can state the two theorems for any fixed dimension n, we cannot formulate
them explicitly for arbitrary n. Nevertheless, we describe how to design the
theorems for any n.

Due to The. 9.4.1 we can decompose the (hypercomplex) signal f into
271 complex signals. We can do the same with the kernel of the FHTn.
The kernel is not only decomposed into 2"~ complex functions but into
2"~1 complex ezponential functions (complex Fourier kernels). In order to
understand why this is true, consider the coefficients of the hypercomplex
kernel. We obtain

ks = (—1)'8‘ H cos(2mujz;) H sin(2mux;) (9.39)
jE{1,...,n}\s les

for s € P({1,...,n}).

By calculating the eigenvalues (9.27b), one factor changes into an ex-
ponential function in each step. Consider, for example, the first step. For
teP({2,...,n}) we obtain

_ [ePmmicy(z,u) 0
nt - 0 6727”“1'16,*, (m7 u) (940)
where c;(z,u) = (—1)!! e, e cos@mu;z;) [ 1 e, sin(2ruiay).

The eigenvalues of the kernel of the HFT are the Fourier kernels for all
possible sign-permutations, i.e. e 2m(Fr1uiE..£eaun) Gince there are always
two exponential functions pairwise conjugated, we have 2"~! different Fourier
kernels left.

Now, we have 277! signals and 2"~! Fourier transforms. According to
the isomorphism we can calculate the HFT by calculating the 2"~! complex
transforms and applying the inverse mapping (f™)~!.
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Using this knowledge, we can also state an n-dimensional affine theorem
by applying the affine theorem for the complex FT to each of the 27! trans-
forms. This would result in a sum of 2"~! HFT which would be applied in
21 different coordinate systems. Since there is no practical relevance for
such a complicated theorem we omit it.

9.5 Conclusion

We have shown in this chapter that the CFT and the QFT can be replaced
by the HFTn and the HFT2, respectively. The commutative hypercomplex
transforms yield a spectral representation which is as rich as the Clifford
spectrum. We have stated several theorems, among those the isomorphism
between the n-fold tensor product of C and the 2"~ 1-fold Cartesian product of
C is the theoretically most important result. This theorem makes it possible to
calculate the hypercomplex spectrum of a signal from the complex spectrum.

The commutative algebra H,, makes the analytic and numerical calcula-
tions easier. We can extend complex 1-D filters to hypercomplex n-D filters
by the tensor product. We do not take care of the order of the operation as for
the CFT: the shift theorem, the convolution theorem and the affine theorem
are easier to formulate. Furthermore, we will be able to state a simple fast
algorithm in Chap. 10.

Additionally, the two domains of the HF Tn can be visualized by two or-
thogonal n-D subspaces in a common 2n-D space. This point of view can lead
to further concepts, e.g. a decayed Fourier transform (or Laplace transform),
fractional Fourier transforms (similar to [142]), and so on.

Furthermore, the design of hypercomplex filters has to be considered more
closely. Our present and future aim is to develop new multi-dimensional con-
cepts which are not only a ’blow-up‘ of 1-D concepts, but an intrinsic n-D
extension, which includes a new quality of filter properties.
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