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Abstract

This paper introduces a two-dimensional generalization of the analytic
signal. This novel approach is based on the Riesz transform, which is used
instead of the Hilbert transform. The combination of a 2D signal with the
Riesz transformed one yields a sophisticated 2D analytic signal, the mono-
genic signal. The approach is derived analytically from irrotational and
solenoidal vector fields. Based on local amplitude and local phase, an ap-
propriate local signal representation is presented which preserves the split
of identity, i.e., the invariance – equivariance property of signal decompo-
sition. This is one of the central properties of the 1D analytic signal that
decomposes a signal into structural and energetic information. We show
that further properties of the analytic signal concerning symmetry, energy,
allpass transfer function, and orthogonality are also preserved, and we com-
pare this to the behavior of other approaches for a 2D analytic signal. As
a central topic of this paper, a geometric phase interpretation is introduced
which is based on the relation between the 1D analytic signal and the 2D
monogenic signal established by the Radon transform. Possible applica-
tions of this relationship are sketched and references to other applications of
the monogenic signal are given.

This report is a revised version of the technical report 2009 [7], and
therefore supercedes it.
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1 Introduction

The analytic signal is an important complex-valued representation in one-dimen-
sional signal processing, which is used in various applications like coding infor-
mation (phase and frequency modulation), radar-based object detection, process-
ing of seismic data [24], speech recognition, airfoil design [33], etc. Some of
these applications can be related to problems in image processing, which is based
on 2D signal processing. For example, the demodulation of 2D functions is the
problem we encounter if we want to recover the shape of a surface from an in-
terferogram [28]. Furthermore, the local frequency can be taken as a measure for
local scale (i.e., the frequency band) [18], structures such as lines and edges can
be distinguished by the local phase [14], the local amplitude and the local phase
can be used for edge detection [19], and the local phase can be used to estimate
the disparity of stereo images [16] or the flow in image sequences.

From the viewpoint of image processing and recognition, the fundamental
property of the analytic signal is the split of identity. This means that, in its polar
representation, the modulus of the complex signal is identified as a local quantita-
tive measure of a signal, called local amplitude, and the argument of the complex
signal is identified as a local measure for the qualitative information of a signal,
called local phase. Local amplitude and local phase fulfill the properties of in-
variance and equivariance [14]. This means that the local phase is invariant with
respect to the local energy of the signal but changes if the local structure varies.
The local amplitude is invariant with respect to the local structure but represents
the local energy. Energy and structure are independent information contained in
a signal unless the signal is a combination of partial signals with different local
phases on different scales. In the latter case, to maintain the invariance – equiv-
ariance property, the signal must be bandpass filtered in order to remove the other
partial signals. Quadrature (mirror) filters are well-known operators [14] which
deliver bandpass filtered amplitude and phase information. Since it is (at least ap-
proximately) possible to separate the signal into its partial signals by using narrow
bandpass filters, we can think of the polar representation of the analytic signal in
a narrow frequency band as an orthogonal decomposition of information. We will
use the terms structural information and energetic information in the following.
This terminology also gives hints for designing methods for automatic image un-
derstanding, since the main information is carried by the phase [27].

The analytic signal for the one-dimensional case is well known, and from the
discussion above we can say that a sophisticated generalization of the analytic
signal to two dimensions should keep the idea of the orthogonal decomposition
of the information. Hence, it should have a representation which is invariant and
equivariant with respect to energetic and structural information. The problem now
is that a one-dimensional measure like the local phase cannot encode 2D structure
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because it does not have enough degrees of freedom. Indeed, the commonly used
generalization which is obtained by calculating the Hilbert transform with respect
to one of the axes of the image coordinate system (or an arbitrary preference
direction [14]) is not isotropic. Therefore, local phase and local amplitude are
effected by a systematic error which depends on the angle between the axes (or the
preference direction) and the orientation of the signal. This problem is equivalent
to the design of an isotropic odd 2D filter (which is not possible in the complex
domain [19]) or to the solution of the 2D dispersion equation (which is also not
possible, according to [1, 26]). In our opinion, the reason for the failure thus far
in designing an appropriate 2D analytic signal is the restriction to the algebra of
complex numbers. In his thesis [4], Bülow chose hypercomplex algebras in order
to design a local phase concept of 2D signals. Nevertheless, the local energy of
his quaternionic analytic signal is in general not constant if the orientation of the
signal is changed, i.e., it is not isotropic. Hence, the invariance – equivariance
property is not perfectly fulfilled with respect to rotations. More details about
these approaches for a 2D analytic signal will be given in the beginning of section
3.

In this paper we also make use of the quaternions. However, in contrast to
Bülow, we retain a one-dimensional phase but add the orientation information to
the quaternionic representation of the signal. This yields an approach that takes
the locally strongest intrinsically one-dimensional [21] structure and encodes it in
the classical 1D phase. Its orientation is encoded in a new component which we
call, according to local phase and local amplitude, the local orientation. Since ori-
entation is a geometric property, we call this information geometric information.
For intrinsically 2D signals, the properties of our new generalization, which we
call monogenic signal, will be discussed in the context of the relationship between
the 1D phase and the monogenic phase established by the Radon transform. The
monogenic signal is also related to the structure tensor (e.g. [14]), but in contrast
to that it is linear. Actually, we derived it starting from the structure tensor. Our
result can be considered as a combination of the analytic signal with the orien-
tation vector which is obtained from the structure tensor. Therefore, in the first
published result [10], we used the term ‘structure multivector’, which is now used
for an extended approach [12].
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2 Preliminaries

In this section we give the mathematical framework for what follows. Originally,
we derived the monogenic signal using geometric algebra (see e.g. [17, 30]) and
Clifford analysis (e.g. [3]). The formulation in geometric algebra is preferable be-
cause some notational problems are avoided and the derivation is straightforward
(see [8]). Nevertheless, since geometric algebra is less widely known, we for-
mulate our approach in vector notation. The only exceptions are some formulae
where we make use of the algebra of quaternions.
Throughout this paper, we use the following notation:� The considered (real) signals (or images) are 1D or 2D functions

�
which

are continuously differentiable and in ��� , so that all mentioned transforms
can be performed.� While scalars and quaternions (see below) are denoted by italic letters,
vectors in � ��� are represented by boldface letters 	�
 ������� � ����������������
( � indicates the transpose). The scalar product is denoted by � �!���#" . In 2D,
one vector orthogonal to 	$
%�&����  � � � is 	�'(
%�& � ��)�*��� � . In 3D, 	,+.-
indicates the cross product.� The / D Fourier transform ( /0
213�54 ) of

� ��	6� is denoted by7 �98:�;
=<>�@? � ��	6�5AB
 CED F@G � �&	6�EH5IEJK��)>LM4ON��&	P�Q8:"R�TSU	V�
� The algebra of quaternions � W is spanned by ?X1U��L��MYU�5Z[A and the product

is defined by L � 
\Y � 
 )]1 and L!Y=
 )^Y�L_
`Z . Further details about
quaternions are summarized in the appendix. We sometimes switch between
2D vectors and quaternions by �&L��MYa�b	c
d���LTef � Y and between 3D vectors
and quaternions by �gL��hYU��1i�b	c
=kjlem*��L�en � Y . The conjugate of a quaterniono is denoted by po and its norm by q o q .� The Hilbert transform is defined by the transfer function rs�t�&uv�P
dL�w�xzyU{��&u��
and the transformed signal is denoted

�U| �&v� [18]. The analytic signal is
given by

�O} ��v�;
 � �&v�~)$L ��| �&v� .
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3 The Hilbert Transform

As a motivation for the following sections, we recall some properties of the Hilbert
transform and the analytic signal in 1D. We show that some of these properties
are lost for the known 2D approaches. Furthermore, we present a derivation of the
Hilbert transform from two-dimensional vector fields which will be generalized
to 2D in section 4.1.

3.1 The Hilbert Transform and Analytic Signal in 1D and 2D

The Hilbert transform has some important properties which are worth being pre-
served in its two-dimensional generalization:� It is anti-symmetric: r_�t��)>uv�;
2) r �t�&uv� .� It suppresses the DC component: r �l� � �P
 �

.� Its energy is equal to one for all non-zero frequencies: q rs�t�&uv�iqO
21��vu��
 �
.

Accordingly, the analytic signal has the following properties:� Its energy is two times the energy of the original signal (if the DC compo-
nent is neglected), because

�
and

�U|
are orthogonal.� The analytic signal performs a split of identity (see sec. 1).� The spectrum of an analytic signal is one-sided: rs�t�&u��P
 � �vu�� � .

Since the 2D Hilbert transform is a key to designing a 2D analytic signal,
we concentrate on approaches involving it. As far as we know, the following
approaches for generalizing the Hilbert transform to higher dimensions can be
found in the literature (for a more extensive discussion, see [4]).� Partial Hilbert transform. The Hilbert transform is performed with respect

to a half-space which is chosen by introducing a preference direction [14]:r	�;�98:�n
�L�w x!yU{*��� 8;��
:"R� . The Hilbert transform performed with respect to
one of the axes is a special case of the partial Hilbert transform. The main
drawback is the missing isotropy of the transform.� Total Hilbert transform. The Hilbert transform is performed with respect to
both axes: r�~�98:�]
 )cw�xzyU{��gu*� �Ew x!yU{*�gu � � (see [15]). This approach is not
a valid generalization of the Hilbert transform, since it does not perform a
phase shift of N��34 .
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� A combination of partial Hilbert transforms and the total Hilbert transform
in the complex Fourier domain yields a one-quadrant analytic signal [15]:r��;�98:�c
 LR�gw x!yU{*�gu*� � e w�x!y3{K�gu � � e w�xzyU{K�&u*� �Ew�xzyU{K�&u � ��� . This approach is
neither complete nor isotropic.� Combined partial and total Hilbert transforms in the quaternionic Fourier
domain: Instead of using the complex Fourier transform, the quaternionic
Fourier transform [6] is used. The result is discussed in detail in [4]. As
already pointed out in the introduction, this approach is not isotropic either.

Hence, a common drawback of all previous approaches is the missing isotropy
which is necessary to obtain the invariance – equivariance property. Other prop-
erties of the 1D Hilbert transform can easily be checked by calculation and are
discussed in detail in [4].

3.2 Derivation of the Hilbert Transform

The Hilbert transform of 1D signals emerges from complex analysis by means of
the Cauchy formula [15]. Therefore, it is straightforward to derive an appropriate
2D generalization of the Hilbert transform by means of the higher dimensional
generalization of complex analysis known as Clifford analysis [3]. As with geo-
metric algebra, Clifford analysis is not widely known, so we choose vector field
theory to perform the derivations. It is a well known fact that analytic functions1

correspond directly to 2D harmonic fields [20]. This generalizes to 3D such that
monogenic functions2 correspond to 3D harmonic fields. This equivalence is used
in section 4.1 to derive the Riesz transform as a 2D generalization of the Hilbert
transform. The aim of this section is to derive the Hilbert transform by means of
2D harmonic fields. We show that the Hilbert transform relates the components
of such a vector field on every line with arbitrary but fixed  � .

A harmonic potential � is a solution of the Laplace equation

�
�_
 ���s��� "��_
 �

where � 
 �	�
��
�

���
��
��

� � . The gradient field of � yields the harmonic potential
field �P��	6� 
����X�t�&	6�5��� � �&	6� � � 
����6��	6� . In this derivation we restrict the Laplace
equation to the open domain  � � �

, with the boundary condition � � �&*��� � � 
� �&*��� (Dirichlet problem of the second kind) yielding the solution � depending on�
. The same solution can be obtained by an appropriate choice for the boundary

1In mathematics, these functions are also called holomorphic. Such functions are characterized
by having a local power series expansion about each point [20].

2Originally monogenic was another, somewhat archaic term for holomorphic [20]. In Clifford
analysis literature it was reused for expressing the multidimensional character of the functions.
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condition �a�l��*�5� � � , and we show that this boundary condition is given by the
Hilbert transform of

�
:
�3| �&*���;
 �X�t�&*��� � � (see also fig. 1).

�������	��


line
������

����� � 

������� � 


����� � 


�������	��


����� � 
� ����


� ���

Figure 1: Harmonic potential �6�&	�� for  � � � and its gradient field on the bound-
ary  � 
 �

, which is given by the 1D function
� ���� � and its Hilbert transform��| ��*� � .

The harmonic potential field � is irrotational and solenoidal in the half-space � � � :
����� �P��	6�;
 ���s� �P��	6� ' " 
 �

� � ��	6�� *� ) �
�a�l��	6��  � 
 �

and (1)

� x! �P��	6�;
 ���s� �P��	6��";
 �
�X�l�&	��� *� e �

� � ��	6��  � 
 � � (2)

where (1) follows from � being a gradient field and (2) follows from � being
harmonic. If we identify � � � with the complex plane according to

" 
 �&L���1i�M	.
  � e L9*�
and embed � as � # 
 �b) L ��1i� � 
 � � ) L �a� , these equations are the Cauchy-
Riemann equations, which are solved by analytic functions.

There are several ways to solve eqs. (1) and (2). One is to take the par-
tial derivatives of the fundamental solution of the 2D Laplace equation (�6�&	��]
$ � ynq 	^q ). Since we are only interested in the relationship between �T� and � � , it is
easier to perform the calculations in the frequency domain of 6� , which means
that we apply the 1D Fourier transform, < � . From (2) it follows that

<m�Q? � x% �P�&	��5A@�gu*�b��
=LM4ON*uK�'& �l�&uK�R�� � �Ke �
�  � & � �gu*�5�� � �P
 � �

and by plugging in �0
 ��� (i.e., using (1)),

))(�N � u � �+* �&u*�Q�� � �Ke � ��  �� * �gu*�Q�  � �;
 � �
8



This differential equation is solved for  � � � by

* �&uK�R�� � �P
�� �gu*� �EH5IEJK� 4ON q u*��q  � �
where � �guK��� is independent of  � . Therefore, the components of the gradient field
are

& �l�gu*�5�� � �;
=LM4ONKu*� * �gu*�5�  � � and

& � �gu*�5�� � �;
 4ON q u*� q * �&u*�Q�� � � �
Since � can be considered as an analytic function, � # , the component �a� is the
harmonic-conjugate of � � and vice versa [20], which is another way to say that �E�
and � � are a Hilbert pair:

& �t�&uK�Q�� � �P
 L�w�xzyU{K�&u*� ��& � �gu*�5�  � �P
 r �t�gu*� �+& � �&uK�R�� � �(�
Hence, for any fixed  � � �

, the Hilbert transform relates the components of a
harmonic potential field. This relationship also holds for the continuous extension
of � for  � � ) � : & �l�&u*�5� � � 
 r �t�gu*� �+& � �gu*�5� � �^
2r �t�gu*� � 7 �&u*��� . Applying the
inverse Fourier transform yields

�U| �&*���P
 �X�t�&*��� � � and therefore�O} �&*���;
 � #���*��� � �
is consistent with the definition of the analytic signal. Hence, we have established
a fundamental relationship between 2D harmonic potential fields and the 1D ana-
lytic signal.
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4 The new 2D Analytic Signal

Our new 2D analytic signal is based on a 2D generalization of the Hilbert trans-
form, the Riesz transform [31]3, which is derived in the next section. The com-
bination of the signal and the Riesz transformed one forms our new 2D analytic
signal, the monogenic signal, which is defined in section 4.2 using an embedding
in the algebra of quaternions.

4.1 The Riesz Transform

In the light of the previous section, we start with a 3D harmonic potential � for
deriving the Riesz transform. The boundary condition of the 3D Laplace equation
is a 2D function, and hence the choice of dimension is appropriate for 2D signals.
As we show in section 5.1, the additional degree of freedom allows us to encode
the local orientation of the signal.

According to the derivation of the Hilbert transform, we show that the three
boundary conditions of the 3D Laplace equation are related by the Riesz trans-
form (see also [25]), and hence the Riesz transform replaces the Hilbert trans-
form when proceeding from 2D to 3D. Denoting the harmonic potential field
as � �&	6� 
 ���a���&	6�5��� � �&	6�5���3j �&	6� � � 
 � �6�&	6� (where � is the 3D gradient oper-
ator), the boundary condition reads ��jO��*�5�� � � � � 
 � ��*�5�� � � . The relation of
�3jO��*�5�� � � � � to the other two boundary conditions �E�t��*���� � � � � and � � ��*���� � � � �
yields the definition of the Riesz transform.

The harmonic potential field � is irrotational and solenoidal in the half-space[j � � :
����� �P��	6� 
 �V+ � �&	6� 
 �

and (3)� x! �P��	6� 
 ���s� �P��	6��" 
 � � (4)

where (3) follows from � being a gradient field and (4) follows from � being har-
monic. As before, we do not solve the equations using the fundamental solution
of the 3D Laplace equation (�6��	6�B
\q 	 q�� � ), but instead perform the calculations
in the frequency domain of �� and  � . This means that we apply the 2D Fourier
transform < � . Accordingly, we get from (4) the differential equation

� ��  �j * �gu*�5�Ru � � [j���
 (3N � o � * �gu*�5�Ru � ��[j��
3At this place, we want to thank T. Bülow for alluding to the existence of the Riesz transform

and for giving us the references [31, 25] which enabled us to identify the transform (8) in [10] as
such.
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with o 
 � u � � e u �� . Solving this equation for kj � � yields

* �gu*�Q�Ru � � [j5�;
 � �gu*�5�Ru � �EH5IEJ]�94ON o [j5� �
where � �guK�Q�Ru � � is independent of kj . Consequently, we obtain for �c
�� � (i.e.,
applying (3)):

& �t�&uK�Q�Ru � ��[j5� 
 Lh4ONKu*� * �gu*�5�Ru � � [j�� (5)

& � �&uK�Q�Ru � ��[j5� 
 Lh4ONKu � * �gu*�5�Ru � � [j�� (6)

&mji�&uK�Q�Ru � ��[j5� 
 4ON o * �gu*�Q��u � ��[j5�(� (7)

Finally, we get the relations between & ��� & � and &mj ,
& �t�&u*�5�Ru � ��[j5� 
 L9u*� � o &mji�gu*�5�Ru � ��[j�� (8)

& � �&u*�5�Ru � ��[j5� 
 L9u � � o &mji�gu*�5�Ru � ��[j��(� (9)

Hence, for any fixed kj � �
, the components of a harmonic potential field are

related by (8) and (9). This relationship also holds for the continuous extension
of � for [j � ) � : & �l�&u*�5�Ru � � � � 
 L u*� � o &mji�&uK�Q�Ru � � � �n
%L9u*� � o 7 �gu*�Q�Ru � � and
& � �&uK�Q�Ru � � � �P
dL u � � o 7 �gu*�5��u � � . Setting

��� �gu*�5�Ru � �;
2� & �l�gu*�Q�Ru � � � ��� & � �&uK�R�Ru � � � � � �
and defining 8 
 �guK�5�Ru � ��� so that o 
 q 8 q , we get the expression of the Riesz
transformed signal in the frequency domain,

��� �g8~�;
 L 8q 8�q 7 �g8~�����	�
�
 � �98:� 7 �98:�(� (10)

The transfer function of the Riesz transform4, 
 � , constitutes a 2D generalization
of the Hilbert transform. In the following we use the notation 	 
 �&6���� � ���
since [j 
 �

. The multiplication in the Fourier domain in (10) corresponds to the
following convolution in the spatial domain

� � �&	���
 ) 	4ON^q 	 q j� � ��	6� �����
�� � ��	6�  � �&	6� � (11)

where � � is obtained by applying the derivative theorem of the Fourier transform
to < � ?�q 	 q � � A_
 q 8 q � � [2] (see also [31]). Hence, we have established the Riesz
transform to be a appropriate 2D generalization of the Hilbert transform in the
context of a vector field based derivation.

4Our definition of the Riesz transform differs to those in [31] by a minus sign due to �������
instead of ������� .
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4.2 The Monogenic Signal

In section 3, we used the analogy between 2D vector fields and complex functions
to obtain the complex-valued analytic signal

�3} �&*���s
 � #��&*��� � � . The algebra
of complex numbers is not sufficient to embed a generalized 2D analytic signal,
consisting of the signal

�
and its Riesz transform vector

� �
, since we have three

components now. Actually, function theory corresponding to 3D (and / D) vector
fields is given by means of Clifford analysis [3]. If we embed � � j into the subspace
of � W spanned by ?X1U�RL��hY�A according to o 
 �&L��MYU�l1i�b	V
 vj e *�bL e  � Y and
�

D
� 
 �b) L ��)^YU�l1i� �f
 �3j ) �X�bL~) � � Y , the equations (4) and (3) are equivalent to

the generalized Cauchy-Riemann equations from Clifford analysis [3]. Functions
that fulfill these equations are called (left) monogenic functions. Accordingly, we
define the monogenic signal using the same embedding by the transfer function7�� �g8~�;
 &mjO�gu*�R�Ru � � � �~)fL & �l�&u*�5�Ru � � � �~) Y�& � �&uK�Q�Ru � � � �
 7 �98:�~)d�gL �MYa� � � �98:�;
 q 8�qte ��1U�5ZE� 8q 8 q 7 �g8~�.� (12)

which is equivalent to
� � �&	��P
 � �&	��6) �&L��MYa� � � ��	6� . Note that we have moved the

imaginary units L and Y to the left to obtain a compact expression ( � W is a skew
field, i.e., non-commutative).

Now, having defined the monogenic signal as a 2D generalization of the an-
alytic signal, we check whether the properties of the latter are fulfilled. First we
look at some properties of the Riesz transform:� It is anti-symmetric since 
 � �b) 8:� 
 ) 
 � �g8~� . Note in this context that

symmetry in 2D can be with respect to a point or to a line. The choice
of symmetry is fundamental to designing the generalization of the Hilbert
transform (in 1D, there is only one symmetry). Obviously, the Riesz trans-
form corresponds to point-symmetry, whereas the approach in [4] corre-
sponds to line-symmetry with respect to the coordinate axes and the partial
Hilbert transform corresponds to line-symmetry with respect to the prefer-
ence direction.� It suppresses the DC component. We have a singularity at 8 
 �

. If we
remove it by continuously extending the two components of the Riesz trans-
form along the lines uK��
 �

(eq. (8)) and u � 
 �
(eq. (9)), we immediately

get 
 � � � �P
 �
.� The energy has value one for all non-zero frequencies: q 
 � �g8~� q�
21 ��8 �
 �

.
This follows directly from the definition of 
 � �98:� in (10).

These properties can be verified by considering the vector field 
 � (see fig. 2).
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Figure 2: Transfer function of the Riesz transform displayed as a vector field. The
axes are the frequencies u�� and u � . The vector field is given by the normalized
frequency vectors (see (10)) and by setting it to zero at the origin (see text).

According to the properties of the Riesz transform, and in comparison to the
analytic signal, the monogenic signal has the following properties:� Its energy is two times the energy of the original signal if the DC component

is neglected:C q � � �&	��iq � SU	c
 C � �&	�� � e q � � ��	6�iq � SU	c
 4 C � �&	�� � SU	 �
� In polar coordinates, the monogenic signal fulfills the split of identity. Since

the energy is only modified by a constant real factor we conclude that the
amplitude of the monogenic signal is isotropic, which means that there is
no dependence on the orientation of a signal (see also fig. 3). This can be
compared to the isotropy property of the structure tensor, which fulfills the
invariance – equivariance property with respect to energy and orientation
(but not phase). Further details will be discussed in section 5.2.� The spectrum of the monogenic signal is not one-sided, i.e., it includes re-
dundancies, but this property is irrelevant for image recognition. Neverthe-
less, it is possible to use a non-redundant representation [10].
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Figure 3: Left: test image showing all even and odd symmetries for all orienta-
tions; right: the energy of the corresponding monogenic signal is isotropic and
independent of the local symmetry.

5 Interpretation of the Monogenic Signal

In order to obtain an appropriate 2D analytic signal, we introduce a phase ap-
proach for the monogenic signal in the next section. The relation of the new phase
to the 1D phase is then discussed in section 5.2.

5.1 The Phase of the Monogenic Signal

The phase of a complex signal is a measure of the rotation of a real signal in
the complex plane. In 2D space the rotation axis is unique except for the di-
rection of rotation. Therefore, the polar representation of a complex number" 
  e L�� is uniquely defined by ���i��� � 
%� � " p" ��� � yk� " � � , where � � yk� " � is given
by � � yk� " �^
	� � �3{�4T���k��v�;
 w�xzyU{��
�T��� � �3{��5q ��q �iv� with � � ��{K���#���� � ��N�� . The factorw�x!y3{����E� indicates the direction of rotation. If we use this definition the negative
real numbers are singular, because they have an angle of N with respect to positive
and negative rotations.

In 3D space the rotation axis is represented by a 3D unit vector. The straight-
forward generalization of a 2D angle is then a vector with the length correspond-
ing to the rotation angle and the direction corresponding to the rotation axis. This
vector is called the rotation vector. Consequently, we define a new arctangent
function by the rotation vector which represents the rotation of � � � � �3q 	^q �Q� into 	
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(with 	 �
 �
, see also fig. 6):

� � �3{��T�&	���
 	��q 	��>q � � �3{
� q 	�� q�R� � � � �l1i� � ��	6"�� � (13)

where 	�� 
 � � � � �l1i� � + 	 yields the direction of the rotation vector. Again, there
is a singularity if 	 
 � � � � ��) q 	 q ��� , but now it becomes more obvious why this
is a singularity: the magnitude of the rotation vector is well defined by N , but
the rotation axis is arbitrary in the 2D subspace orthogonal to 	 . Therefore, any
rotation vector in that subspace is a solution of (13).

If we have a smooth vector field and we want to use (13) as a definition of the
phase of the vector field (as we will do in the next paragraph), it is possible to
extend the definition: if we consider the values of (13) in an open sphere with ra-
dius � around the singular point and let � tend to zero while averaging the rotation
directions, we get a well defined rotation vector because of the smoothness of the
vector field. This continuous extension of the orientation is used in [9] for a stable
orientation estimation.

Using (13) we are able to define the phase of the monogenic signal (abbrevia-
tion: monogenic phase) by	 ��	6�P
 � � �3{
�T� � � ��	6��� �����
 � � yk� � � �&	6� �(� (14)

where
� �

is the vector field such that
� � 
 �gL �MYU��1i� � � . The rotation vector field	 �&	6�m
\� �;�l�&	6�5��� � ��	6�����:ji�&	���� � represents the rotation of the real-valued signalq � � �&	6� q into the quaternionic-valued signal

� � �&	6� . Note that the real component
is the third component of the 3D vector.

The rotation vector 	 always lies in the plane orthogonal to � � � � �l1i� � since	�� 
\�b)> � ��*�5� � � � , and hence �:j 
 �
. Comparable to phase wrapping in 1D,

there is a wrapping of the phase vectors of the monogenic phase: if a vector in a
certain direction would exceed the amplitude N , it is replaced by the vector minus4ON times the unit vector in that direction, i.e., it points in the opposite direction,
see fig. 4.

In section 4.2 we already used the norm of the quaternions for calculating the
energy of a monogenic signal. Indeed, the norm is used for defining the local
amplitude of

� � �&	6� by

q � � ��	6�iq3
�� � � ��	6� p� � �&	6�;
 � � � �&	��Ke q � � �&	��iq � � (15)

The choice of definitions for the local phase (14) and local amplitude (15)
establishes a transformation to polar coordinates. Given the local phase 	 ��	6�
and the local amplitude q � � ��	6�iq of a monogenic signal, it can be reconstructed by� � �&	6�;
�q � � ��	6�iqbH5I@J6����) YU�RL � � � 	 �&	6� �(� (16)
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Figure 4: Monogenic phase of one part of fig. 3, left (curved line, displayed as
underlying grayscale image). The phase is represented by the vector field which
is obtained according to (14). Hence, the length indicates the rotation angle and
the direction indicates the rotation axis. Note the phase-wrapping.

To see this, observe that from �b)^YU�RL ��1i� 	 
dL � � ).Y �;� we get

H5I@J6�gL � � ).Y �;����
�� � w q 	 qte L � �q 	 q w x!{ q 	 qi).Y �;�q 	 q w x!{ q 	 q
and

	�� 
 w x!{ q 	 qq 	 q � �;�5��� � � � � � �
Plugging (13) into (14) yields

� � y[�gH5IEJ6�&L � � ) Y �;� � ��
 ���;�Q��� � � � � �q 	 q � � �3{ � w�xz{ q 	 q
� � w q 	 q � 
 	 �

In the previous section, the property ‘split of identity’ was discussed only
with respect to the isotropy of the energy (or amplitude). Now, having a defini-
tion of the monogenic phase, we recognize that amplitude and phase are indeed
orthogonal. The local amplitude includes energetic information and the phase in-
cludes structural information. In contrast to the 1D case, the phase now includes
additional geometric information. The orthogonality of structural and geometric
information is discussed at the end of the next section.
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5.2 The Relation to the 1D Analytic Signal

Up to now, we have considered the 1D analytic signal and the 2D monogenic
signal as two approaches, which are only related by the fact that the latter is the
generalization of the former with respect to the dimension of the domain. In
signal theory there is a well known relation between 1D and 2D signals, the Radon
transform [29]. The Radon transform

�
maps a 2D signal onto an orientation

parameterized family of 1D signals by integrating the 2D signal on the line given
by the orientation parameter:

� ? � A@���5���3��
 C D F
�
� �&	6�����O� �g	P��

	5" )�� �TSU	 � (17)

where ���O���#� is the Dirac delta and 
�	B
�� � � w�@�Rw x!{��3� � is the normal vector given
by the orientation5 � � � � ��N6� . Geometrically, the Radon transform projects (or-
thogonally) the 2D signal onto a line with orientation � . The Radon transform
is invertible, and there are some important theorems about signals in the Radon
domain, such as the Fourier slice theorem [18]:<m�Q? � ? � A�A@�&u����U�P
 7 �&u 

	5�.� (18)

As a consequence of the slice theorem, the Radon transform relates the Riesz
transform of a 2D signal to the Hilbert transforms of the 1D signals obtained from
the Radon transform6. Accordingly, we conclude that the interpretation of the
monogenic phase of intrinsically 1D signals in 2D space is the same as the inter-
pretation of the complex phase in 1D space. However, for intrinsically 2D signals
we also obtain an interpretation by decomposing the signal into its intrinsically
1D parts. Indeed, the Radon transform is the connecting link between the 1D and
2D approaches.

The Radon transform of the Riesz transform
� � ��	6�P
 �gL �MYa� � � �&	6� , now embed-

ded in � W according to (12), of a 2D signal
� �&	6� is given by the Hilbert transform

of the Radon transform of
� ��	6� according to

� ? � � A@���5���U�P
 �&L��MYa� 
�	��v�l��� �  � ? � A@���5���U� � (19)

This equivalence can easily be shown in the Fourier domain, using the linearity of
the Radon, Riesz, Hilbert, and Fourier transforms:<m�Q? � ? � � A�A@�gu����3� (18)
 �gL �MYa� � � �gu 

	5�P
 �&L��MYa��L u 

	q u 

	3q 7 �gu 

	5�
 �gL �MYa� 

	kr_���guv�b<m�R? � ? � A�A@�gu����U�.�

5Note the difference between direction and orientation in this context: a direction corresponds
to a vector, an orientation to a 1D subspace.

6Actually, this relationship and also the Riesz transform are well covered by the results from
Calderón-Zygmund theory [32], which is not very accessible to engineers and computer scientists
due to its abstract mathematical formulation. Therefore, we think that calculus-based derivations
of these results are helpful.
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Hence, the Radon transform allows us to calculate the Riesz transform (and there-
fore also the monogenic signal) by using the Hilbert transform (see also fig. 5).

spatial domain Radon domain

signal Radon transformed

Riesz transformed

Hilbert Radon transformed

Radon Riesz transformed

Radon transform

Radon transform

R
ie

sz
 tr

an
sf

or
m

H
ilbert transform

x orientation v.

Figure 5: The relation between Radon, Riesz, and Hilbert transform. The Riesz
transform in the spatial domain (left) is equivalent to the Hilbert transform with
subsequent multiplication by the orientation vector in the Radon domain (right).

This can be used to circumvent application of the Riesz transform in the
Fourier domain (actually, application in the spatial domain is not very reason-
able due to the infinite extent of the impulse response, see (11)). Especially in
applications where the data is given in the Radon domain (e.g. X-ray tomogra-
phy), it is advantageous to have this equivalence. By the following algorithm, we
get the monogenic signal directly from data given in the Radon domain:

1. calculate the Hilbert transform
� ? � A | 
 ���  � ? � A ,

2. multiply
� ? � A | by � � w� and w�xz{ � ,

3. calculate the inverse Radon transform of
� ? � A , � � w � � ? � A | , andw�xz{ � � ? � A | .

Having the monogenic signal, we can apply other algorithms for estimating local
properties, detecting features etc. (see [9]).
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A second application of (19) is the design of spherical quadrature filters
(SQFs) with finite spatial extent. As with a 1D quadrature filter (QF), which is
a Hilbert pair of bandpass filters, an SQF is a Riesz triple of bandpass filters. Fil-
ters with finite extent can only be obtained by an optimization as in the 1D case.
The following algorithm produces optimized filters using optimized 1D QFs and
an optimized inverse Radon transform (see e.g. [18]):

1. choose an optimized 1D QF with appropriate size (this size will later be the
radius of the SQF),

2. create the Radon Riesz transformed signal by multiplying the odd part of
the 1D QF with � � w � and w x!{�� ,

3. apply the (optimized) inverse Radon transform.

The triple of filters obtained by this procedure can be applied to a 2D signal (im-
age) by convolutions, resulting in the bandpass filtered monogenic signal of the
image.

A third consequence of (19) is that the interpretation of the monogenic phase
is given directly by the phase of the analytic signal, since

� ? � � A@���5���U� 
 � ? � A@���5� �U�~) � ? � � A@���5� �U��L
 � ? � A@���5� �U�~)d�gL �MYa� 

	 �v�t��� �  � ? � A@���5���U�
 �gL��hYU��1i� � � �U�t��) �v�  � ? � AX� � � � ? � A�� � �
where

� � �U� is rotation about the real axis by � . Evaluating the last line for � 
 �
gives

� ? � A@���5� �U�>)dL �v�l��� �  � ? � A@���5� �U� , i.e., the analytic signal of
� ? � A@���5� �U� .

For any � 
 � � the Radon transform of the monogenic signal is just the analytic
signal of the Radon transform of the signal but with the imaginary unit L rotated
by � � : H5I@J6� Z � ���bL^
 � � w� �QL�e w�xz{�� �bY . The impact of this result on the interpreta-
tion of the monogenic phase is that for linear structures with large support (lines,
edges in images), the Radon transform is dominated by this structure. Hence,
the monogenic phase is given by the main orientation � � and the 1D phase of� ? � A@���5� � ��� . In the idealized case (i.e., the signal is constant in one direction),
the Radon transform is non-zero only for the main orientation. Accordingly, the�gL��hY@� 
�	 in (19) is constant (equals �&L��MYa� 
 	�� ) and the Riesz transform is given by� � ��	6� 
 �gL �MYa� 

	��6� � �O���g	 ��
 '	�� "R� �v�l���g	P� 
�	��Q"R� �  � �&	�� . Thus, (19) is simplified to
theorem 1 in [13]. In contrast to the idealized case, (19) also provides a sensible
interpretation for non-perfect signals.

For an intrinsically 1D signal we get the following decomposition of the phase
vector (14) while keeping the local phase of the underlying 1D signal: the rota-
tion vector 	 �&	�� is orthogonal to the local orientation (i.e., the orientation of the
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Dirac line in the Fourier domain) of the 2D signal and )cw x!yU{K���^���iq 	 �&	6� q repre-
sents the local 1D phase of the 2D signal (see also fig. 6). These interpretations
are consistent with the former definition of local phase and local orientation in
[10].

1

2

i-axis

-axis
j

real axis

ϕ

2

2

2

rotation vectorθ0

x

| |x

Figure 6: Phase representation using a rotation vector 	 . First the real value q 	 q is
rotated about the second axis (Y -axis) by � , and second about the third axis (real
axis) by � � . The rotation vector is orthogonal to the plane spanned by the real axis
and the vector 	 . Its length is given by the angle between the real axis and 	 .
Although the rotation vector is unique, the decomposition is not. There are two
possibilities: 1. � � ����� � and 2. � � �~e N ��) �~� .

Note that these definitions do not yield a unique phase representation, since
a rotation of the signal by N yields the same orientation and a negated phase.
This ambiguity can be visualized by two different decompositions of the rotation
vector (see fig. 6). The same problem also occurs in the context of oriented
quadrature filters (see [14]), where Granlund and Knutsson claim that there is no
local way to get the direction from the orientation. In the papers [5] and [22],
it is proposed to apply an unwrapping of the orientation (modulo 4ON ) in order to
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obtain a consistent phase representation. The application in both papers is the 2D
demodulation needed for interferogram processing.

If the monogenic phase is decomposed into local orientation and local phase,
the split of identity (the third property of the analytic signal) is also preserved
with respect to geometric and structural information. The local phase is invariant
to changes of the local orientation and the local orientation is invariant to changes
of the local structure (up to the ambiguity explained above). If we can recover the
correct local direction from the local orientation, we have an ideal split of identity
with respect to energetic, geometric and structural information. The problem with
the correct local direction is that there is no absolute solution, only a relative one.
This relative solution can be obtained by constraints on the smoothness of the
phase and orientation.
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6 Conclusions

In the present paper we have analytically derived the monogenic signal, a gener-
alization of the analytic signal to two dimensions. This new 2D analytic signal
is based on the Riesz transform and preserves the properties of the 1D analytic
signal. In contrast to previous approaches it is isotropic, and therefore, performs
a split of identity. The information included in the signal is orthogonally de-
composed into energetic, structural, and geometric information by means of local
amplitude, local phase, and local orientation. We have established an equality
which directly relates the 1D analytic signal and the 2D monogenic signal. The
Radon transform was shown to be the appropriate tool for shifting the 1D Hilbert
transform to 2D.

One can imagine a wide field of possible applications of the monogenic signal.
Up to now, several applications have been realized. For example: estimation of
the local orientation, contrast independent edge detection (see both in [9]), Moiré
interferograms [22, 5], texture analysis [13], image denoising [11], curvature es-
timation and corner detection [12], and stereo correspondence.

Both the monogenic signal and its applications are easier to formulate in geo-
metric algebra. It is even possible to generalize the approach to arbitrary dimen-
sions [8]. Nevertheless, we chose the vector notation since it is more common.
It was only necessary to formulate some details using quaternions (which is a
specific geometric algebra) in order to have the tools for geometric computations
available. For applications however, it is not necessary to make use of geometric
algebra. The monogenic signal is obtained by ordinary real-valued convolution
kernels.
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The authors would like to thank N. Krüger for many fruitful discussions. This
work has been supported by German National Merit Foundation and by DFG
Graduiertenkolleg No. 357 (M. Felsberg), and by DFG Grant So-320-2-2 (G.
Sommer).

22



Appendix

The algebra of quaternions is not well known. Therefore, we give a short intro-
duction in this appendix. In section 2 we defined the quaternions to be the algebra
on the real 4D vector space spanned by ?X1U�RL��hYU�5ZkA (i.e., a quaternion is of the formo 
 o �6e o � Lve o jbY e o�� Z ) with the algebra product defined by L � 
 Y � 
 ) 1 andL Y 
 ) YXL 
 Z . From these two rules we can derive all other products of base
elements, since ZE�^
 )>L YiY�L 
 )]1 , LMZ 
 ) Y 
 ) Z@L , and YaZ 
dL:
2) Z3Y . Addition
and subtraction of quaternions is given by vector addition (�_
 ���Re � � L�e ��jMY@e � � Z )o e � 
 � o �Ke ��� �Ke � o � e � � ��Lve � o j:e ��j��9Y e � o�� e � � � Z
and multiplication with a real number

�
by field multiplication

� o 
 � � o � �Ke � � o � ��Lke � � o j��9Y e � � o�� ��Z2�
The multiplication of two arbitrary quaternions is obtained by associativity and
distributivity o �_
 � o � ��� ) o � � � ) o j��Tj ) o�� � � �Ke� o � � � e o � ���*e o j�� � ) o�� �Tj5��Lke� o � ��j e o j����:) o � � � e o�� � � �9Y e� o � � � e o�� ���*e o � ��j;) o j�� � ��Z2�
The conjugate of a quaternion o is defined by po 
 o � ) o � L ) o jMY ) o�� Z , so that
the norm of o is q o qU
 � o po 
 � o �� e o �� e o �j e o �� . Additionally, the quaternions
are a division algebra, which means that the inverse of a quaternion is uniquely
given by o

�
� 
 po �kq o q � . The exponential function of a quaternion o is defined byH�I@J6� o � 
�����	� ��
���� (which converges since H�I@J:�5q o q � converges), and any linear

combination of L and Y with unit magnitude can be substituted for the imaginary
unit in the Euler formula:

H5I@J6����Lve��bYa��
 � � w � � � e�� � e ��Lke��bY� � � e�� � w�xz{ � � � e�� � �
Hence, the only fundamental difference to working with complex numbers is that
the base elements L��MYU�5Z do not commute. For a more detailed introduction of
quaternions see e.g. [23].
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