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8.1 Introduction

Harmonic transforms, and among those especially the Fourier transform, play
an essential role in mathematical analysis, in almost any part of modern
physics, as well as in electrical engineering. The analysis of the following four
chapters is motivated by the use of the Fourier transform in signal process-
ing. It turns out that some powerful concepts of one-dimensional signal theory
can hardly be carried over to the theory of n-dimensional signals by using
the complex Fourier transform. We start by introducing and studying the hy-
percomplex Fourier transforms in the following two chapters. In this chapter
representations in non-commutative algebras are investigated, while chapter
9 is concerned with representations in commutative hypercomplex algebras.
After these rather theoretical investigations we turn towards practice in chap-
ter 10 where fast algorithms for the transforms are presented and in chapter
11 where local quaternion-valued LSI-filters based on the quaternionic Fourier
transform are introduced and applied to image processing tasks.

* This work has been supported by German National Merit Foundation and by
DFG Grants So0-320-2-1, S0-320-2-2, and Graduiertenkolleg No. 357.
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In this chapter we will introduce hypercomplex Fourier transforms. The
main motivation lies in the following two facts:

1. The basis functions of the complex Fourier transform of arbitrary dimen-
siton n are intrinsically one-dimensional.

2. The symmetry selectivity of the 1-D complex Fourier transform is not car-
ried forward completely to n-D by a complex transform.

The first point refers to the fact that the basis functions of the complex
Fourier transform look like plane waves, i.e. they vary along one orientation
while being constant within the orthogonal (n — 1)-dimensional hyperplane.
This turns out to be a severe restriction in the analysis of the local structure
of multidimensional signals. The implications of introducing transforms with
intrinsically multidimensional basis functions will be regarded in chapter 11
for the case n = 2. The second point is important since the phase concept
depends on the symmetry selectivity of the transform. E.g. the local phase
of a signal is defined as the angular phase of the complex number made
up of a real filter-response of the locally even signal component and the
imaginary filter-response of the locally odd component. Extending the phase
concept to higher dimensions we need a representation handling more than
two symmetry components separately. This second point is directly related
to the first one, since the introduction of a transform with higher symmetry
selectivity leads directly to intrinsically multidimensional basis functions.
The structure of this chapter is as follows. In section 8.2 we consider
several 1-D harmonic transforms. Among these transforms are those which
map real-valued functions to real-valued, to complex-valued, and to vector-
valued ones. We compare these transforms and thus motivate the introduction
of multidimensional transforms with values in hypercomplex algebras. In 2-
D the quaternionic Fourier transform (QFT) is such a transform. The QFT
will be introduced and compared to real- and complex-valued transforms in
section 8.3. In section 8.4 a hierarchy of 2-D transforms is introduced which is
based on the symmetry selectivity of the transforms. Furthermore the main
theorems for the QFT like the shift-theorem, Rayleigh’s theorem, and some
more are proven in this section. The definition of n-D transforms with values
in Clifford algebras, i.e. in non-commutative hypercomplex algebras, is given
in section 8.5 as an extension of the QFT. Before concluding this chapter we
give a short overview of the literature on hypercomplex Fourier transforms in
section 8.6 which seems of interest because the field is rather disjointed still.

8.2 1-D Harmonic Transforms

Before delving into the theory of hypercomplex transforms, we present some
of the well-known harmonic transforms. In this section we restrict ourselves
to 1-D signals and the corresponding 1-D transforms. The signals considered
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are assumed to be square integrable and real-valued: f € L?(R, R). For these
signals the transforms considered in the following are guaranteed to exist.

Definition 8.2.1 (Cosine transform and sine transform).
For f € L*(R,R)

F.(u) = 2/ f(z) cos(2mux)dz
0
is called the cosine transform of f. Analogously
Fi(u) = 2/ f(z)sin(2rux)dx
0

defines the sine transform of f.

The trigonometric transforms as defined above take no account of f to the left
of the origin. Thus, since in signal processing we are interested in complete
transforms, we modify definition 8.2.1 slightly.

Definition 8.2.2 (C-transform and S-transform). For f € L?(R,R) we
define the two transforms C : L*(R,R) — L?(R,R) and S : L*(R,R) —
L?(R,R), where

C{f}(u)=C(u) = /Rf(ac) cos(2ruz)dz

is called the C-transform of f. Analogously

S{f}(u) = S(u) = /R f(z) sin(2ruz)ds

defines the S-transform of f.

Since each transform takes account either of the even or the odd part of f
neither the C- nor the S-transform is invertible. If a complete transform is
desired, both transforms have to be combined. We will show three different
combinations of the C- and the S-transform, all of which lead to complete
and thus invertible transforms.

Definition 8.2.3 (1-D Hartley transform).
Consider f € L*(R,R). Then, H : L>(R,R) — L*(R, R), with

H{f}(u) = H(u) = C{f}(u) + S{f}Huw)
is called the Hartley transform of f.

Definition 8.2.4 (1-D Fourier transform). Let f € L?(R,R). Then, F :
L?(R,R) — L*(R,C), with

F{f}(w) = F(u) = C{f}(u) —iS{f}(u)

is the Fourier transform of f.
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Finally, we introduce a transform which results from combining the C- and
the S-transform into a vector.

Definition 8.2.5 (Trigonometric vector transform).
For any square-integrable one-dimensional real signal f € L?>(R,R) we define
a vector-valued transform V : L>(R,R) — L?(R, R?) by

V() = V(w) = (gggg;g) .

Theorem 8.2.1. The Hartley transform, the Fourier transform, and the
trigonometric vector transform are invertible.

The main difference between the Hartley transform on the one hand and the
Fourier and the vector-valued transform on the other hand is that the Hartley
transform does not separate even signal components from odd ones while the
others do.

A question that often arises when talking about hypercomplex spectral
transforms is: Do we really need this complicated mathematics of hypercom-
plex algebras? Or can we do the same using real numbers or vectors? The
answer is: We can do the same using real numbers or vectors, but in fact us-
ing hypercomplex numbers makes things easier and more natural rather than
complicated. This is at least true for the applications we have in mind and
which we will demonstrate in the following chapters. We can partly explain
this on the example of the complex Fourier transform and the vector-valued
transform. Both transforms are complete, both transforms separate even from
odd signal components. Thus, insofar the transforms are equivalent to each
other. However, there are properties of the transforms which can be expressed
very naturally only using the complex transform. For demonstration purpose
we merely mention the shift theorem and the Hermite symmetry of a real
signal’s Fourier transform. The shift theorem of the Fourier transform de-
scribes how the transform of a signal varies when the signal is shifted. If the
signal f is shifted by d, its Fourier transform is multiplied by a phase factor
exp(—2midu). Thus, a shift in spatial domain corresponds to multiplication
of the complex transform by a complex number. Expressing this theorem
for the vector-valued transform is of course possible. However, the algebraic
frame would have to be extended to include not only vectors but also square
matrices. The Hermite symmetry of the Fourier transform of a real signal is
expressed by F*(u) = F(—u) which immediately explains the redundancy of
the spectrum. There is no special notation for expressing this in vector al-
gebra. These two simple examples already explain why the complex Fourier
transform is more convenient than the vector-valued transform. Similar ar-
guments apply for the introduction of hypercomplex numbers for signals of
higher dimension.
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8.3 2-D Harmonic Transforms

8.3.1 Real and Complex Harmonic Transforms

Again, we start with defining real trigonometric transforms from which we
will derive the transforms of interest in this chapter.

Definition 8.3.1.
Let f be a real two-dimensional square-integrable signal f € L*(R*, R). Then
we define the transforms CC,SC,CS,SS : L?(R*,R) — L*(R*,R) by

CC{f}w) = CC(u) = /R _ F(@) cos(2muz) cos(2mvy) (8.1)
SC{f}(w) = SC(u)= /R (@) sin(2muz) cos(2n0y) (8.2)
CS{f}(w) = OS(u)= /R . F(@) cos(2muz) sin2rvy)dx (8.3)
SS{f}(u) = SS(u)= /R , () sin(2muz) sin(2mvy)d*x. (8.4)

We could have started in def. 8.3.1 with an 2-D C- and S-transform. However,
the four transforms allow the construction of more general transforms than
the C- and S-transform, which can in fact be constructed from the transforms
of def. 8.3.1 by linear combination due to the addition theorem of the sine and
cosine function. Actually, the introduction of the four separable transforms
is crucial four the following analysis.

As it is possible to construct the 1-D Hartley- and Fourier-transform from
the C- and the S-transform, we can combine the separable trigonometric
transforms given in def. 8.3.1 in different ways to yield the well-known 2-D
spectral transforms.

Definition 8.3.2 (2-D Hartley and Fourier transform). Let f be a real
2-D signal f € L>(R?,R). The 2-D Hartley transform of f is then given by

CC{fHu) + SC{f}(u) + CS{f}(w) + SS{fHu) = H{f}(uv) = H(u).
The 2-D Fourier transform of f is

CC{f}(u) = SS{f}(u) —i(CS{f}(u) + SC{f}(u) = F{f}(u) = F(u).

Definition 8.3.3 (2-D Trigonometric vector transform).
A vector-valued transform of V : L*(R*,R) — L2(R?,R*) is given by

(u)
V{f}(u) =V (u) = cs{f}gzg
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In section 8.2 we saw that it is advantageous to replace the the transform V
with values in R? by the Fourier transform with values in C. Actually, C and
R? are isomorphic as vector spaces. However, C has an additional algebraic
structure. In the following section we will introduce a 2-D transform which
at}lds an algebraic structure to the values of the 2-D V-transform by replacing
R* by H.

8.3.2 The Quaternionic Fourier Transform (QFT)

Definition 8.3.4 (Quaternionic Fourier transform). The gquaternionic
Fourier transform F, : L*(R*,R) — L*(R* H) is given by

Fo{fHu) = F(u)
= CC{f}(u) — i SC{f}(u) — 5 CS{f}(u) + k SS{f}(uw).

The three symbols ¢, 7, and k denote the imaginary units of the algebra of
quaternions. The choice of the signs in Def. 8.3.4 will become clear below.
We shortly review the quaternion algebra in the following.

The quaternions are a special Clifford algebra, namely Rq 2. Historically,
the algebra of quaternions is one of the predecessors of Clifford’s geometric
algebra. In 1843 quaternions were first introduced by Hamilton. To his honor
the algebra is commonly denoted by the letter H.

Definition 8.3.5. The set
H = {a+bi+cj+dk|la,b,c,d e R}

together with the multiplication rules

ij=—ji=k and = =k>=-1,
as well as component-wise addition and multiplications by real numbers form
an associative R-algebra, called the quaternions.

The impulse for introducing quaternions was the quest for an algebra which
was able to represent rotations in three-dimensional space. Later, when con-
sidering the polar representation of a quaternion, we will exploit this rela-
tionship between rotations and quaternions.

For later use we present some definitions and properties concerning H.
The conjugate of a quaternion

g=a+ib+jc+kd
is given by
g=a—ib—jc—kd.

The norm of ¢ is given by |q| = 1/¢qd. It can be shown that H is a normed
algebra, i.e. for q1,q2 € H we have |q1||g2| = |q1¢2|- H forms a group under
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multiplication, i.e. there exist a unit element, namely e = 1 € H, and to

1 1

each ¢ € H there exists a multiplicative inverse ¢~
The multiplicative inverse is given by ¢~!
quaternion ga + ¢ b + j ¢ + k d we sometimes write

a=Rq, b=1q, c¢c=Jq, d=Kgq.

There are three non-trivial involutions defined on H:

with qq~

a:H— H, ¢+ alq) = —igi = a+ib— jc— kd,
B:H— H,¢» Bq) = —jgj = a—ib+ jc—kd, (8.5)
v:H — H, ¢+ v(q) = —kgk = a —ib— jc + kd, .

These involutions will be used in order to extend the notion of Hermite sym-
metry from complex to quaternion-valued functions. A function f : R™ — C
is called Hermite symmetric or hermitian if f(x) = f*(—z) for all x € R™.
The notion of Hermite symmetry of a function is useful in the context of
Fourier transforms since the Fourier transform of a real function owes this
property.

Definition 8.3.6 (Quaternionic Hermite symmetry). A function f :
R? — H is called quaternionic hermitian if:

f(=z,y) = B(f(z,y)) and  f(z,—y) =a(f(z,y)) (8.6)
for each (z,y) € R?.

One main subject of chapter 11 is the local quaternionic phase of a signal. In
order to define the phase we introduce the angular phase of a quaternion as
follows.

Theorem 8.3.1. Fach quaternion q can be represented in the form
q= |q|ei¢,ek¢eja with (¢707¢) € [_ﬂaﬁ[x[_ﬂ/z 7T/2[X[—7T/4, 7T/4] (87)
The triple (¢,0,1) is called the angular phase of q.

The angular phase of a quaternion can be understood in terms of ro-
tations. Any 3-D rotation about the origin can be expressed in terms of
quaternions. The set of unit quaternions is the 3D unit hypersphere

5% ={q e Hl|q| =1}.

Let g € S® be given by ¢ = cos(¢) + n sin(¢), where m is a pure unit quater-
nion. Further let x be a pure quaternion, representing the three-dimensional
vector (x1,T2,73) " . A rotation about the axis defined by n through the angle
2¢ takes x to ' = gxqg~'. Thus, any unit quaternion ¢ represents a rotation
in R3.

In this interpretation the angles ¢/2, 6/2 and /2 are the Euler angles of
the corresponding rotation®.

)
=¢'g=c
= q/|q|*- For the components of a

! Note that the definition of the Euler angles in not unique. The above represen-
tation corresponds to a concatenation of rotations about the y-axis, the z-axis,
and the z-axis.
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Table 8.1. How to calculate the quaternionic phase-angle representation from a
quaternion given in Cartesian representation

g=a+bi+cj+dk, |g=1

1/} — _arcsin(22(bc7ad))
if1/1€]—§,%[ ify=+7
choose

_ argi(4B(@)

¢ = =0 §=0
arg;(a(q arg; q or arg; q
g — 99 (2 (2)9) § = VY (’ZY(q)(I) - $=8 (g*/(q))
if e®ekvel? = —¢ if e®ekvel? = —¢
and ¢ > 0 and ¢ <0
o> p—m ¢ —>dp+m

8.4 Some Properties of the QFT

8.4.1 The Hierarchy of Harmonic Transforms

Before analyzing some properties of the QFT we present what we call the
hierarchy of harmonic transforms. The hierarchy of transforms is understood
in terms of selectivity of the transforms with respect to the specular symmetry
of an analyzed signal: Let L2(R", R) be the set of functions in L?(R", R) with
symmetry s € S, = {(s1,.-.,8n),8i € {e,0}}, where s; is the symmetry
(even or odd) with respect to z;, i € {1,...,n}. Furthermore, let 7 be an
n-D harmonic transform, e.g. the Fourier transform:

T : L*(R",R) = L*(R™,V) (8.8)
T : L2(R",R) = L3(R™,V,). (8.9)

Since all the transforms considered here are based on trigonometric integral
kernels, the transforms preserve the symmetries of signals (see eq. (8.9)). The
values of the transformed signal functions 7{f} are supposed to lie in the
real vector space V. In case of algebra-valued functions, V is the underlying
R-vector-space, e.g. R? for complex-valued functions. V; is supposed to be
the smallest possible subspaces of V fulfilling (8.9). If the V,. and V;, r,s € S
intersect only in the zero-vector V, NV, = {(0,...,0)}, T is said to sep-
arate signal components with symmetry s from those of symmetry r. The
more symmetry components are separated by a transform, the higher this
transform stands in the hierarchy of harmonic transforms.
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In the case n = 1 we merely have to consider the Hartley transform #,
the trigonometric vector transform V), and the Fourier transform F. For the
Hartley transform H we find V' = R. The even and odd components of a
signal f are mixed in the transform H(u) since V. = V, = R. In contrast
the 1-D Fourier transform and the trigonometric vector transform separate
even from odd components of a real signal: While V = R? in these cases,
we find V, = {(a,0)|a € R} =: P,R? and V,, = {(0,b)|b € R} =: P,R?, thus
VenV, ={(0,0)}.

The symmetry selectivity of the Fourier transform, is also expressed by
the fact, that the Fourier transform of a real signal is hermitian, i.e. F(u) =
F*(—u). Thus, the real part of F is even, while its imaginary part is odd.

In the case n = 2 we consider the four transforms H, F, 7, and V. For
the Hartley and the Fourier transform we get similar results as for n = 1: For
H, we have V = R and V, = R for all s € S,. For F we find V = R?, while
Vee = Voo = P11R2 and V,, =V, = PQRQ. Thus, the 2-D Fourier transform
separates the four symmetry components of a signal into two subspaces. In
this case it is more natural to write V, = PllR2 and V, = P2]R2. Here the
indices e and o mean even and odd with respect to the argument vector of
an n-D function f : R" — R. Le. fo(z) = fe(—x) and fo(x) = —fo(—x).
Finally, for V and F¢ we get V = R* and the four symmetry components are
completely separated:

Ve = PR? (8.10)
Voe = PR* (8.11)
Voo = P3R* (8.12)
Voo = PyR*. (8.13)

Thus, we get a three-level hierarchy of 2-D harmonic transforms, on the
lowest level of which stands the Hartley transform. On the second level we
find the complex Fourier transform while on the highest level the quaternionic
Fourier transform and the trigonometric vector transform can be found. This
hierarchy is visualized in figure 8.1.

\

Fee(u) Fie(u) Féo(u) Foo(u)
Felw) D) []= real
[ ]= i-imaginary
— j-imagina
) B= imasinary
[[] = k-imaginary

Fig. 8.1. The hierarchy of 2-D harmonic transforms
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8.4.2 The Main QFT-Theorems

All harmonic transforms share some important properties. In his famous book
on the Fourier transform Bracewell states that for every theorem about the
Fourier transform there is a corresponding Hartley transform theorem ([28§],
p- 391). In order to put the QFT on a theoretically firm basis we derive the
most important QFT-analogies to Fourier theorems in the following. First of
all we rewrite the definition of the QFT given in def. 8.3.4.

Theorem 8.4.1. The QFT of a 2-D signal is given by
F(u) = / L€ T f(x)em e Py, (8.14)

Proof. Euler’s equation exp(n¢) = cos(¢) + n sin(¢) holds for any pure unit
quaternion n. Thus, it applies to the two exponentials in theorem 8.4.1 where
we have n = i and n = j, respectively. Expanding the product of the two
exponentials expressed as sums via Euler’s equality gives the expression in
def. 8.3.4. O

For clarity we depict the basis functions of the complex Fourier transform
and the QFT in figures 8.4.2 and 8.4.2, respectively. The small images show
the real part of the basis functions in the spatial domain for fixed frequency
u. The frequency-parameter varies from image to image. Since only the real
component is shown, in case of the complex Fourier transform the imaginary
component is missing while in case of the quaternionic Fourier transform three
imaginary components exist which are not shown. It can be seen that the
basis functions of the complex Fourier transform are intrinsically 1-D. They
resemble plane waves. In contrast, the basis functions of the quaternionic
Fourier transform are intrinsically 2-D. As the complex Fourier transform
the quaternionic Fourier transform is an invertible transform.

Theorem 8.4.2 (Inverse QFT). The QFT is invertible. The transform G
given by

G{F"}(z) = /R | €T () 2700 oy (8.15)
is the inverse of the QFT.
Proof. By inserting (8.14) into the right hand side of (8.15) we get
i2muz o, —i2m —j2nvy’ j2mvy g2, 92 .1
G{F} (= /2/2 i2mus p—i2mua’ f () e=I2T0Y B2V 2y Py’ (8.16)

Integrating with respect to u and taking into account the orthogonality of
harmonic exponential functions this simplifies to

G{F}(u /M—w (2)8(y — y')d*a’

(8.17)
thus G = f; . O



Fig. 8.2. The basis functions of the complex 2-D Fourier transform
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Fig. 8.3. The basis functions of the quaternionic Fourier transform
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The convolution theorem of the Fourier transform states that convolution
of two signals in the spatial domain corresponds to their pointwise multipli-
cation in the frequency domain, i.e.

f@)=(gxh)(x) & F(u)=Gu)H(u) (8.18)

where f, g and h are two-dimensional signals and F, G and H are their
Fourier transforms. We now give the corresponding QFT theorem.

Theorem 8.4.3 (Convolution theorem (QFT)). Let f, g and h be two-
dimensional signals and F1, G? and H? their QFT’s. In the following g is

assumed to be real-valued, while h and consequently f may be quaternion-
valued. Then,

f@) =(gxh)(x) <= F(u) =G (u)H(u) + G, (u) 5(H* (u)).

Here B denotes one of the three non-trivial automorphisms of the quaternion
algebra as defined in (8.5). G.. and G ., are the components of G which are
even or odd with respect to the second argument.

Proof. We prove the convolution theorem by directly calculating the QFT of
the convolution integral:

FQ(u) — / . e—27ri:cu [/ 2(g(:1:')h(:1: _ ml))d2wl e—27rjyvd2w
— / . e—27riac'ug(ml)Hq(u)e—27rjy’vd2ml
:/26727”.:0[”9(15,) cos(=2my'v) HI(u)d*x’'

+/ , e 2 v g (") j sin(—2my'v) B(H (u))d?a'
=G (w)H(u) + G, (u)B(H (u)), (8.19)
which completes the proof. O

Analogously it can be shown, that
Fi(u) = H'(u)G{. (u) + a(H*(u))G3 . (u).

If h is a quaternion-valued function which QFT is real-valued the convolution
theorem simplifies to

f(@) = (gxh)(x) = F'(u) =G (u)H(u), (8.20)

which is of the same form as the convolution theorem of the two-dimensional
Fourier transform. This is an important fact, since later we will convolve real-
valued signals with quaternionic Gabor filters, which QFT’s are real-valued.
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According to (8.20) in this case the convolution theorem can be applied as
usually.

The energy of a signal is defined as the integral (or sum in the case of
discrete signals) over the squared magnitude of the signal. Rayleigh’s theorem
states that the signal energy is preserved by the Fourier transform:

/R2|f(w)|2d2w= /IR Fw)Pdu (8.21)

where F'(u) is the Fourier transform of f(z). Rayleigh’s theorem is valid for
arbitrary integer dimension of the signal. In mathematical terms Rayleigh’s
theorem states that the L2-norm of a signal is invariant under the Fourier
transform. We will show that the analogous statement for the QFT is true.

Theorem 8.4.4 (Rayleigh’s theorem (QFT)).
The quaternionic Fourier transform preserves the L?-norm of any real two-
dimensional signal f(x):

[ @b e = [ PP, (3.22)

where F9(u) is the QFT of f(x).

Proof. We make use of Rayleigh’s theorem for the two-dimensional Fourier
transform. Thus, we only have to prove that

/2|F(u)|2d2u—/R2 IF(w)PdPu=0 . (8.23)

Regarding the integrands and using the addition theorems of the sine and
the cosine function we find out that

[F(u)[? = (CC{f}H(w) — SS{fHw)” + (SC{f}(u) + CS{f}(u))?, 52

while
[F1(u)|* = CC{f}?(u) + SC{f}?(u) + CS{f}?(u) + SS{f}*(u). (8.25)
Thus, the left hand side of (8.23) can be evaluated as follows:
Joo PP [ PP
=2 /R2 (SC{fH()CS{fHuw) — CC{f}H(w)SS{f}(u)) d’u. (8.26)

The integrand in (8.26) is odd with respect to both arguments (since S-terms
are odd). Thus, the integral is zero which completes the proof. O
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The shift theorem of the Fourier transform describes how the transform
of a signal varies when the signal is shifted. If the signal f is shifted by
d, it is known that its Fourier transform is multiplied by a phase factor
exp(—2mid - x). How the QFT of f is affected by the shift is described by
the following theorem.

Theorem 8.4.5 (Shift theorem (QFT)). Let

Fi(u) = / emimus f(g)e it iy (8.27)
and
F9(u) = /R eminue f (g d)e gy (8.28)

be the QFT’s of a 2-D signal f and a shifted version of f, respectively. Then,
F%(u) and F2(u) are related by

Fi(u) = e~ 2mud1 pa(qy)g=d2mvd2 (8.29)

S

If we denote the phase of F9(u) by (¢(u),0(u),y(u)) " then, as a result of the
shift, the first and the second component of the phase undergo a phase-shift

P(u) ¢(u) — 2mud,
O(u) - O(u) — 2wvdy | . (8.30)
P(u) P(u)

Proof. Equation (8.29) follows from (8.27) and (8.28) by substituting (z —d)
with 2'. If F7(u) has the polar representation

Fi(u) = |Fq (u)|ei¢>(u)ek¢(u)e]’9(u)7

we find for the polar representation of F?(u)
qu (u) — e—i27rud1 F4 (u)e—jZﬂvd2
— e—i27rud1 |Fq (u) |ei¢(u)ek¢(u) eja(u)e—ﬂm}dg

— |Fq (’ll,) |ei(¢(u)f27rud1)ekzp(u)ej(a(u)fZﬂ'vdg) .
This proves (8.30). O

In the shift theorem a shift of the signal in the spatial domain is considered.
The effect of such a shift are the modulation factors shown in (8.29). In the
following theorem we regard the converse situation: the signal is modulated
in the spatial domain, and we ask for the effect in the quaternionic frequency
domain.
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Theorem 8.4.6 (Modulation theorem (QFT)).
Let f(x) be a quaternion-valued signal and F9(u) its QFT. Further, let f,(x)
be the following modulated version of f(x):

fn() = €207 f () eIy, (8.31)
The QFT of fm(x) is then given by

Fo{fm}(w) = Fi(u — uo). (8.32)
If fm(z) is a real modulated version of f(x), i.e.

Fn(@) = f() cos(2mzug) cos(2myvy), (8.33)

the QFT of fn(x) is given by

(F(u + uo) + F(u — ug,v + vp)
+ F9(u 4+ ug,v —vg) + Fl(u —ug)). (8.34)

e

Fo{fm}(u) =

Proof. First, we consider the QFT of
fm(w) — ez’27ru0zf(w)ej27rv0y‘
By inserting f,, into the definition of the QFT we obtain
F#L('U,) — /R2 €7i27ruzfm($)€7j2ﬂ—vyd2w
— —i2m(u—uo) —j327(v—v0)y 2
_/]RQ€ 27 (u uo:cf(w)e i2m(v—v0)y 42 1

= Fi(u — ug).

For the second part of the proof we introduce the abbreviation f(xz) =
e~12muT f(1)e~I27vY_ Further, we use the notation

Iee (uo) = /Rz cos(2muox)f(z) cos(2mvoy)dx
Toe(ug) = i/R2 sin(2rugz)f(2) cos(2mvoy)d>
Io(uo) = j /]R2 cos(2muoz)f(z) sin(27voy)d*x

Io(ug) = k/]R2 sin(2ruoz)f(2) sin(2mvoy )d> z,

where I, (ug) is even with respect to both ug and to vg, I (ug) is odd with
respect to ug and even with respect to vg and so on. We can then write
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i(Fq(u + o) + F(u — ug,v + vg) (8.35)
+F%(u + ug,v —vo) + Fl(u — uyp))
= 1(Iee (uO) + Ioe(uO) + Ieo(UO) + Ioo(UO))

4
1
+Z(Iee(_u0; UO) + Ioe(_u07v0) + Ieo(_uO;UO) + Ioo(_u07v0))
1
+Z(Iee (ug, —vo) + Ioe(uo, —v0) + oo (g, —v0) + Ioo (10, —v0))
1
+Z(Iee(_u0) + Ioe(_UO) + Ieo(_UO) + Ioo(_UO))
= I (uo) = Fy{cos(2mupz) f (x) cos(2mvoy)}, (8.36)
which completes the proof. O

Theorem 8.4.7 (Derivative theorem (QFT)).
Let f be a real two-dimensional signal, F'? its QFT, andn =p+ r,p,r € N.
Then

5o o} W) = @0 P P ) o)

Proof. We prove the theorem for (p,r) = (1,0) and (p,r) = (0,1) starting
with the first case. We have

f@) = /  ei2mue i (y)i2non, (8.37)

Thus, it follows that

0 0

i 27U g Jj2mvy _ 27U (; q j2mvy
P (x) /26 Fil(u)e /R2e (127uF(u))e .

Therefore, we have

F, {a% f} (u) = i27uF(u). (8.38)

Analogously we derive

0 0 / 2 2 / 2 . 2
—f(x) = — eV B (u)el ™ = ™ (F(u)j2mv)e? ™Y,
s @=5 |, (w) e (P w)2m)
which shows that
0 .
Fq {B_yf} (u) = 20 F(u)(jv). (8.39)

For general derivatives the theorem follows from successive application of first
order derivatives. O
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Theorem 8.4.8. The QFT of a real two-dimensional signal f is quater-
nionic hermitian.

Proof. We have shown before that the QFT of a real signal has the form
Fi(u) = FE (u) +iFg, (u) + jFE,(u) + kFg, (u).
Applying the automorphisms « and g yields
a(Fi(u)) = FE (u) +iFj, (u) = jFE, (u) — kEF, (u)
= Fge (ua _U) + iFge(ua _U) + erqo(u7 —U) + kFgo(ua _U)
= F9(u, —v) (8.40)
B(F(u)) = Ff, (u) —iFg, (u) + jF,(u) — kFJ,(u)
= Feqe(_uav) + iFoqe(_ua/U) + ngo(—U, ’U) + kFoqo(_uaU)
= Fi(—u,v), (8.41)
which proves the theorem according to definition 8.3.6. O
It can often happen that a signal undergoes an affine transformation in the
spatial domain, which can be written as f(z) — f(Ax+b), where b € R? and
A € GI(2,R). In these cases it is desirable to know how this transformation
affects the frequency representation F'9 of f. The effect of the shift by b
is already known from the shift theorem. It remains to work out how the

frequency representation is transformed under a linear transformation of the
spatial domain: f(x) — f(Ax). This is done by the following theorem.

Theorem 8.4.9 (Affine theorem (QFT)).

Let f(x) be a real 2D signal and F9(u) = Fo{ f(x)}(u) its QFT. Further, let
A be the real regular 2 X 2 matriz

A=<ZZ), with  det(A) = ad — be # 0.

The QFT of f(Ax) is then given by
FAf(Az)}(u) = m ( Fi(det(B)B™'Tu) + F1(B"'u) (8.42)
+ i(F(det(B)B™Tu) — F1(BTtu))j ).

where we introduced the matriz

ad A
B= ( d’) = Jet(A)’

Furthermore, AT denotes the transpose of A and A! the transpose of A ac-
cording to the minor diagonal:

_fabd T _fac ¢ _(db
1= (a)=a=(Ga) += ()
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Proof. The inverse of A is given by

1 d —b
At = .
o (e o)
For the transformed coordinates we introduce the notation
o, (2N [ax+by z\_ 1 dz' — by’
dv=w = <y) - <0x+dy) 7 (y) = det(A) \ —ca' +ay' )
Now we can express Fo{f(Az)}(u) using the coordinates ' in the following

way:

Folf(Az)}(u) = /]R2 e 2muT £ Ag)e I2mvY 2

1 —i2mu(d' z' —b'y") N, —j2nv(—c'z'+a'y") 32 .1
det(A)/RZe f(xe d’z
1

— det(A) / . e*i27ru(d'avfb'y)f(w)efj27rv(fc'w+a'y)d2y‘

In order to complete the proof we still have to show that
e—z’27ru(d'z—b'y)e—j27rv(—c'z+a'y) — 1 ( e—i27r:c(d'u+c'v)e—j27ry(b'u+a'v)
+e—i27r:c(d'u—c'v)e—j27ry(—b'u+a'v)
_iei27rz(7d'u+c'v) efj27ry(7b'u+a'v)j
+Z-ei27r:c(7d'ufc'v)efj27ry(b'u+a'1))j ) .
For a more compact form of (8.43) we introduce the abbriviations
o =2nvya', B=2muyb, ~=2mvzc, §=2nuxd
and we get the following expression:

o= il6—B) g=i(~7+a) _ % (ei(—é—v)ej(—ﬁ—a) i3 B-0) (3.43)
—kei(0—1)gi(B=0) 4 keiwmej(—ﬁ—a)) _
We evaluate the right-hand side:
% (ei(—é—v)ej(—ﬁ—a) + ei(=07) i (B—0) (8.44)
_ie 10 (B-0) j 4 o= il6+7) i (—F—0) j)
= %e""g (e‘”e‘jﬁ +eMedP —jetelfj 4 ie_i'ye_jﬂj) e I
= Weibeive—ix,

Obviously, this final result equals the left-hand side of 8.43 which completes
the proof. O
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Example 1. As an example we will demonstrate the effect of a rotation
of the original signal. The transformation matrix A is then given by

_ ( cos(¢) —sin(¢) _ oAt —
= (sin(c;S) cos(¢) ) = det(4) =1, B=A'= 4, (8.45)
_ 41 _ [ cos(¢) sin(¢)

AT = A1 = (—sin(¢) cos(¢)) . (8.46)

Fol f(A2)} () = 5 ( F(Au) + FI(A )
+ i(F9(Au) — F1 (A u))j). (8.47)

Example 2. Here we regard a pure dilation of the original signal with dif-
ferent scaling factors for the z-axis and the y-axis. In this case the transfor-
mation matrix takes the form:

A= (8 2) = det(A) = ab, (8.48)
B=B" = (%b 1%) , Bl= %B*I = (1(/)“ 1(/’1)) . (8.49)
Folf(Am) ) = 5 (P (2,5) + 70 (5,7) (8.50)
+i (P (55) =P (53))9) (8:51)

1 u v
= —F (=, 7). (8.52)

This result has the same form as the analogue result for the 2-D Fourier
transform. The affine theorem of the Hartley transform [29] is like the ver-
sion for the QFT more complicated than the affine theorem of the Fourier
transform.

8.5 The Clifford Fourier Transform

Above we developed the QFT which applies to images or other 2-D signals.

When one wants to deal with volumetric data, image sequences or any other

signals of higher dimensions, the QFT has to be extended. For this reason we

introduce the Clifford Fourier transform for signals of arbitrary dimension n.

Which Clifford algebra has to be used depends on the signal’s dimension n.
We recall the QFT in the form given in theorem 8.4.1:

Fq(u) — /IRZ ef'i27ru1m1f(m)efj2ﬂ'uzz2‘

As mentioned earlier, the position of the signal f between the exponential
functions is of no importance as long as f is real-valued.
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Definition 8.5.1 (Clifford Fourier transform).
The Clifford Fourier transform F, : L*(R™,Ron) = L*(R™,Ro,n) of an n—
dimensional signal f(x) is defined by

Fe(u) = R f(x) Hexp(—ek%ruk:ck)d”m . (8.53)
k=1
where u = (U1, U2, ... ,Uy), T = (T1,%2,... ,Ty) and €1,€s,... e, are the

basis vectors of the Clifford algebra Ry ., as defined in chapter 1. The product

is meant to be performed in o fived order: H?Zl aj; = a102 -- - Gn.

For real signals and n = 2 the Clifford Fourier transform is identical to the
QFT. For n =1 it is the complex Fourier transform.

Theorem 8.5.1 (Inverse Clifford Fourier transform). The inverse
Clifford Fourier transform is obtained by

n—1

F.HF Y (z) = - Fé(u) H exp(en—k2MUp—;Tpn— )d" u. (8.54)
k=0

Proof. Inserting term (8.53) into the formula (8.54) yields

n n—1
- f(x" H exp(—e;2nujzy)d ' H exp(en k2TUn kT k)d"u
j=1 k=0
= f(@")o™(x — z')d '
Rn
= f(x),
where the orthogonality of the harmonic exponential functions is used. O

In chapter 9 we will introduce a corresponding transform using an n-D com-
mutative hypercomplex algebra.

8.6 Historical Remarks

Although hypercomplex spectral signal representations are of special interest
for image processing tasks, the Clifford Fourier transform does not seem to
have attracted a lot of attention yet. The reason may lie in the fact that
articles on the subject are spread in the literature of many different fields
and are not easily accessible. For this reason it is not surprising that the
authors of this chapter first thought to have ”invented” the QFT and the
Clifford Fourier transform in [35]. Since the literature on the QFT is rather
disjointed the following review may be of interest to researchers in this field.

The first appearance we could trace the QFT back to is an article by
the Nobel laureate R.R. Ernst et al. which appeared in 1976 [72]. The scope
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of this work is 2-D NMR spectroscopy. In the analysis of molecular systems
transfer functions of perturbed systems are recorded, which leads to 2-D
spectra. Ernst shows that for the analysis of so called quadruple phase 2-D
Fourier transform spectroscopy the introduction of a hypercomplex Fourier
transform is necessary. The transform introduced in [72] could be the same
as the QFT. However, the algebra involved is not completely defined: The
elements i and j are given as imaginary units 2 = j' = —1, and a new
element ji is introduced. There is nothing said about (j7)? and on whether
Jji equals 45 or not. This work has again been reported in [73] and [59] where
the used algebra is specified to a commutative algebra with ij = ji.

In mathematical literature the Clifford Fourier transform was introduced
by Brackx et al. [30] in the context of Clifford analysis. This branch of math-
ematics is concerned with the extension of results of the theory of complex
functions to Clifford-valued functions.

In 1992 the QFT was reinvented by Ell for the analysis of 2-D partial-
differential systems [69, 70]. This work was taken up and adapted to the use
in color image processing by Sangwine [203, 204, 205]. Sangwine represents
an RGB color image as a pure quaternion-valued function

f(@) =ir(x) +jg(x) + kb(x)

which can be transformed into the frequency domain by the QFT. This al-
lows to transform color images holistically instead of transforming each color
component separately using a complex Fourier transform. A more extensive
discussion of algebraic embeddings of color images can be found in Chap. 7
of this book.

The discrete QFT or DQFT has been used by Chernov in order to develop
fast algorithms for the 2-D discrete complex Fourier transform [40]. Chernov
reduces the size of a real image by assigning to each pixel a quaternion made
up from four real pixel-values of the original image. This method is called
overlapping. The shrunk image is transformed by the DQFT. The result is
expanded to the DFT of the input signal using simple automorphisms of the
quaternion algebra.

8.7 Conclusion

The quaternionic Fourier transform (QFT) has been introduced as an alter-
native to the 2-D complex Fourier transform. It has been shown that the
main theorems of the complex Fourier transform have their analogues in case
of the QFT. An n-D Clifford Fourier transform has been introduced as an
alternative to the complex Fourier transform. It has been shown that there
is a hierarchy of harmonic transforms. Actually, all lower level transforms
can be easily derived from the higher level transforms. Whereas here mainly
theoretical considerations were made, we will demonstrate the impact of the
quaternionic Fourier transform on image processing in chapter 11.
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