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Abstract. The analytic signal is one of the most capable approaches in one-
dimensional signal processing. Two-dimensional signal theory suffers from the
absence of an isotropic extension of the analytic signal. Accepting the fact that
there is no odd filter with isotropic energy in higher dimensions, one tried to cir-
cumvent this drawback using the one-dimensional quadrature filters with respect
to several preference directions. Disadvantages of these methods are an increased
complexity, the loss of linearity and a lot of different heuristic approaches. In this
paper we present a filter that is isotropic and odd, which means that the whole the-
ory of local phase and amplitude can directly be applied to images. Additionally,
a third local property is obtained which is the local orientation. The advantages of
our approach are demonstrated by a stable orientation detection algorithm and an
adaption of the phase congruency method which yields a superior edge detector
with very low complexity.

1 Introduction

The analytic signal and the corresponding filters (quadrature filters) are well suited for
detecting local properties and features of signals. The so called split of identity is the
fundamental property of quadrature filters. The local amplitude of the filter response
corresponds to a quantitative measure of a structure (including the contrast) and the
local phase corresponds to a qualitative measure of a structure (step, peak, etc.).

Unfortunately, the analytic signal is only defined for one-dimensional signals. Quadra-
ture filters consist of two filters: an even and an odd bandpass filter. For images, the
fundamental problem is to find an odd filter with an isotropic energy distribution. Up
to now, it has been commonly accepted that no such filter exists [10]. In the frequency
domain, the corresponding problem is to find positive and negative frequencies in a
two-dimensional domain which is also impossible according to [6].

Both statements are true if the odd filter is constrained to be scalar valued. Whereas
if the filter is allowed to be vector valued, one can find an odd filter with isotropic
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energy. The corresponding (vector valued) transfer function is also odd and has unit
magnitude. It is therefore a multidimensional generalization of the sign-function. This
approach is straightforward in the framework of geometric algebra [3]. Furthermore, it
is related to the structure tensor, but without being nonlinear [4].

Using this ’real’ two-dimensional analytic signal (the monogenic signal), it is easy
to apply approaches based on the one-dimensional analytic signal to two-dimensional
signals without sampling the orientation or using adaptive filtering (e.g. [7]). As an
example, we applied the phase congruency [10, 11] in order to obtain an edge detector
which is independent of the local contrast.

Additionally to the information of local amplitude and local phase, the monogenic
signal includes geometric properties, e.g. the orientation of an intrinsically one-dimensional
structure in the two-dimensional plane. In this paper, we also present a stable algorithm
which estimates the local orientation of a signal.

Throughout this paper, we avoid to use terms of geometric algebra, because it is not
very widely spread in the community, yet.

2 Theoretic Framework

As we pointed out in the introduction, no odd isotropic filter can be constructed for
two dimensions if we are restricted to scalar valued filters. For vector valued filters,
however, it is possible. Without going into theoretic details, we introduce the following
filters in frequency domain:���������	�
����
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the transfer function of the Hilbert transform (e.g. [8, 9]). The vector  ��� � ��� � 
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transfer function of a transform which is called the Riesz transform [15, 14]. The spatial
representation of  is the convolution kernel of the Riesz transform and it reads�'=��	��>�����>���
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1 At this point, one has to define which signals are odd. If only one constraint of oddness should
exist, the only possibility in 2D is the oddness with respect to a reflection through the ori-
gin. Oddness with respect to reflections in arbitrary lines can only be handled using spherical
harmonics.



we obtain the multi-dimensional generalization of the analytic signal which is called
the monogenic signal.

The local amplitude of the monogenic signal is the vector norm of L M :
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as in the case of the analytic signal. The next thing to be redefined is the phase. Ob-
viously, for a triple we need two phases instead of one. Using the standard spherical
coordinates, we obtain the equations
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Fig. 1. Spherical coordinates

is identical to the local phase of����>�

and that

	
is the orientation3

of the vector
� � �#� � ��


. Therefore,�
and

	
are called the local phase

and local orientation, respectively.
The spherical coordinates are il-
lustrated in Fig. 1.

In practical applications,
the infinite impulse response of the
Hilbert kernel is reduced to a lo-
cal filter mask by use of a band-
pass filter. The resulting filters (the
bandpass filter and the bandpass
filtered Hilbert
kernel) are called (a pair of) quadra-
ture filters (see e.g. [9]). The same
idea can be applied for the Riesz transform. The resulting filters form a triple of spher-
ical quadrature filters (SQF): the radial bandpass filter and the radial bandpass filtered
kernels

=��
and

=A�
.

2 Basically, it is sufficient to discuss the behavior of a linear approach wrt. intrinsically one-
dimensional signals, because every signal can be decomposed in i1D functions (e.g. Fourier
transform).

3 Note the difference between direction and orientation (e.g. [5]). If the direction of "$#&%�'(#*)�+ is
greater than , , we can replace it by ".-/# % '0-/# ) + and simultaneously replace 1�"$2�+ by 1�".-/2�+ .
The latter yields a negation of the local phase, which is consistent with spherical coordinates.



A good choice for the bandpass filter is a lognormal filter (which is a Gaussian filter
if considered in logarithmic scale). For the applications in the following section we
always used the radial bandpass filter with the transfer function�"��� � ��� � 
�������� C , ��� � :�� � � � � � � ��
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where � indicates the octave (the center frequency) and the bandwidth-parameter



is
either

� � ��� or
� � � * (about two and three octaves). The lognormal filter possesses an

crucial advantage compared to the Gaussian bandpass filter: one can construct filters of
arbitrary bandwidth without introducing a DC component [10]. Therefore, we use the
following triple of SQF:
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.

In Fig. 2, the bandpass characteristic and the isotropy of these spherical quadrature
filters is illustrated (for isotropy of filters see [1, 13]). The modulated ring is a typical
image for testing the isotropy of an operator. So is the Siemens star, but additionally,
the latter gives information about the passbands.

Fig. 2. Modulated ring (outer left), filter response (middle left), Siemens star (middle right), filter
response (outer right)

3 Applications

As already mentioned, the monogenic signal contains information about the local ori-
entation of an image. It can be obtained by
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.
Though the analytic and the monogenic signal are both very stable approaches, the

estimation of the local orientation by use of (9) becomes ill-conditioned if the local
phase is nearly zero (or

F	G
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following non-linear filter:
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where
 � � � is the �$#%� box-filter ( � ��&

is sufficient) and L(' � �'= ' O L 
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The images in Fig. 4 illustrate the results of the described

Fig. 3. circle

algorithm. The image of a circle (Fig. 3) is good for testing
the performance of orientation estimating operators because
all orientations are included and the correctness can easily be
verified by evaluating the orientation on the circle, which must
be a (piecewise) linear function. While the arc tangent of the
partial derivatives (obtained from an optimized Sobel operator
[9]) and the direct estimation of

	
according to (9) show a sim-

ilar quantitative error, the result of (10) is nearly perfect (error
less than

� � &�� ).
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Fig. 4. Orientation estimation (from left to right): response of optimized Sobel operator, orienta-
tion of SQF, response of (10), error of (10)

Another application for the spherical quadrature filters is the detection of edges and
lines. For this application, we have to distinguish between two cases:

1. the images have uniform contrast, e.g. binary images, hand writing, or
2. the images have arbitrary local contrast (and we want also to detect edges of low

contrast).

In the first case, we can simply take the local amplitude as a measure for edges and
lines. Since the contrast is constant, we can take a fixed value for thresholding, e.g.� ��� of the maximal contrast.

The second case is much more difficult. If we take the local amplitude as a mea-
surement, the problem is how to fix the threshold – if it is too low, we get a lot of
false-positives, if it is too high, we miss the edges with low local contrast.

Since the phase information is independent of the local amplitude, one can use the
so called phase congruency for detecting edges independently of the local contrast (see
e.g. [10]). The idea is the following (1D): quadrature filters are applied for different
scales. The responses of the filters are drawn head to tail. The quotient of the length of
the resulting vector and the length of the path is a value between zero and one and it is
called the phase congruency.
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�	
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��
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A phase congruency of value one means that there is an edge (or a line), a phase con-
gruency of value zero means that there is no structure.
The phase congruency approach has several problems:



1. if the local amplitude is nearly zero for all scales, the phase congruency becomes
unstable (noise and numerical errors),

2. if the local amplitude of one scale is much higher than in the other scales, the
congruency is always close to one (missing frequency spread),

3. the phase congruency is a function proportional to the sum of cosines of the phase
differences and the cosine function is (nearly) one for a relatively wide range of
angles (nonlinearity wrt. the phase), and

4. the approach becomes much more complicated and numerically more complex for
the 2D case (sampling of orientations).

The last problem is solved by our approach of the

−1 0 1
0

1

Fig. 5. Approximation of a lin-
ear function with cosine and
sine function, cosine: dotted,
linear function: dashed, ap-
proximation: solid

2D monogenic signal. The first problem can be solved
by introducing an additional constant in the denomi-
nator of (11) and by subtracting the estimated noise
energy (see [10]). The second problem is solved in
[11] by the introduction of a function which measures
the frequency spread. The third problem can be solved
by replacing the cosine function with some function
of the cosine and the absolute value of the sine (12),
which is nearly linear in wide range of angles (see Fig.
5).

If we take the spherical quadrature filter responses
of two different scales we can calculate the cosine of
the angle between these vectors by the scalar product
and the absolute value of the sine by the magnitude of
the cross product. If the first SQF response is denoted
by L � and the second one is denoted by L � , we obtain
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which also takes into account the frequency spread because of the products.
Since our bandpass filter covers three octaves, we can cover six octaves with two

filters. In our opinion, this is enough for detecting structures which can be called edges
or lines. Therefore, we can replace the sums in (11) by (12). The resulting measurement
responds to nearly all edges and lines in an images with values close to one.

The images in Fig. 6 show the results of the algorithm of Kovesi (which is much
better than conventional edge detectors e.g. the Canny detector [11]) and of our method
(upper threshold:

� � � � , lower threshold:
� � & � ). Our results are similar to those of the

Kovesi approach. There are three main differences: first, our approach uses only a rough
estimation of the noise energy. Therefore, a few structures with very low energy are
missed by our method. Nevertheless, some edges are only found by our detector (e.g. in
the first column, the left roof). On the other hand, our algorithm responds less to noise.
Secondly: the amount of artifacts. Our algorithm produces less artificial edges and no
’double corners’ (e.g. top of chimney). In this context, note that an edge detector which
does not make use of semantic information or high level knowledge can only detect



Fig. 6. Upper row: original images, middle row: phase congruency (Kovesi), bottom row: phase
congruency (SQF), 2nd and 3rd image from INRIA-Syntim c

�

edges which are present in the local gray value information. Finally, our algorithm is
more than sixteen times faster4.

4 Conclusion

We have shown that the monogenic signal and the spherical quadrature filters can be
used to apply the approach of phase congruency to images without sampling the orien-
tation. The resulting algorithm is an edge detector with very low complexity and which
is independent of the local contrast. The approach has been compared to others in a
qualitative way, a quantitative investigation [2] will follow.

Furthermore, we have presented a simple and stable algorithm which evaluates the
local orientation of an image using the monogenic signal. Since the monogenic signal
posses all the properties of the analytic signal and since it is linear, it is easy to convert
the known one-dimensional approaches which make use of the analytic signal, to two
dimensions.

4 Elapsed times on PII, 233MHz, MatLab, 256x256 without thresholding: 60 s (Kovesi), 3.7 s
(our approach).



Similar results can be obtained for example for texture analysis and corner detection
which will be topics of our further investigations. We hope that we have convinced the
reader of the capability of the monogenic signal. Furthermore, since the new theory can
be seamlessly embedded into the framework of geometric algebra, we belief that the
latter is superior to complex numbers for multi-dimensional signal processing.
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