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Abstract

In this paper, we present a new approach to scale-space which is derived
from the 3D Laplace equation instead of the heat equation. The resulting
lowpass and bandpass filters are discussed and they are related to the mono-
genic signal. As an application, we present a scale adaptive filtering which
is used for denoising images. The adaptivity is based on the local energy of
spherical quadrature filters and can also be used for sparse representation of
images.
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1 Introduction

In this paper, we present a new approach to scale-space. In the classical case,
the heat equation leads to a homogeneous linear scale-space which is based on
convolutions with Gaussian lowpass filters [11]. This method has been extended
into several directions, in order to obtain more capable methods for low level vi-
sion. Perona and Malik introduce a diffusion constant which varies in the spatial
domain controlling the grade of smoothing [12]. In his approach, Weickert sub-
stitutes the scalar product in the controlling term by the outer product yielding a
method for anisotropic diffusion [15]. Sochen et. al. chose a more general point
of view by considering the image intensity as a manifold [13] where the metric
tensor controls the diffusion. This list is far from being complete, but what is
important in this context is that all mentioned approaches have three things in
common. At first, they are all based on the heat equation which can be seen as a
heuristic choice from a physical model. In [16] however, several approaches for
deriving the Gaussian scale-space as the unique solution of some basic axioms
are presented. From our point of view, there is at least one PDE besides the dif-
fusion equation that also generates a linear scale-space1. Second, all approaches
try to control the diffusion by some information obtained from the image which
are mostly related to partial derivatives and a measure for edges. Therefore, struc-
tures with even and odd symmetries are not weighted in the same way. Thirdly, all
mentioned diffusions have theoretically infinite duration which means that the dif-
fusion has to be stopped at a specific time. The stopping of the diffusion process
is crucial for the result.

Our new method differs with respect to all three aspects from the classical
ones. At first, it is based on the 3D Laplace equation which yields besides a
smoothing kernel the monogenic signal, a 2D generalization of the analytic signal
[6]. Extending the properties of the analytic signal to 2D, the monogenic signal
is well suited for estimating the local energy of a structure independently if it has
an even or odd symmetry. Hence, if the smoothing is controlled by the energy, it
is independent of the local symmetry. The energy of a local structure differs with
the considered scale and in general it has several local maxima. These local max-
ima correspond to the partial local structures which form the whole considered
structure. Our approach does not control the smoothing process itself but builds
up a linear scale-space and applies an appropriate post-processing. Depending on
the application, a coarsest scale and a minimal local energy are chosen, which
determine an appropriate 2D surface in the 3D scale-space.

1Our new approach fulfills all axioms of Iijima [16] (see section 3) which means that there
must be an error in the proof of Iijima.
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2 Theory

In this paper, images are considered as 2D real signals ���������
	 , whereas the scale-
space is a 3D function defined over the spatial coordinates � and � and the scale
parameter � . The commonly used signal model of scale-space is a stack of im-
ages, or from the physical point of view, a heat distribution at a specific time.
Our model is quite different and it is motivated by two points of view. On the one
hand, 1D signal processing and especially the Hilbert transform are closely related
to complex analysis and holomorphic functions. On the other hand, holomorphic
functions can be identified with harmonic vector fields, i.e., zero-divergence gra-
dient fields. Indeed, the Hilbert transform emerges from postulating such a field
in the positive half-plane �
��� and by considering the relation between the com-
ponents of the field on the real line [7]. Motivated by this fact, we introduce the
following signal model (see Fig. 1). In the 3D space ������������	 , the signal is embed-
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Figure 1: Signal model for 2D signals, the scale-space, and the generalized ana-
lytic signal. The signal � is given by the � -derivative of the harmonic potential � .
The other two derivatives ( ������������� � and �!��"#�$�
"%��� ) are the generalized
Hilbert transforms of �

ded as the � -component of a 3D zero-divergence gradient field in the plane �&�'� .
For �#�(� the � -component is given by smoothed versions of the original image,
so that the � -component corresponds to the classical scale-space. For �
��� the
other two components turn out to be the 2D equivalent of the Hilbert transform
[7] and for �)�*� they are the generalized Hilbert transforms of the smoothed
image. Hence, the most fundamental function in this embedding is the underlying
harmonic potential � , i.e., � fulfills the Laplace-equation (see below). Due to the
embedding, the Fourier transform is always performed wrt. � and � only, with the
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corresponding frequencies � and � . Accordingly, convolutions are also performed
wrt. � and � only.

As already mentioned in the introduction and according to the signal model,
we derive the non-Gaussian linear scale-space from the 3D Laplace equation
(
��� ������
	 ���"�	 ���
 indicating the 3D Laplace operator)��� � ������������	 � ��� (1)

The fundamental solution is given by ��������� ����	 ���!��� � 	 � � 	 � � 	������ � (the Newton
potential) [3] where � is a constant that we choose to be � ����� 	���� . Since derivative
operators commute, the partial derivatives of � ������������	 are also solutions of (1)
(comparable to the fact that the real part and the imaginary part of a holomorphic
function are harmonic functions). Therefore, we obtain the (conjugated) Poisson
kernels as further solutions [14]

� ������������	 � �
���

���
��� � � � 	 � � 	 � � 	 ��� � �

�
��� � � � 	 � � 	 � � 	

�
� � (2)

�
��������������	 � �
� �

���
��� � � � 	 � � 	 � � 	 ��� � �

�
��� � � � 	 � � 	 � � 	

�
� � (3)

��" ������������	 � �
� �

���
��� � � � 	 � � 	 � � 	 ��� � �

�
��� � � � 	 � � 	 � � 	

�
� � � (4)

By taking the limit �! � , � is the delta-impulse "$# ����	%"&# � �
	 (representing
the identity operator) and � ��� ���
" 	(' are the kernels of the Riesz transforms, so
that � � � �������
" 	)' �%� is the monogenic signal of the real signal � [6]. Quite more
interesting in this context is the fact that for � � ��� � � � �����
" 	 ' � � is the monogenic
signal of the lowpass filtered signal � � � . This follows immediately from the
transfer functions corresponding to (2–4) ( * �,+ � � 	 � � ):- �.���/� ����	 � 02143 �5�6���7* ��	 (5)8 � �.���/� ����	 � �:9;�=<>*�0&1?3 �@�A���7*���	 (6)8 " �.���/� ����	 � �:9;�?<>*�0&1?3 �@�A���7*���	B� (7)

The derivation of the transfer functions can be found in the appendix. Besides, the
Laplace equation (1) can also solved by separating �������
	 and � giving two factors:
one is the kernel of the 2D Fourier transform 0&1?3 �@�:9(��� �.� � 	 � �
	�	 and the other
one is

- �.���/� ����	 see [8]. Hence, instead of forming the scalar valued scale-space
by � ������� ����	 � � ��������	 , we build a vector field C :

C ������� ����	 � � � ������� ����	��
� � ������� � 	���" ������������	 	 ' � � � ������	 (8)

which is not only a family of monogenic signals (for different values of � ) but also
a solenoidal and irrotational field (which means that divergence and rotation are
both zero), or, in terms of Geometric Algebra, a monogenic function [5] (mono-
genic: nD generalization of holomorphic).
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Figure 2: Upper left: impulse response of lowpass filter � (solid line) and impulse
response of Gaussian lowpass filter (dotted line). Upper right: transfer function
of the difference of two lowpass filters for different scales � and ��� (solid line) and
transfer function of the lognormal bandpass (dotted line). Bottom: lowpass filters
applied to a step edge

3 A New Linear Scale-Space

Now, getting from the mathematical background to interpretation, we firstly con-
sider the shape of the derived lowpass filter � and the transfer function of the
difference of two lowpass filters with different values of � , see Fig. 2. All four
filters are isotropic and hence, they are plotted wrt. to the radial coordinate
� �

�
� � 	 � � and the radial frequency * , respectively. The impulse response

of � has a sharper peak than the one of the Gaussian lowpass. On the other hand,
it decreases slower with increasing � . Accordingly, steps in the image are changed
according to Fig. 2 (right). While the curvature is smoother in the case of the fil-
ter � , the slope of the edge is more reduced by the Gaussian filter. Adopting the
idea of the Laplacian pyramid [4], we use the difference of two lowpass filters to
obtain a bandpass filter. It has a zero DC component and is similar to the lognor-
mal bandpass, but it has a singularity in the first derivative for * �*� 2. Hence,

2Note that this is not valid for the transfer functions (6) and (7).
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low frequencies are not damped as much as in the lognormal case, but for high
frequencies, the transfer function

-
decreases faster.

Considering the uncertainty relation, the lowpass filter � is slightly worse than
the Gaussian lowpass (factor + � ��� , see appendix) which means that the localiza-
tion in phase space is not far from being optimal. In contrast to the lognormal
bandpass filter, the spatial representation of the new bandpass filter is given ana-
lytically, so that it can be constructed in the spatial domain more easily. What is
even more important, is that the linear combination of lowpass filtered monogenic
signals is again a monogenic signal. Therefore, the difference of two of these sig-
nals is a spherical quadrature filter (see also [5]). The last property of the new
lowpass / bandpass filters which is important in the following, is the energy. The
DC-component of the lowpass filter is one by definition (5). The bandpass filters
for a multi-band decomposition are constructed according to

��� �.���/� 	 ��02143 �5�6��� + � � 	 � � � #��
�
	 �!02143 �5�6��� + � � 	 � � � #��

�
��� 	 (9)

where ����� �
	$��	 indicates the relative bandwidth, ��# indicates the coarsest scale,
and ��� IN indicates the octave. The maximal energy of the bandpass filter is
independent of � .

What is left to show is that the Poisson kernel (2) really establishes a linear
scale-space. According to [16], Iijima defines in [9] a linear scale-space by five
axioms:

1. The generating kernel of a linear scale-space is linear.

2. The kernel is shift invariant.

3. The kernel fulfills the semigroup property.

4. The kernel is scale invariant.

5. The kernel preserves positivity.

Iijima showed that the Gaussian kernel is the unique solution of the previous ax-
ioms. Nevertheless, one can show that the Poisson kernel also fulfills all five
axioms:

1. The Poisson kernel is a linear, shift-invariant operator.

2. See above.

3. This axiom is easily verified in the Frequency domain:

0&1?3 �@�A���7*�� � 	40&1?3 �@�A���7*�� � 	 ��02143 �5�6���7*�� � � 	 � � 	�	 �
hence � ������� ��� � 	 � � � ������� � � 	 � � ������� ��� � 	 � � 	 .
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4. The scale invariance is checked in the spatial domain ( � � IR
�

):

� � � ��� � � ����	 � �
��� � � � ��� � 	 � � 	 	 � � 	 � �

�

�

���
�
� � 	 � � 	�� 
�	� ��
 ��

�
� �

� � � ����� � �� 
 �
� � �

where � � � is the Jacobian.

5. The Poisson kernel is positivity preserving since it is positive for all
�������
	(' � IR � .

Both scale-space approaches, the Gaussian scale-space and the Poisson scale-
space, can be compared by means of two mpeg videos which are provided together
with this paper.

4 Scale Adaptive Filters

The described scale-space approach can be used to denoise images or to reduce the
number of features in an image (to sparsify it). Our algorithm behaves as follows:
the scale-space is calculated up to a maximal smoothing �
� which is sufficient to
remove nearly all the noise. For each scale, the monogenic signal is calculated
and an index function is defined by the finest scale with a local maximum of the
local magnitude

����� 0&1 ��������	 �
��� �� ��� ������� � ���! �
� � ����� ����� 	" 	#$ �%� ������� ����	" '& �)( ��� 	 �* ���+( �,� *  �%� ������������� 	, �-#/. '
�,� 0�0�1 0

(10)

where the coarsest scale �%� is chosen if the maximal energy is lower than a thresh-
old . ' . Using this index function, a denoised image is constructed, where at each
position the lowpass is chosen by the index. The algorithm is motivated by the
fact that the response of the monogenic signal shows local maxima when it is ap-
plied in the ‘correct’ scale, where in general we have more than one maximum.
Since it is not reasonable to consider the image on arbitrary coarse scales (e.g. av-
eraging of one quarter of the image), the range of scale is reduced and we mostly
have only one maximum, see Fig. 3. The threshold of the energy at the maximum
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suppresses weak textures by setting the index function to maximal smoothing.
Additionally, we apply median filters to the index functions, in order to denoise
the latter. It is not reasonable to have an arbitrarily changing scale index since the
scale is depending on the local neighborhood.
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Figure 3: Test image (left). The energy of the monogenic signal at four positions
(indicated in the left image) for varying scale can be found in the plot on the right

In our first experiment, we applied the algorithm to the test images in Fig. 3
and Fig. 4. The images were both processed with the same threshold and the same
maximal scale. In both cases, a 3x3 median filter was applied to the scale index
obtained from (10). The dark shadows at the top and left border of the smoothed
house-image are artifacts resulting from performing the convolutions in the fre-
quency domain. Obviously, textures with low energy are removed while edges
and other structures with high energy are preserved. If a structure is preserved or
not depends on the choice of the parameter . ' . In the case of noisy images, this
energy threshold can be estimated according to a Rayleigh distribution (see [10]).

In our second experiment, we added Gaussian noise to the image in Fig. 3 (see
Fig. 5, left) and applied the standard method of isotropic Gaussian diffusion to it.
The result can be found in the middle image in Fig. 5. The typical behavior of
Gaussian diffusion can be seen well: near the edges the noise is still present. Our
approach results in the image on the right in the same figure. Except for some
singular points the noise has been removed completely. The energy threshold
was chosen by the method mentioned in the previous paragraph. In contrast to
the diffusion algorithm, our method tends to over-smooth slightly those region
boundaries where the energy of the edge is lower than the energy of the noise (see
upper left corner).

The algorithm can also be used to sparsify images. Instead of constructing
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Figure 4: Upper row, left to right: scale index for first test image and smoothed
image. Center row, left to right: second test image and corresponding scale in-
dex. Bottom row: smoothed image and relative difference between original and
smoothed version.
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Figure 5: Test image with noise (left), variance: ��� 	�� . Isotropic diffusion (pa-
rameters: contrast � � � , noise scale � � � , time step

��� � �4� � , and 50 iterations)
yields the result in the middle, variance: � � �	� 	
� . The image on the right shows
the result of our approach, variance: � ���	� 	��

the denoised image from lowpass filtered versions using the scale index, the filter
response of the monogenic signal is kept for local maxima of the energy only.
That means that for the ‘else’ case in (10) the result is set to zero (nothing is
stored). The amount of the remaining information can be estimated by the dark
areas in the index images in Fig. 4. The representation which is obtained includes
information of the monogenic signal only at positions with high local energy at an
appropriate scale.

5 Conclusion

We have presented a new approach to scale-space which is not based on the heat
equation but on the 3D Laplace equation. We have shown that our approach fulfills
the axioms of Iijima and hence, the Poisson kernel builds up a linear scale-space
in the strong sense. The resulting lowpass and bandpass filters have been shown
to work properly and a relation to spherical quadrature filters and the monogenic
signal has been established. Using the energy of the monogenic signal for differ-
ent scales, a scale adaptive denoising algorithm has been presented which can also
be adopted for a sparse representation of features. The results are comparable to
those of isotropic Gaussian diffusion. The denoising based on the Laplace equa-
tion shows less noise in the neighborhood of edges, but low-energy edges are not
preserved as well as in the Gaussian case. Though it is by definition an isotropic
method, the new approach can easily be extended to anisotropic denoising by in-
troducing a �
�6� scaling matrix instead of the real scale parameter � . The behavior
for low-energy edges is supposed to be better in that case.
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A Appendix

A.1 Fourier Transform of the Poisson Kernel�
�
� �
��� � � � 	 � � 	 � � 	

�
� ��� �.���/� 	 ��021?3 �@�A���7*�� 	

for � � � .
According to the table of Hankel transforms in [1],�

��� �@� 	 � � 	 �
�
� ��� �.���/� 	 � ��� 021?3 �@�A���7*�	B�

Substituting � � �'� � , � � � and applying the affine theorem yields�
��� � � � � � 	 � � � 	 �

�
� ��� � � � �
	�� � � ����0&1?3 �@�A���7*���	 �

By setting � � �
�
� � 	 � � and multiplying with � ������� 	 ��� the Fourier transform

of the Poisson kernel is obtained.

A.2 Fourier Transform of the Conjugate Poisson Kernel

�
�
� �
��� ��� � 	 � � 	 � � 	

�
� ��� � � � �
	 � � 9��* 02143 �5�6���7* ��	

for � � � .
According to the table of Hankel transforms in [1],�

��� �5� 	 � � 	 ����� � � � � � �
	���* ��� 021?3��5�6���7* 	
and by substituting � � �'� � ( � � � )�

��� � � � � 	 � � � 	 ����� ��� �.���/� 	 � � � � * ��	 ��� 02143 �5�6���7* ��	 �
Hence, �

��� � � � 	 � � 	 � � 	 ����� � � �.���/� 	 � * ��� 0&1?3 �5�6��� * ��	B�
Applying the derivative theorem yields�

��� � � � � � 	 � � 	 � � 	 � � � ��� � � � �
	���9(��� �A* ��� 0&1?3 �@�A���7*���	
and by multiplying with � ��	� the Fourier transform of the first conjugate Poisson
kernel is obtained.�

�
� �
��� � � � 	 � � 	 � � 	

�
� ��� �.���/� 	 � � 9��* 0&1?3 �@�A���7*���	

is derived accordingly.
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A.3 Uncertainty of the Poisson Kernel

The spread in the spatial domain reads

��� � �
� �� � ����� ����� 	 � � 	 � ������� ����	@��� �	� ���� � ������������	 � � �
� � � ��� �
�
� ��� ����� 	 � ��	 
 �� � ��� � � � " � � 
 ��� � � �	� ���� 
 �� � ��� � � � " � � 
 ��� � � �
� � � ��� �
�
� ��� �

� � " ��
�
� � " � � 
 ��� � � �
� ���� ��
�
� � " � � 
 ��� � � �
� � � ��� �

change to polar coordinates � �
�
� � 	 � � :

� � ��� ���# � �� � � � 
 ��� � � ���� ���# �� � � � 
 ��� � � � � ��� � � � �� 

� � 
 �� 
��
�� 
�� � ��� � �'�

where the integrals are evaluated according to [2] 19.5.1.3 integral 63 and 71. The
spread in the frequency domain is obtained as

��� � �
� �� � � ��� � � � 	 � � 	 - � ���/� ����	@���;�
�;���� - �.���/� ����	 � � �	�;� � ��� �
� � � � �.��� 	 � ��	4021?3 �@� � � + � � 	 � � ��	!�;�
�;���� 0&1?3 �@� � � + � � 	 � � � 	!�;�	� � � ��� �

change to polar coordinates * � + � � 	 � � :
�

� ��� ���# *
�
021?3 �@� � �7*�� 	!�;*

��� ���# * 021?3 �@� � �7*�� 	!�;* � ��� � � � "� � � 
 � ��� � � 
 ��� � ��� � � + �
� ���

where the integrals are evaluated according to [2] 19.6.1 integral 1. Hence

� ��� 	 � ��� 	 � + �
� �

which means that the uncertainty is slightly worse than for the 2D Gaussian kernel
(factor + � � � ).
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