10. Fast Algorithms of Hypercomplex
Fourier Transforms*

Michael Felsberg!, Thomas Biilow!, Gerald Sommer!, and
Vladimir M. Chernov?

1 Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

2 Image Processing System Institute,
Russian Academy of Sciences, Samara

10.1 Introduction

In this chapter we consider the computational aspect of the quaternionic
Fourier transform (QFT), of the Clifford Fourier transform (CFT), and of
the commutative hypercomplex Fourier transform (HFT). We can cover all
these transforms with the term hypercomplex Fourier transforms, since all
mentioned algebras are hypercomplex algebras (see Cha. 9). In order to have
a numerical way to evaluate these transforms, we introduce the corresponding
discrete transforms by sampling the continuous transforms. Furthermore, we
prove the inverse transforms.

The simplest way to create fast algorithms for the discrete transforms (of
real n-dimensional signals) is to separate the transforms into 2" — 1 trans-
forms so that each transform only effects one spatial coordinate. Therefore,
the asymptotic complexity of fast algorithms for n-dimensional transforms

* This work has been supported by German National Merit Foundation and by
DFG Grants So0-320-2-1, S0-320-2-2, and Graduiertenkolleg No. 357.

232 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

should not exceed 2" — 1 times the complexity of (2" —1)N™ FFTs!, i.e. the
complexity should be of order O(N™logn) (or less).

In order to obtain little computational complexities, we formulate several
approaches for fast algorithms. We make use of some algebraic properties
of hypercomplex algebras in order to optimize the transforms. Some of the
algorithms are based on standard algorithms, so that for the implementation
there is nearly no additional coding; the standard implementations can be
re-used.

All the time and memory complexities of the presented algorithms are
estimated, illustrated, and systematically compared. Hence, it should be easy
for the reader to choose the algorithm which suits best for his purposes. This
decision does not only depend on the purpose but also on the computer
environment. We try to stay abreast of this fact by considering cache sizes
and memory sizes of today’s computers knowing the fact that the usage of
swap space (i.e. to swap out data on a hard disc) drives any algorithmetic
optimization insane.

10.2 Discrete Quaternionic Fourier Transform and Fast
Quaternionic Fourier Transform

In this section we define the discrete quaternionic Fourier transform (DQFT)
in a similar way as the discrete complex Fourier transform is defined, i.e. the
continuous transform is sampled. We state and prove the inverse discrete
QFT, a fast algorithm for the QFT (FQFT) and a fast algorithm for the
inverse QFT. Further optimizations of the fast algorithms are presented (and
proved) and their complexities are considered in detail.

10.2.1 Derivation of DQFT and FQFT

Starting point for a fast algorithm of the QFT is the discrete quaternionic
Fourier transform, of course. It is defined analogously to the discrete Fourier
transform by sampling the continuous transform (8.3.4). Formally, the contin-
uous, infinite signal f(z,y) which must be of limited bandwidth (or convolved
with a low-pass filter) is convolved with the Shah function (infinite sum of
equi-distant Dirac impulses). Afterwards, the new (periodic) signal is sam-
pled so that fn . = f(me,,ne,) where e, and e, must be integer divisors
of the periods with respect to x and y. Formally, the last step is a pointwise
multiplication with a Shah function.

We obtain the discrete transform by two steps. Firstly, we only consider
the periodicity. As a result we evaluate the integral of (8.3.4) only in one
period (similar to Fourier series). Secondly, we multiply the integral with the
Shah function, so the integral changes to a sum:

! Note that N indicates the extension of the signal in only one dimension. The
total size of the signal is therefore N".

10. Fast Algorithms 233

Definition 10.2.1 (Discrete QFT). Let f be a discrete two-dimensional
signal of finite size M x N. The discrete quaternionic Fourier transform
(DQFT), denoted as .7-"qD{f} = F, is defined by

M—-1N-1
— —i2rua M~ —j2royN~1!
Fl, = E E e TR (10.1)
z=0 y=0

The discrete inverse transform can be derived from the continuous one,
too. Due to the fact that a periodic signal in the spatial domain corresponds
to a discrete spectrum (Fourier series) and a discrete (infinitely long) signal
corresponds to a periodic spectrum, we can simply exchange spatial and
frequency domain. This yields the same transform, except for the sign of
the exponential term and except for a normalizing factor which must be
multiplied in this transform as in the one-dimensional case:

Theorem 10.2.1 (Inverse DQFT). The inverse discrete quaternionic
Fourier transform ffﬁl{Fq} = f reads

1 M—-1N-1 .)
fz,y — i Z Z ez27ruzM Fg,vej%rvyN . (102)

u=0 v=0

Proof. Due to the fact that we call (10.2) the inverse transform of (10.1), we
must prove that the concatenation of both transforms yields the identity.
Firstly, we define abbreviations for the modulation terms:

w; = e2™M (10.3a)
wj = 2™ (10.3b)
Applying formula (10.2) to (10.1) yields:

) M—-1N-1
D~ —uzx —vy
FP 2 2w e

z=0 y=0
1 M—-1N-1 M—-1N-1
— uz’ —uzx —vy, vy
=3 2 2 Wit D D wit feyw; M
u=0 v=0 z=0 y=0

;] M AN 1M 1N) -
_ u(zx' —x v(y —y
= 3w 2 2 2 2w e
z=0 y=0 u=0 v=0
] M-1N-1
= 2N 2 2 Moo foyNoy—y
z=0 y=0
= fa:l’yl
So the concatenation of the transforms (10.2) and (10.1) yields the identity
and we can call them inverse to each other. Note that the other concatenation
need not be proved because the Fourier transform is a 1-1 mapping (it is just
a change to another basis of same dimension). O

234 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

Now, we are able to calculate the spectrum of a finite, discrete signal. If
we use formula (10.1) to implement an algorithm for the DQFT, we obtain a
computational complexity of cM2N? (c being a constant). This complexity
is quite high. Hence we try to reduce it as it has been done by Cooley and
Tuckey when they developed their fast Fourier transform (FFT) algorithm.
The idea they used is the decimation of time method.

The FFT algorithm has originally been designed for 1-D time signals.
The time domain has been divided into two new domains (one consisting of
the signal values at even positions and one consisting of the values at odd
positions). Hence, it is called the radix-2 method. We will do the same for
the DQFT. We apply the decimation method to the spatial domain in order
to obtain a recursive algorithm (divide and conquer). If the domain is of the
size (1 x 1) the DQFT is the identity. Otherwise we have the following.

Theorem 10.2.2 (Fast QFT). Let (f)ymxn be a discrete two—dimensional
signal and M = N = 2¥ > 2. Then we have

FOAfY = F +w“F° + Fw;¥ + w; “Fw;® (10.4)
where

Fee = FP{1*} = FP{fouy} (10.5)

Foe = FP{f°} = FP{frot1,24} (10.5b)

Fe = FP{f*} = FP{foepyir} (10.5¢)

Foo = FP{f} = FP{Faor10y41} (10.5d)

Proof. In order to show that the recursive formula (10.4) is correct we present
a constructive proof. We apply the radix-2 method to the definition of the
DQFT (10.1) and obtain

N/2-1 1

D —u(2z1+ —v(2y1+
FD{f} = Z Z w; u(2z1 zo)f2z1+w0’2y1+y0wj v(2y1+yo) ,

21,¥91=0 z0,Y0=0

by substituting v = u1N/2 + ug, v = v1N/2 + vg

1 N/2—-1
D _ —uxo —up2xq —v02¥1,,, —VY0
‘7:q {f} - E w; E w; f2$1+$0,2y1+y0wj w;
z0,y0=0 z1,y1=0
- -N
and finally, because w; V4121 = o, N1V = 1

% J
FOAY = F for oy} + w0 F { faair,29} + F { Faw 2g1 }wj
+ wi_u}-f{fzzﬂzyﬂ}wj_v

Note that the signals faz 2y, foz+1,2ys f2z,2y+1 and faz41,2y9+1 and their quater-
nionic Fourier transforms have the size N/2. O

10. Fast Algorithms 235

In practical applications signals will not always have a size of a power of
two. In that case the domain may be filled up by zeros. As a consequence,
the period of the signal is changed, which has an effect on the reconstruction
of the original signal.

The recursive formula (10.4) and the identity for M = N = 1 yield an
algorithm for calculating the DQFT with complexity ¢cN21d N (see section
10.2.3). We need 1d N = k recursive calls of (10.4).

A fast algorithm for the inverse transform can be derived in the same
way as for the DQFT except for the normalizing factor and the sign in the
exponential function. This method is called decimation of frequency. Never-
theless, it is advantageous to develop another algorithm which calculates the
inverse of (10.4) in each step. Consequently, we obtain after step n exactly
the same sub-spectra as in the FQFT just before the (k—n)th application of
(10.4). The reason why this method is advantageous will be given in section
10.2.2.

Using the notations above we state the following.

Theorem 10.2.3 (Inverse FQFT). The inverse of formula (10.4) reads
(L=N/2)

Fet = 3 (Pl Flp 4 Pl + Flp) (10.62)
Py = iw? (Fg,v —Firn+Fy) — F5+L,v+L)) (10.6b)
Fity = s (Pt Py = FS oy = Flp o)) (10.60)
B = iwz“ (F{i,v —Fliry = Fl iyt Far +L)) w? (10.6d)

and therefore, the recursive execution of (10.6a-10.6d) reconstructs f, , from
Fg,.
Proof. Since the DQFT (and hence each application of (10.4)) is a 1-1 map-

ping, we only have to show that the successive application of (10.6a)-(10.6d)
and (10.4) yields the identity.

Fee + w;UFOE + Feow‘;v + w;uFOOw;’U
1
1 ((Fg,v + F1(11+L,v + Fg,v-i-L, + F5+L,v+L)>

+ Fq F1:I+L,U+L))

—Uu, U q q —
Tw; “w; (Fuav F u,v+L)

u+L,v

q q _ _ v, —v
+ (Fu,v + Fu—l—L,v Fu,v—i-L) Fu+L,v+L)) W;w;

—u, u q _ 179 e q Vo ¥

tw; “w; (Fu,v Furrw Fu,v+L)+Fu+L,v+L)) w;w;)
_
_Fu,v

Consequently, (10.6a)-(10.6d) and (10.4) are inverse mappings. If the DQFT
of a signal f; , (size: N x N) is calculated by (10.4), 1d N levels of sub-spectra

236 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

are created. Eq. (10.4) describes the transition from one level to the next. We
have proved that (10.6a)-(10.6d) do the inverse of (10.4) and therefore, they
describe the transition from one level to the previous. Consequently, recursive
execution of (10.6a)-(10.6d) yield the iDQFT. O

Due to this theorem, the equations (10.6a)-(10.6d) can be used to imple-
ment an inverse fast quaternionic Fourier transform. In each step one step of
the (forward) FQFT is inverted. Hence, after k steps we have reconstructed
the original signal. In other words, the recursive calls must stop for N = 1. In
this case, the iDQFT is the identity. This procedure is illustrated in Fig. 10.1.

spectrum
(10.62)-(10.6d)
(10.4)
/\< % % subspectra
D7 SR raurcus
(104) 70T A
jgan ¢
4)(subsubspectra
1 \

Fig. 10.1. Transitions between the (sub-)spectra

Of course, the performance of the implementation can be increased by
e.g. unfolding one or two recursive calls (so the recursive function would stop
for N =2 or N = 4). However, we only consider principle optimizations in
this chapter; further improvements of technical details are left to the pro-
grammer. Some general optimizations are given in the following section.

10.2.2 Optimizations by Hermite Symmetry

The first approach for optimizing the fast algorithms does not make use of
the specific properties of the spectra of real signals (i.e. Hermite symmetry).
The idea is the same as in equations (10.6a)-(10.6d). A phase of 7 yields only
a change of the sign. This property will be called 7-phase in the following.
Hence, we have the same sum (10.4) for £ ,Fl , Fl ., and F,; .,
except for the signs. Consequently, we only need to perform the multiplica-
tions once and can use the products four times. Hence, the multiplicative

complexity is divided by four.

10. Fast Algorithms 237

The second approach makes use of the quaternionic Hermite symmetry: we
can

a) calculate four spectra in one step,
b) evaluate three quarters of each sub-spectrum by copying and applying one
of the involutions (8.5).

If we choose a) and use the four spectra from the first decimation-step of
(10.4), we make use of a method which is called overlapping [40].

This procedure is illustrated in the figure 10.2. The 8 x 8 real signal is
mapped onto a 4 x 4 quaternionic signal. The real, the i-, the j-, and the
k-imaginary part are denoted by r, 4, j, and k, respectively.

0 1 2 3

0 1|12 3[4 5(6 7
0 O(r|efr|afr|e|r|
1 jlkljlkljlklilk
1 20r|ifr|afr|e|r|
3ljlkljlkljlk|ljlk
9 dlrle|r|e|r]e|r]
S5ljlkljlkljlkljlk

3 lriairieyrlijrli Fig. 10.2. A two-dimensional real signal
T171klgkljlk|lFE

is mapped onto a quaternionic signal

In (8.5), we have defined three involutions (g € H):

a(q) = —jaj (10.7a)
Bla) = —iqi (10.7b)
v(q) = —kgk = a(8(q)) (10.7¢)

In order to reconstruct the four spectra from the overlapped one, we
simply use the symmetry properties of the signals (see 8.3.6). The symmetries
imply the following:

Theorem 10.2.4 (Overlapping). Let f = f+ifec+jfe°+kfo and
FP{f} = F4. Furthermore let

Fg, =a(F]) (10.8a)
F,=B(F,.,) (10.8b)
E), =~(F1,). (10.8c¢)

Then, the partial spectra are obtained by

238 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

AFy, = Fl, + Fl, + F], + F], (10.92)
4Fy, =Fl, +F, —F), —F), (10.9b)
4jF, = Fl, —Fo, +F), —F7, (10.9¢)
4kF, = Fl, —Fg, —FJ, + F],. (10.94)

Proof. Due to linearity of the Fourier transform we obtain the following table
of symmetries (table 10.1) for the addends of the overlapped quaternionic
spectrum.

Table 10.1. Symmetries of the addends of F

Addend real part ¢-imag. part j-imag. part k-imag. part

FP{f<} ee oe €eo 00
iFP{f°} oe ee 00 €0
JFP{f} eo 00 ee oe
kFP{f°} oo eo oe ee
e: even
o: odd

f¢° is even wrt. the z-coordinate and odd wrt. the y-coordinate

Hence, each partial spectrum can be extracted from F9. Without loss of
generality we will reconstruct the spectrum F¢¢. We obtain the real part of
Fee 'by

AR(Fy,) = R(F, + Py + Fi_y + FL,),

since all odd parts yield zero. Analogously, we obtain the other parts, namely
4I(F5fv):I(Fg,v_qu,v+Fq _Fq)a

u,—v —u,—v
4‘-7(F5,ev) = j(Fg,v + Fgu,v - Fg,—v - Fgu,—v)a

4K(F5,€v) = K(Fg,v - Fgu,v - Fg,fv + Fgu,fv)'
Due to linearity we can exchange the sums and the selection of the com-
ponents which yield formula (10.9a). The other three spectra can be recon-

structed analogously. O

Now we consider the optimization b) which means direct application of
the Hermite symmetry. If we have calculated a spectral value F}! , (this might
be a spectral value of a sub-spectrum, too), we obtain three more spectral
values by

Fgu,v = IB(Fg,v) (10103)
F!_, =a(FY, (10.10b)
v = V(EFL)- (10.10¢)

10. Fast Algorithms 239

n
_

Fig. 10.3. Two effects speed up the calculation of
the spectrum:

:. . M calculated value

B changed signs

[] Hermite symmetry

[signs and Hermite symmetry

Note, if u (v) is zero or N/2, we have (—u,v) = (u,v) ((u, —v) = (u,v)), since
F'? is N-periodic.

Both effects (the m-phase and the Hermite symmetry) are illustrated in
the following figure 10.3.

The black cell (calculated value) is the only cell which has to be explicitly
calculated. The dark grey cells (changed signs) are obtained without addi-
tional multiplications due to the m-phase. The middle grey cells (Hermite
symmetry) are obtained from the black cell without any additional arith-
metic operations by applying the involutions. Finally, the light grey cells are
obtained from the dark grey cells by the Hermite symmetry.

Both methods, a) and b), reduce the whole complexity by a factor of
four. Though we only considered the forward transform, we can decrease
the complexity of the inverse transform using the same methods. This is
possible, since we formulated an inverse transform which reconstructs the
Hermite-symmetric sub-spectra (a simple decimation of frequency does not
yield such an algorithm).

The overlapping additionally reduces the memory complexity by a factor
of four (except for the reconstruction procedure). This is quite important if
we consider the execution of the algorithm on a computer.

The memory complexity and the localization of data have to be considered
under two aspects: cache size and memory size. If the data exceeds the cache
size, we have cache misses (in image processing we have this on most machines
for e.g. images of 512 x 512 pixels). During the execution of the algorithm the
data have to be moved between cache and main memory. It is advantageous if
the algorithm acts locally, which means that the algorithm uses only a small
part of the data (less than the cache size). The latency time for copying
data from the main memory to the cache is similar to the latency time of
floating point operations. Hence, if we would have a branch first algorithm
(the recursion is executed layer by layer), the data must be moved in each
incarnation of recursion. The resulting complexity of the data handling would
be similar to that one of the calculation itself.

Fortunately, we have a depth first algorithm which means that the recur-
sion is first finished completely for the first call, then for the second call and
so on.Hence, we have two times a cache miss for each value if the cache size

240 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

is at least a quarter of the size of the spectrum.

If the data even exceeds the main memory, the computer uses disk space
to extend the main memory (swapping). Since the access to the hard disk
is one thousand times slower than the memory access, the time complexity
of the algorithm itself becomes obsolete. The only important feature of the
algorithm is to work as locally as possible. This problem might appear if 3-D
data or image sequences are transformed.

In the following, we only consider the time complexity, since we have a
2-D transform and we assume that the cache is nearly as large as the data.

10.2.3 Complexities

In this section we consider the complexities of the presented algorithms. Since
modern computers calculate floating point multiplications much faster than
in former times, we do not restrict to the multiplicative complexities.

In literature, we have found some algorithms which reduce the multi-
plicative complexity of complex and quaternionic multiplications. Complex
multiplications can be performed with three multiplications (instead of four)
and quaternionic multiplications can be performed with nine multiplications
(instead of 16) [208]. This decrease of the multiplicative complexity can only
be achieved by increasing the additive complexity. Since multiplications are
performed as fast as additions on today’s processors (e.g. SUN UltraSPARC-
IT [231], SGI R10000 [217], DEC Alpha 21164PC [49]), the fastest algorithm is
the one with the least number of operations — multiplications plus additions.

Consequently, we always consider the multiplicative complexity, the ad-
ditive complexity, and the sum of both.

Although the FQFT is performed in the quaternion algebra, we need
not calculate the general quaternionic multiplication. We know that in each
multiplication of (10.4) one factor (the exponential term) is the element of a
subalgebra which is isomorphic to the complex algebra. Hence, the complexity
of such a multiplication can be reduced to eight multiplications and four
additions.

Formula (10.4) yields four multiplications and three additions in the
quaternion algebra or 32 multiplications and 16 + 12 = 28 additions in the
algebra of real numbers for each frequency. Hence, we have 32N? multiplica-
tions and 28 N? additions for each recursive call. If the effect of the w-phase
is used, we reduce the multiplications in the quaternion algebra by a factor
of four, i.e. we need 8 N2 multiplications and 16 N? additions in the algebra
of real numbers for evaluating (10.4) for all frequencies. Since we have 1d N
recursive calls, we have a total complexity of 8N21d N multiplications and
16N21d N additions (total: 24N21d N floating point operations).

If we have a real signal, the complexity can be reduced to approximately
one quarter. Firstly, we consider overlapping. Since the size of the new sig-
nal domain is reduced to N?/4, the complexity is divided by four and 1d N

10. Fast Algorithms 241

is substituted by Id 4§ = —1 +1d N (one recursive call less). The recon-
struction of the overlapped spectrum (10.9a-d) increases the quadratic ad-
ditive complexity by three quaternionic additions (or twelve real additions)
and one real multiplication per frequency (the factor four can be eliminated
component-wise in F'9). The last recursive call of (10.4) increases the com-
plexities according to the case without Hermite symmetry (e.g. eight real
multiplications and 16 real additions per frequency). Finally, the overall
complexity reads $N?(—1 +1dN) + (1 + 8)N? = (7 + 21d N)N? multipli-
cations and ¥ N2(—1 +1dN) + (12 + 16)N? = (24 + 41d N)N? additions
(total: (31 4+ 61d N)N? operations).

If the Hermite symmetry is directly used, we only need calculate one
quarter of each sub-spectrum. The other three quarters are evaluated by the
automorphisms (8.5). Since there is no symmetric frequency if u and v are
zero or N/2 and there is only one instead of three symmetric frequencies if
either u or v are zero or N/2, we obtain a high additional quadratic complex-
ity. Furthermore, this algorithm has a four times higher memory complexity
than the overlapping algorithm (except for the last step). Hence, it is not
advantageous to realize this fast algorithm.

Nevertheless, we can decrease the complexity of the overlapping algorithm
if we reconstruct only one quarter of the spectrum by formulae (10.9a-d) and
(10.4) and copy the other three quarters. This reduces the complexity of the
reconstruction to 1+ 8 = 3 real multiplications and 28 = 7 real additions per
frequency. Due to the zero-frequencies (and the N/2-frequencies), we have
an additional linear complexity, which is neglected in these considerations.
The total complexity of this algorithm is (1 + 21d N)N? multiplications and
(3 +41d N)N? additions (total complexity: (4 + 61d N)N? operations).

The same complexity as for the last algorithm is obtained if four real
signals are transformed at the same time. The four signals are mapped to
the four parts of a quaternionic signal which is transformed with a com-
plexity of 24N21d N operations (i.e. 6N21d N per spectrum). Afterwards,
we reconstruct the four spectra similarly to overlapping (using the Hermite-
symmetry), which yields the same additional complexity (N? multiplications
and 14—2N 2 additions per spectrum). All results are summarized in table 10.2.

Table 10.2. Complexities of the considered algorithms

Algorithm multiplications additions operations

FQFT (n-phase) 8NZI1dN 16N?1d N 24N?1d N
FQFT/overlapping N%*(7+21dN) N?(24+41dN) N?(31+61dN)
FQFT/overl.+sym. N?*(1+21dN) N?*(3+41dN) N?*(4+61dN)
FQFT/four spectra N?*(1+21dN) N?*(3+41dN) N?*(4+61dN)

242 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

Note, that the algorithm using overlapping with Hermite symmetry in
the last step is very complicated to implement. The enormous code length of
the implementation could possibly slow down the algorithm more than it is
sped up by the Hermite symmetry. Additionally, there is an alternative way
to calculate the DQFT which is even faster than all algorithms above (see
10.4.2).

10.3 Discrete and Fast n-Dimensional Transforms

In this section we extend the definition of the discrete QFT for the n-
dimensional commutative hypercomplex Fourier transform (HFT). We state
the inverse discrete HFT and a fast algorithm (FHFT). Further on, we gen-
eralize the m-phase and the overlapping for n dimensions and consider the
complexities.

10.3.1 Discrete Commutative Hypercomplex Fourier
Transform and Fast Commutative Hypercomplex
Fourier Transform

Recall the correspondence of the QFT and the HFT2 (9.3.1): both transforms
yield the same coefficient in the case of real signals. We have extended that
concept to n dimensions in Sec. 9.4.2, i.e. the coefficients of the HF'Tn are the
same as those of the n-D CFT of a real signal. For the discrete n-D CFT and
the discrete HFTn we have the same correspondence as for the continuous
transforms, since we have not used the properties of the domain (i.e. if it is
infinite and continuous or finite and discrete) in the proof. Therefore, we can
calculate the Clifford spectrum via the HFTn and it is sufficient to give the
definition of the discrete HF'Tn in this section.

Additionally, it is not possible to develop directly a fast algorithm for the
CFT in the same way as we did for the QFT. We can apply the decimation
method in a straightforward way only for commutative algebras because we
have to exchange some factors. The QFT is an exception since we have two
ways of multiplying and therefore we can extract one factor of the QFT kernel
to the left (the i-term) and one to the right (the j-term). If n > 3 we have not
enough ways of multiplying (e.g. from the top), so we must really permute
some factors. Since the hypercomplex algebra introduced in section 9.4.2 is
commutative, we use the commutative hypercomplex Fourier transform for
developing a fast algorithm. In this respect, we want to annotate that we have
originally introduced the commutative hypercomplex algebra for the purpose
of developing fast algorithms. Therefore, the whole theory presented in Cha. 9
has been motivated by the mathematical properties which we needed for the
algorithm.

We have shown in The. 9.3.1 that the coefficients of both transforms are
the same if the signal is real-valued and due to linearity of the HFT, we can

10. Fast Algorithms 243

even calculate the Clifford spectrum of a Clifford-valued signal (see 10.4.2).
Thus, by developing the discrete and fast HFT, we indirectly obtain a discrete
and fast CF'T, respectively.

To start with, we now define the discrete HFT in analogy to the DQFT
by sampling the continuous transform. The considerations we made for the
QFT in section 10.2.1 (about the formal construction of discrete signals) are
the same for the HFT, of course.

Definition 10.3.1 (Discrete HFT). Let f be an n-dimensional discrete
signal of the size N™ and let I, be defined as

e Neiyn 0
0 exNeayn 0
I, = .
0 " 0

0 e, ANesyy,

Then, the discrete HE'T of f is defined by

Ft= Y fee?melu'NT (10.11)
ze{0,... N—1}~

Note that the discrete signal can have different lengths in each coordinate,
i.e. a 3-D signal can have the size M x N x K with arbitrary (true positive)
M,N,K. We formulated the DHFT for signals with equal length in each
dimension, since the formula is more compact and the FHFT (see (10.13)) can
only be applied to such signals. Nevertheless, every signal can be embedded
in a larger signal of that form (with a changed period, of course).

In analogy to the iDQFT we state a theorem for the inverse transform
in the following. The transform and its proof are extensions of the two-
dimensional case (10.2). Note that there is one important difference between
the 2-D DHFT and the DQFT. The latter is formulated using a special or-
der of multiplications (i-term from the left and j-term from the right). This
order implies that the iDQFT must have the same sequence of factors, since
the two ¢-terms and the two j-terms must compensate directly each other,
respectively.

In contrast to this, the sequence of factors is irrelevant in the case of
the DHFT and the iDHFT, since they are commutative. Hence, they can be
formulated putting all exponential functions in one exponential function at
the end. Additionally, we need not take care of the order of the multiplications
in the proof of the theorem.

Theorem 10.3.1 (Inverse discrete HFT). Let f be an n-dimensional
discrete signal of the size N™ and F" its DHFT. Then, the following equation
holds true

fo=m 2 FherelnulN"" (10.12)
u€{0,... N—-1}»

244 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

Proof. Applying (10.12) to the discrete HFT of f yields:

L E 1_7‘1’7,627rz'1nuTN_1
Nn u
u€{0,... N—1}"
_ 1 —2rel,uT N~ 272’ [, uT N~
= fue ¢

u€e{0,... N—1}" z€{0,... N—1}»

- S, TNy,

z€{0,... ,N-1}" u€{0,... N-1}"

= % > fe N0 —a

z€{0,..., N—1}n
= far.
Hence, (10.12) is the inverse DHFT. O

Now, having a discrete transform in a commutative algebra, we are able
to state a fast algorithm for the HFT, since we can apply the decimation
method. The following theorem is the extension of the FQFT (10.4). The
notes we made for the DQFT concerning the order of multiplications are
valid for the FHFT, too. Therefore, the recursive formula for the 2-D FHFT
differs from that one of the FQFT. Nevertheless, both formulae yield the
same coefficients for a real signal. Besides, the proof is simplified by the
commutativity.

Theorem 10.3.2 (Fast HFT). Let f be a discrete n-dimensional signal
of the size N™ with N = 2*. Then we have

1
N S e (10.13)
w10=0
1<i<n
where
N/2-1
Fmo’u: Z f2m1+moe_2ﬂ2m11nu/N- (1014)
z11=0
1<I<n

Proof. Since the proof of equation (10.13) is the same as the one for the
FQFT (10.4) except for the dimension and the notation of even / odd signal-
components, it is omitted. Instead of using ”e” for even and ” 0” for odd signal-
components, they are denoted by ”0” and 71”7, respectively. Accumulating
the indices yields an index-collection, which is an n-dimensional vector. This
vector is identical to g = xmod 2. Again, the order of multiplications is
irrelevant. O

10. Fast Algorithms 245

The notes which have been made for the FQFT concerning the signal
length are valid for the n-D FHFT as well. Obviously, the restriction to the
signal size becomes a drawback for higher dimensions, since the area filled
up by zeros might be a multiple of the original signal size. For those cases
the row-column algorithm in section 10.4.1 evaluates the spectrum with less
complexity.

The inverse transform can be calculated by the same algorithm as the
FHFT using positive exponential terms and a norming factor. Alternatively,
an iDHFT can be developed by reconstructing the sub-spectra as it has been
done for the iIFQFT. Since such an iFHFT does not include any new ideas
which have not been mentioned so far, we omit the explicit formulation of
the algorithm.

10.3.2 Optimizations and Complexities

For the FHFT we have the same optimizations as for the FQFT. Essentially,
we can apply the m-phase method and overlapping. We will consider only
these two methods in the following.

Analogously to the FQFT, we exclusively have multiplications by complex
factors. Note that for an implementation of the FQFT or FHFT, we reduce
the complex exponential functions to sine and cosine. Therefore, we have to
decompose the compact exponential function in (10.13) into n products of
the sums of sines and cosines.

The multiplication of a general element U of the 2" dimensional com-
mutative algebra by a complex factor yields 2"*! real multiplications and
2" additions. The addition of two general elements U and V yields 2™ real
additions.

One application of (10.13) yields

n n n—1 n—1
) = = 2"71
5 (0)=ng ()=
=0 =0

of these special multiplications and 2™ — 1 additions per frequency. Hence,
we obtain n22” real multiplications and

n22n71 + 22n _ 2n — (g + 1 _ 27n) 22TL
real additions. Therefore, we have n22"N" multiplications and
(2 +1—27™)2?"N"™ additions for the whole spectrum. Since the algorithm
is performed Id N times, we must multiply these complexities by 1d N for
obtaining the complexity of the whole algorithm.

Using the effect of the w-phase, we reduce the number of multiplica-
tions by 2™. Consequently we need n2"N"1d N real multiplications and
(3 +2" —1)2"N™1d N real additions for the whole algorithm.

246 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

Now, we describe the overlapping for the n-dimensional case: firstly, the
domain of the signal fz of the size N™ is divided into 2" parts by the sub-
stitution & = 21 + 2o where zo; = z;mod 2 and z1; = |z;/2]. Each signal
value foz,+a, is mapped onto one component of a new hypercomplex-valued
signal f,,. Which value is mapped onto which component is determined by
Iop.

We define a coding function

C:P{1,...,n}) — {0,1}"

with

Cr(j) = {é ieflsek € (10.15)
and use the following mapping:

Zi{fa,} = foeitc() (10.16)
for all j € P({1,...,n})\ 0 and

R{fe:} = fom:- (10.16")

If the set j is empty, the real part is taken, otherwise Z;{fs, }. Conse-
quently, a value at a position which is odd with respect to coordinate k is
mapped onto an imaginary part which contains .

Calculating the spectrum of f,, yields

Fuo= Y iiFcGiu (10.17)
JEP({1,m})

where Fpu, are the sub-spectra from (10.13).
The sub-spectra can be extracted from (10.17) by inverting the involutions
(8.5):

2nijFC(j)uo = Z ak(pug)(_l)card(jﬁk) (10.18)
keP({1,...,n})
k —ug; ifiek
where uf; = Ise and card(M) is the cardinality of M. Finally,
UQ; e

the spectrum F, is calculated by use of formula (10.13).

Roughly speaking, overlapping reduces the complexity by a factor of
four. The total complexity is a little bit worse, since we have an additional
N"™-complexity for the reconstruction. This additional complexity can be cal-
culated analogously to that one in section 10.2.3. Finally, we obtain the fol-
lowing table 10.3:

We want to justify the neglect of the exact evaluation of the N™-
complexities by the fact that we will present a faster approach to calculate
the DHFT in section 10.4.

10. Fast Algorithms 247

Table 10.3. Complexities of the considered algorithms

Complexity FHFT (w-phase) FHF'T /overlapping
multiplications n2"N"1d N nN"1dN + O(N™)
additions (3+2"—-1)2"N"ldN (5+2"—1)N"IdN + O(N™)
operations (32 +2"—1)2"N"1dN (3 +2" —1)N"1dN + O(N")

The memory complexity is very crucial in the n-dimensional case, since
the signal size increases exponentially with the dimension. The presented
algorithm gets very slow, if the signal size is greater than the main memory.
The reason for this is the global data access of the algorithm in the first
recursive steps (the whole domain, 2~ "th of the domain, ...). In the section
10.4.1 we present an algorithm which only acts on 1-D sub-signals. For very
big signal sizes this algorithm needs less swapping of the data.

10.4 Fast Algorithms by FFT

In this section we describe two methods of evaluating the DHFT and the
DCEFT by applying complex-valued FFT algorithms. The first method which
is called row-column method cascades 1-D FFTs in order to calculate the
spectrum. The second method uses the isomorphism between the commuta-
tive hypercomplex algebra and the indirect product of complex algebras. This
isomorphism maps the HFT of a signal onto two complex spectra of the signal
and vice versa. We obtain a method to calculate the hypercomplex spectrum
from the complex spectrum. The last paragraph deals with the complexities
of the presented algorithms.

10.4.1 Cascading 1-D FFTs

There is one simple approach to calculate the DCFT (or the DHFT) by
the 1-D FFT algorithm. The method is called row-column algorithm and we
will firstly introduce it for the DQFT. Of course, it can be generalized for
arbitrary dimensions.

The idea is as follows. We pick up one coordinate, without loss of gener-
ality we will take the first one (i.e. the z-coordinate). Then, we calculate the
1-D FFT of each row and put the results in two domains of the same size,
one for the real part and one for the imaginary part, denoted by ff and f7,
respectively.

Next, each column of these two signals ff and f7 is transformed by the
1-D FFT. Finally, each part of both spectra is mapped to one part of the
quaternionic spectrum. The real spectrum of f¥ is the real part of F'9, the real
spectrum of fI is the i-imaginary part of F9, the imaginary spectrum of f%

248 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

is the j-imaginary part of F'? and the remaining spectrum is the k-imaginary

part of F'?. The method is illustrated in the following figure 10.4.

real pey Yn\aginary part

I £

. . Fig. 10.4. The row-
reV Wg. rejy Nr\nilg. column algorithm for
a 2-D signal (the ar-

. .. . row means applica-
real Jj-imag. i-imag. k-imag. tion of the 1-D FFT)

Theorem 10.4.1 (Row-Column algorithm). The application
row-column algorithm to a signal yields its DQFT in the 2-D case.

Proof. We start this proof with the DQFT of a signal f.

M—-1N-1

. -1 iy -1
q E : 2 : —i2mux M —j2mvyN
Fu,v - € fw,ye

z=0 y=0

Now, we will set some parenthesis to define N new 1-D functions f¥

The 1-D Fourier transform of f¥ is denoted by F? (complex-valued):

N—-1 /M—-1
q —2ruz M~ py —j2moyN~?!
Fl, = E E e flle

y=0 z=0

N-1
_ y ,—j2mvyN~!
= E Fle

y=0

N-1 L N-1 .
=Y R{F{}e N7 4§ Y T{Fy}e TN
y=0 y=0

of the

= fway'

The 1-D Fourier transform of R{F?} and Z{FY} are denoted by F.[', and

10. Fast Algorithms 249

qu’v, respectively. Note that these transforms use y as the spatial coordinate

and v as the frequency.
N-1
Fi, = 30 RAF(R{e vV 4 jT{ervh ™)

y=0
N-1

+i Y T{FLHR{e™ 2™} 4 jT{em2muN)
y=0

= R{F%} +JT{F2%} +iR{F,,} + kKI{F,}

Hence, we obtain exactly the coefficients as described in the row-column
algorithm and due to the fact that two quaternions are equal if and only if
all coeflicients are equal, the theorem is proved. O

For the DHFT we obtain an analogous algorithm. In each step the
number of transforms is doubled, since the real and imaginary parts are
7ij27rzjuij_1

transformed separately. Every exponential factor e is rewritten
-1

as R{e_ﬂ”f”jNi_l} + 4;T{e"""®%N; "1 Hence, we double the number of
Fourier transforms n — 1 times and consequently we obtain 2 -2"~! = 27 co-
efficients which we need for the DHFT. Furthermore, we have all imaginary
units: 117 (1 + 4).

Since the order of the imaginary units in the product is ascending, we can
perform the multiplications as well in the Clifford algebra as in the commuta-
tive hypercomplex algebra. This is an improvement, compared to the FHF T
(see below). Besides, the drawback of all radix-2 methods (i.e. that the signal
size must be a power of two) is less serious for the row-column algorithm.
For the FHFT the signal length in each coordinate must be filled up to the
same (i.e. the greatest) power of two. The row-column algorithm can handle
different signal lengths in each coordinate.

The algorithm must be modified, if the spatial signal f is not real-valued.
Consider the two-dimensional case. If the QFT is defined with one exponential
factor to the left and one to the right, we can split the signal f into one
complex signal f! = R{f} +4Z{f} and one complex signal f> = J{f} +
iK{f}. Obviously f = f! + f24. The 1-D Fourier transform (row-wise) of
f' and f? are denoted F' and F?, respectively. Now, we calculate the 1-D
Fourier transform (column wise) of R{F'} + iR{F?} and Z{F'} + iZ{F?},
denoted by F® and FTK | respectively. They are identical to R{F9}+i 7{F4}
and Z{F%} + iK{F?}. Hence, we obtain

F? = R{F™} 4 jT{FR} + i(R{FIE} 4 jT{F'E}). (10.19)

Considering the CFT, a new problem occurs. As we can see in the case
of the 2-D CFT, the spectrum is different depending on the i-exponential
term standing on the left or on the right of the signal. If we have more than
two dimensions, we must use the CFT. Therefore, in order to compensate

250 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

the exchanged imaginary units, we have to alter some signs. These signs can
be evaluated by formally splitting the CFT into 1-D FTs. The formulation
of the specific rules for each dimension is omitted here, since the rules can
be derivated from the eigenvalues in Lem. 9.4.3 and by the different signs in
the multiplication tables of the algebras Ry, and H,. Furthermore, we are
mostly interested in image analysis and for that purpose the 2-D algorithm
is sufficient.

10.4.2 HFT by Complex Fourier Transform

We have proved in section 9.4.2 that the commutative hypercomplex algebra
is isomorphic to the Cartesian product of complex algebras. Let us consider
this isomorphism more closely with respect to the Fourier transform. Firstly,
we take the two-dimensional case.

We obtain the two complex coeflicients 7, £ from the hypercomplex value
F by the formulae

n=R{F} — K{F} +i(Z{F} + J{F}) (10.20a)
¢ = R{F} + K{F} +i(T{F} — J{F}) (10.20b)

Assume now F' being a hypercomplex spectrum. If we consider 7, we can see
that it is equal to the complex spectrum of the same signal. It is an amazing
fact, that two totally different mappings (one between two algebras and one
between two signal-theoretic concepts) are equal.

Even more amazing is the correspondence between the second complex
component £ and the complex spectrum. If F' is the spectrum of a real signal,
i.e. it is Hermite symmetric, we obtain £ from 7 by inverting the v-coordinate
(the reversion in v-direction yields a changed sign in the j- and k-components
of the spectrum).

Using this knowledge, we can develop another fast algorithm for the HFT2
based on a complex 2-D FFT. Assume that the signal is real-valued. Now,
calculate its complex spectrum, using an ordinary 2-D FFT algorithm. This
spectrum is equal to 7. Next, invert the v-axis in order to obtain the & com-
ponent. Last, use the inverse of (10.20a and b) in order to reconstruct the
hypercomplex spectrum.

The whole procedure can be shortened by writing

F" = R{F°} +iZ{F°} + jI{F°} — kR{F°} (10.21)

where F is the complex spectrum, Fj, = 1/2(Fy,y + Fy—,) and
F:j’v = 1/Z(Fu,v - Fu,fv)-

Up to now, we have exclusively considered spectra of real signals. In sec-
tion 10.3.1 we have already mentioned that the DCFT of a Clifford-valued
signal can be calculated using the DHFT. In order to develop such an algo-
rithm we use the following derivation starting with the 2-D DCFT (not the
DQFT):

10. Fast Algorithms 251

M—-1N-1
Fi= %" % (R{UI T} + T + kKL S e Bree/Memi2mw/N
z=0 y=0
M—-1N-1
— Z Z R{f}efi%ruw/Meijﬂ'vy/N

z=0 y=0
M-1N-1

+i Z Z I{f}e—z’27ruw/Me—j27rvy/N
z=0 y=0
M—-1N-1

+j Z Z j{f}e—iQﬁuz/Me—j27rvy/N
z=0 y=0
M-1N-1

+k Z Z }C{f}efi27ruw/Mefj27rvy/N
z=0 y=0

=FR 4 iFl 4+ jF/ + kFEK

where FE FI F7 and FX are spectra of the real signals R{f},Z{f}, 7{f},
and K{f}, respectively. Hence, they can be evaluated either in the Clifford
algebra or in the commutative hypercomplex algebra. Therefore, they can be
calculated via the complex spectra. Only the last step (the multiplication of
the partial spectra by the imaginary units) must be calculated in the Clifford
algebra.

Since the isomorphism is proved for any dimension, every hypercomplex
spectrum can be calculated using the complex Fourier transform. If the signal
is real, the method is straightforward. The first complex coefficient is obtained
by the complex Fourier transform. The other coefficient are calculated by
inverting each coordinate axis except for the first. If the signal is Clifford-
valued, each component must be transformed separately and afterwards the
imaginary units are multiplied to the partial spectra using the Clifford algebra
multiplication.

10.4.3 Complexities

In this section we consider some complexities of the presented algorithms.
Though the row-column algorithm is most advantageous in the case where
the signal length varies widely with respect to the different coordinates, we
consider the case where all signal lengths are the same, in order to compare
the row-column algorithm to the other ones.

We start with the complexities for the two-dimensional case. We already
said that for real signals the row-column algorithm doubles the number of
1-D transforms for each dimension. Hence, we need three transforms in the
2-D case. Each transform has to pass N rows (columns) and its complexity
is given according to table 10.3 by N1d N multiplications and 3/2N1d N

252 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

additions (5/2N1d N operations). Hence, we obtain 3N2?1d N multiplications
and 9/2N?21d N additions for the whole spectrum (15/2N?21d N operations).

For quaternionic signals the row-column algorithm performs two times two
1-D FFTs. Since the signals are not real, the 1-D FFT itself needs twice the
number of operations. That yields a complexity of 8N21d N multiplications
and 12N?1d N additions (20N21d N operations).

If we use the isomorphism to calculate the Clifford spectrum of a signal,
the complexity depends on the 2-D FFT algorithm (up to a quadratic ad-
ditive complexity). Assuming that a 2-D FFT algorithm can be performed
with 3/2N2%1d N multiplications and (3/4+2)N%1d N additions (17/4N%1d N
operations)[125], an FHFT algorithm using the isomorphism has the same
complexity if the signal is real.

If the signal is Clifford-valued, the complexity is four times the complexity
of the algorithm for a real signal (up to a quadratic additive complexity for
the combination of the four spectra). All the complexities calculated above
are summarized in table 10.4.

Table 10.4. Complexities of the considered algorithms

algorithm multiplications additions operations
row-column (real) 3N?1dN 9/2N*1dN 15/2N*1dN
row-column (quat.) 8NZ1dN 12N?1dN 20N’1dN
isomorphism (real) 3N?1dN UN’IdN UN’1dN
isomorphism (quat.) 6N21dN 11IN21dN 17N21dN

Finally, we will roughly consider some complexities for the n-dimensional
case. The row-column algorithm for the real case uses 22;01 20=2"-11D
FFTs N™! times. That yields a complexity of (2" — 1)N™1d N multiplica-
tions and (2" —1)3/2N"1d N additions ((2" — 1)5/2N™1d N operations).

The row-column algorithm for Clifford-valued signals needs n2"~! 1-D
FFTs (with double complexity) N™~! times. Hence, we have a complexity of
n2"N™1d N multiplications and n2"3/2N"1d N additions (n2"5/2N™1d N
operations).

The algorithm using the isomorphism still has the same complexity as
the complex nD FFT in the case of real signals and it has a 2" times higher
complexity in the case of Clifford-valued signals.

If we consider the memory complexity, it becomes obvious that the row-
column algorithm applies FFTs only on 1-D sub-signals. Therefore, it works
nearly independently on the dimension. If the signal does not fit into the main
memory, the data is swapped as often as the coordinate for the 1-D FFT is
changed (i.e. n times). Hence, the number of swapped data is nN™. Note that

10. Fast Algorithms 253

we provided implicitly, that one row always fits in the main memory, which
is quite realistic.

For the n-D FFT (or FHFT) we have one crucial point in the recursion
where the data begins to swap for each higher level. The number of the
swapping levels s can be calculated from the size of the main memory M and
the signal size N™ by the formula

s:[%ld%]:[ldN—%ldM]zldN—le\"/MJ. (10.22)

The algorithm must swap (Id N — |Id /M |)N™ values. Since this formula is
not as easy to understand as the one for the row-column algorithm, we will
give an example.

Firstly, consider that we want to calculate the DQFT (n = 2). We know
that each quaternion uses 32 bytes (four double floats). Assuming that the
main memory consists of 64 megabyte, we obtain M = 2%'. Hence |Id VM| =
10. That means, if the image is greater than 1024 x 1024 the FHFT begins
to swap. The number of swappings is linear with the power of two. The row-
column algorithm swaps two times, if the image is greater that 1024 x 1024.

Now we have n = 3. We obtain M = 22° and |Id /M| = 6. Again, both
algorithms begin to swap if the signal is greater than 64 x 64 x 64. The row-
column algorithm swaps three times, the FHFT algorithm needs a number
of swappings linear with the power of two. Both examples are illustrated in
figure 10.5. The z-axis indicates the exponent of the signal size and the y-axis
indicates, how often the whole data is swapped.

g}

= 2-D FHFT -~

F6_| .’

g t

L'c"> 4 , ’

g2 5

g /,° 2-D row-column

= T T T T 1T T T T Tan
2 4 6 8 10 12 14 16 18

wn

28t ,

| 3-D FHFT -

56_| .7

g It

w4 .

o ,

— .

2 2 | .’ 3D row-column Fig. 10.5. ’I.‘he num-

g , ber of swapping oper-

2 ’ ations for the 2-D and
T 1 T T T T 1N 3-D FHFT and row-
2 4 6 8 10 12 14 column algorithm

254 Michael Felsberg, Thomas Biilow, Gerald Sommer, Vladimir M. Chernov

Obviously, it depends on the size of the data which algorithm is the best
choice.

10.5 Conclusion and Summary

We have considered several fast algorithms for multidimensional hypercom-
plex Fourier transforms. We can divide these algorithms into three classes: n-
D decimation algorithms, n-D algorithms which use the complex FFTn, and
row-column algorithms which apply 1-D FFT1s to each coordinate (separabil-
ity). The last two algorithms use standard transforms and a simple mapping
of the data is all to be done. Therefore, these algorithms are to be preferred
if one wants to make only some experiments or if the dimension of the signals
often changes because they can be implemented fast and easily.

Although the asymptotic complexity of the n-D decimation algorithms are
the least and therefore these algorithms seem to be superior to the algorithms
using the isomorphism or the row-column method, we cannot recommend us-
ing them, because their implementation is slower due to all the array accesses
and the exhaustive length of the code. We ourselves recommend using the
row-column method since the complex FFTn algorithms are mostly imple-
mented in this way and one can merge the steps from 1-D FFTs to n-D FFT
and from n-D FFT to n-D FHFT in one step. Additionally, it is possible to
adapt the algorithm to signal sizes which differ for different coordinates.

For very large signals (i.e. greater than the actual memory size) the row-
column method is superior as well, since the swapping is reduced to a min-
imum. Furthermore, it is easier to optimize the 1-D FFT algorithm than to
speed up the n-D algorithms. These optimizations of the FFT1 automatically
lead to an optimized n-D algorithm.

The most interesting result which we have presented is the fact that a
theoretical algebraic result yields a practically optimal algorithm. The iso-
morphism of the n-fold tensor product and the 27~!-fold Cartesian product
of the complex algebra leads to a decomposition technic for an algorithm.
This result emphasizes the importance of deep mathematical knowledge for
signal processing. Thus, geometric algebra has been shown to be a powerful
embedding for multidimensional signal analysis.

