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Abstract: In this paper we present a new variant of the ICP (iterative closest point) algorithm for finding correspondences
between image and model points. This new variant uses structural information from the model points and
contour segments detected in images to find better conditioned correspondence sets and to use them to compute
the 3D pose. A local representation of 3D free-form contours is used to get the structural information in
3D space and in the image plane. Furthermore, the local structure of free-form contours is combined with
orientation and phase as local features obtained from the monogenic signal. With this combination, we achieve
a more robust correspondence search. Our approach was tested on synthetical and real data to compare the
convergence and performance of our approach against the classical ICP approach.

1 INTRODUCTION

Many actual applications in robotics and computer
vision deal with objects modelled by e.g. 3D free-
form contours. Such models are widely used for prob-
lems like monocular and binocular pose estimation
and object recognition among others. The more in-
formation available about the nature of these entities,
the better are the chances to solve the correspondence
problem in a more efficient and robust way. With re-
spect to contour models, the simplest and most com-
mon representation in the literature uses parametric
functions (Zhang, 1994). Active contour models, also
known as ”snakes” are also widely used for motion
tracking and stereo matching (Kass et al., 1987).

Recently, geometric algebra (Sommer, 2001) has
been introduced in computer vision as a problem
adaptive algebraic language in case of modelling ge-
ometric related problems. It turned out that the con-
formal geometric algebra (CGA) is especially useful
because its ability of handling stratified geometrical
spaces (Rosenhahn and Sommer, 2005a). The basic
geometrical entities (e.g. points, lines and planes) can
be embedded in the conformal space, see (Rosenhahn
and Sommer, 2005a). Also the rigid body motion has
a linear representation (called motor) with respect to

all geometric entities derived from spheres. In the
work (Rosenhahn et al., 2004), sets of coupled twists
are used to model free-form contours and surfaces in
the framework of conformal geometric algebras. In
a further work (Rosenhahn and Sommer, 2005b) the
pose estimation constraints (point-line, point-plane
and line-plane) were also used in that algebra. We
propose a new local representation of free-form con-
tours which allows to extract local structural informa-
tion, which can be also embedded in CGA. Thus, it is
also compatible with the pose estimation constraints.

Finding correspondences is one of the most chal-
lenging problems for computer vision applications.
Two points correspond to each other if a similarity
criteria is fulfilled. The most common and simple ap-
proach is the ICP algorithm (Besl and McKay, 1992).
Zhang (Zhang, 1994) uses a modified ICP algorithm
to deal with the occlusion problem. ICP algorithms
combined with different metrics are also used, for ex-
ample point-point (Benjemaa and Schmitt, 1997) and
point-line (Dorai et al., 1997). Chen and Medioni
(Chen and Medioni, 1992) use the sum of square dis-
tance between scene and model point in their ICP
variant. An extension of this work was made by Do-
rai and Jain (Dorai et al., 1997), where an optimal
uniform weighting of points is used. A compari-



son of variants of the ICP algorithm is presented in
(Rusinkiewicz and Levoy, 2001), where the different
variants are applied to align artificially generated 3D
meshes. The above cited methods assume that the
scene is almost aligned with the model (tracking as-
sumption). Since these variants use as feature only
point information, it is possible to optimize the algo-
rithms for real time applications. Other methods com-
bine the ICP algorithm with other image processing
approaches like optical flow (Rosenhahn et al., 2006)
or bounded Hough transform (Shang et al., 2005).
These methods seem to be robust but they are very
time consuming, not suitable for real time applica-
tions. All the methods based on punctual informa-
tion have to consider the tracking assumption in or-
der to perform efficiently. For the case of the ICP
variants combined with complex image processing
approaches, the tracking assumption can be slightly
overcome in some cases.

The basic variant of the ICP algorithm finds cor-
responding point pairs (image-model) by measuring
the minimal Euclidean distance. In this case point co-
ordinates can be considered as a local feature. One
important question when analyzing local features is
how ”local” actually the feature should be. The mini-
mal entity which can be described is a point. The only
feature available is its position in the 3D space. A sin-
gle point does not give much information about the
object in general. From two neighbor points the local
orientation can be derived and three neighbor points
are enough to get local curvature. As the neighbor-
hood is increased, more feature information can be
extracted and therefore, more information about the
nature of the object.

In this paper we present a new variant of structural
ICP algorithm, which integrates local features (from
model and image) and the structural phase informa-
tion delivered from the monogenic signal (Felsberg
and Sommer, 2001). One advantage of our ICP vari-
ant is that it can be perfectly applied for free-form
contours and it is robust against the tracking assump-
tion. A local 3D contour representation is used to
extract a feature set for contour segments, like con-
cavity, convexity and straightness. Our ICP variant
reaches a compromise between computational cost
and robustness against the tracking assumption.

For image feature extraction we use the mono-
genic scale-space approach presented by Felsberg
and Sommer (Felsberg and Sommer, 2004), which is
briefly described in section 2. In section 3 we intro-
duce the local representation of 3D contours based on
local motors. The feature set is obtained from a single
motor and the extended set is obtained from contour
segments. The ICP structural algorithm is introduced

in Section 4. Finally, in Section 5 experiments made
on synthetical and real data are presented to validate
the efficiency and robustness of our algorithm.

2 IMAGE FEATURES IN
SCALE-SPACE

The monogenic scale-space representation and
phase-based image processing techniques were intro-
duced in (Felsberg and Sommer, 2004). Ifp(x;s) and
q(x;s) are the filter responses of an image convolved
with the Poisson and conjugate Poisson kernels re-
spectively, local amplitudea(x;s) and phaser(x;s)
are obtained for a scalesas shown in equation (1).

a(x;s) =
√
|q(x;s)|2 + |p(x;s)|2

r(x;s) = q(x;s)
|q(x;s)|arctan

( |q(x;s)|
p(x;s)

)
.

(1)

The local amplitude is related to the local energy
of the signal. The local orientation and local phase are
combined in the local phase vector. The local phase
gives information about the local symmetry of the sig-
nal and the local orientation gives the orientation of
the highest signal variance. Then, for an edge point
we chose the local features orientation and phase an-
gles inx andy directionsF im

i = {φi ,‖ rx
i ‖,‖ ry

i ‖}.
Once that the local amplitude and phase are ob-

tained for a scale factors, a contour search algorithm
based on the local amplitude and orientation is ap-
plied to extract the contour segments. By changing
the scale factor, low contrast edges can also be de-
tected.

3 LOCAL CONTOUR
REPRESENTATION

The idea of the local representation is to construct
a motor to approximate a contour segment. A motor
is parameterized by a rotation axis and angle. This is
illustrated in the figure 1. A plane is constructed with
the 3D pointsxi−1,xi ,xi+1, which is parameterized by
its normaln and distance to the origind. In that plane,
a local coordinate system is defined by

i1 = xi−xi−1
‖xi−xi−1‖ , i2 = n, i3 = i1×i2

‖i1×i2‖ . (2)

To find the rotation axis of the motor we need to
calculate the center of the circle. To make the com-
putations easier, the problem is translated from 3D to
2D. That is the plane defined by the basis vectorsi1
andi3 (see right picture of figure 1). The center of the



Figure 1: Local motor for a 3D contour (left). Local coor-
dinate system (middle) needed to get the circle parameters
of the motor and the structural features (right).

circlec and the radius vectorr are easily calculated in
2D. Then the coordinates of the center of the circle in
3D are recovered. Thus, the rotation axis of the mo-
tor in 3D is obtained with the centerc and the normal
vectorn. The rotation angleθi is the angle defined by
the segmentxi−1cxi+1. Finally the orientation vector
oi is defined by the orthogonal to the radius vectorr

For every point of the 3D contour the local curva-
ture vector and bending angle are calculated by

k i = (xi −xi−1)× (xi+1−xi)
βi = acos (xi−xi−1)·(xi+1−xi)

‖(xi−xi−1)‖‖(xi+1−xi)‖
, (3)

where the pointsxi , xi+1 andxi−1 are considered in
the local coordinate system. In this case, thee3 com-
ponent of the resulting curvature vectork i = x1e1 +
x2e2 + x3e3 changes its sign when the point is con-
cave or convex. When the scalarx3 has a negative
sign, the point is considered locally convex. Other-
wise, it will be locally concave. If the bending angle
βi has a value closed to zero, the point is considered
as a part of a straight line.

An extended feature set allows to get more robust
features, especially in the image plane where noise is
present and digital contours are extracted. In this case
we are getting features not only from a single point.
The neighborhood of the point is extended to larger
segments in order to take average feature values as
shown in equation (4).

k i = 1
m ∑m

j=1v1×v2

βi = 1
m ∑m

j=1acos v1·v2
‖v1‖‖v2‖

, (4)

wherev1 = xi −xi−j andv2 = xi+j −xi .

By taking the pointxi as a reference, motors
are constructed iteratively with the adjacent points.
Then the contour segment is defined by the points
{xi−j · · ·xi−1,xi ,xi+1 · · ·xi+j } and the features of that
point corresponds to the structure of the neighbor-
hood.

3.1 3D and 2D Contour Features

We define the following structural features for a 3D
pointxi by

F3D
i = {oi ,k i ,βi}, (5)

whereoi is the local orientation vector at the pointxi ,
k i is the curvature vector andβi the bending angle. To
get the corresponding 2D features, the contour model
points are projected onto the image plane ( see figure
2), motors are constructed and the features are cal-
culated as described in the last section with the cor-
responding points in image coordinatesx′i−1, x′i and
x′i+1. The normalized orientation vectoro′i is obtained
and its corresponding orientation angleαi .

The concept of phase in the image plane delivers
information of the local structure of the image derived
from the monogenic signal. In the case of edges, the
phase encodes a transition from one gray value to an-
other inx andy directions. For 3D contours it is not
possible to compute directly phase information in that
sense. Despite of that, it is possible to assign a fea-
ture value for a projected 3D contour point that rep-
resents such transition. We call this feature transition
index. Figure 2 shows the idea of transitionstx andty
for a point. The transition takes the values+1 or−1
(equivalent to the phase responses‖ rx

i ‖ and‖ ry
i ‖)

depending on the orientation of the vectoro′i . Thus,
for a projected 3D contour point we obtain as features
the orientation and transition indexes inx andy direc-
tionsFcon

i = {αi , txi , t
y
i } .

Figure 2: Example of motor construction and the transition
index in the image plane (left). Transition index of an pro-
jected model contour and phase response of the monogenic
signal (right). The lines show the corresponding pairs of
image and model.

4 STRUCTURAL ICP VARIANT

Our ICP variant combines error metrics with im-
age feature constraints. Thus, in the image plane we
have the following feature sets for projected model
segmentsF2Dm

i = {αi , txi , t
y
i ,k

2Dm
i ,β2Dm

i } and for de-

tected contour segmentsF2Dp
i = {φi ,‖ rx

i ‖,‖ ry
i ‖

,k2Dp
i ,β2Dp

i }. Two points (image and model) form a
correspondence pair if the structural constraints are



met. The phase-transition index constraint is defined
as

C1 =
{

1 if ‖ rx
i ‖= txi ∧ ‖ ry

i ‖= tyi
0 otherwise

(6)

In the following we will use the sign∧ to denote the
logical ”and” operation. The straightness constraint is
defined from the local bending anglesβ2Dm

i andβ2Dp
i

as

C2 =
{

1 if β2Dm
i < t ∧ β2Dp

i < t
0 otherwise

, (7)

wheret is a threshold value. Finally, the concavity-
convexity constraint is defined from the sign of thee3
component of the vectorsk2Dm

i = x1e1 +x2e2 +x3e3

andk2Dp
i = y1e1 +y2e2 +y3e3 by

C3 =
{

1 if sign(x3) = sign(y3) ∧C2 = 0
0 otherwise (8)

Figure 3: Example of correspondence pairs for normal (left)
and structural (right) ICP variants.

The figure 3 shows the idea of ICP combined with
structural constraints (straight, concave or convex).
The figure on the left shows the case where only the
minimal distance is considered, on the right for the
structural variant. As can be seen, for a point in
the bottom curve, its corresponding point in the up-
per curve will be the nearest point with the same lo-
cal structure. This is analogous for the ICP plus the
phase-transition index constraint, see left picture of
figure 2.

5 EXPERIMENTS

We used for our experiments 3D planar contour
models (see figure 4) rich in structure like the ”cactus”
and ”puzzle” models and also the ”mouse” model,
which has less structure. In the first experiment we
compare the convergence behavior of a normal ICP
algorithm and our structural ICP variant. The ini-
tial position of the model is known, then it is trans-
lated and rotated to its actual position and projected
onto the image plane to generate an artificial image.
On this artificial image the corresponding contour
segments and the local features are extracted. Then
the pose is calculated and compared with the ground

Figure 4: The object is translated in all directions in the
plane. For every translation the pose is calculated and com-
pared with the ground truth (left). Different models used in
the experiments (right): cactus, puzzle and mouse models.

Figure 5: Convergence sequence for normal (top row) and
structural (bottom row) ICP variants applied to the cactus
model.

truth. For these experiments relatively large displace-
ments were applied to the model in order to test the
robustness against the tracking assumption.

In the sequence of images in the figure 5, we com-
pare the convergence behavior of a normal ICP algo-
rithm against our structural variant when the tracking
assumption is not met. For such cases, the pose esti-
mation algorithm with the normal ICP variants does
not converge to the actual model position. A direct
comparison of the convergence behavior can be seen
in the the first row of figure 6. Two different pose
estimation algorithms were tested with our ICP vari-
ant, the 2D-3D (Rosenhahn and Sommer, 2005b) and
projective ones (Araujo et al., 1998). In both cases,
the structural ICP variants needs less iterations to con-
verge.

The normal variants of the ICP algorithm consider
as a correspondence constraint only the Euclidean
distance plus a weighting error factor or a different
search strategy. This has the effect that, in the first
iterations many bad conditioned correspondences are
found and therefore the convergence is slower or in
some cases, the algorithm does not converge at all.
The structural variant will also consider the constrains
of equations (6), (8) and (7). This increases the prob-
ability to find better conditioned correspondences and
therefore the convergence rate of the algorithm is in-
creased.

A second experiment was made to test the robust-
ness of our algorithm against the tracking assumption.
For this case, the model was rotated around itsz axis
for zero to 50 degrees. As can be seen in the second
row of figure 6, with the structural ICP algorithm the
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Figure 6: First row, convergence behavior comparisons of
the normal and structural ICP variants applied to the 2D-
3D pose estimation algorithm (left) and the projective algo-
rithm (right). Second row, robustness against rotations for
the 2D-3D (left) and the projective algorithms (right).

pose error is minimal for rotations up to 30 degrees for
the 2D-3D algorithm and 40 degrees for the projective
one. This shows that our structural ICP variants al-
lows larger model rotations than the normal ICP vari-
ants. The robustness of the structural ICP algorithm
against the tracking assumption depends on the na-
ture of the object and its contour. For contours which
are rich in structural information larger rotations and
translations are allowed.

The next experiment was made to test the mag-
nitude and direction of the maximal possible transla-
tions allowed for the ICP structural algorithm. In this
case, as can be seen in figure 4, the object model was
translated to all directions in the plane where it is de-
fined. For every position the pose was calculated with
the structural ICP algorithm and the projective pose
estimation (Araujo et al., 1998).

The results for the cactus, puzzle and mouse mod-
els are shown in figure 7. These figures show the con-
vergence regions of the algorithm when translations
are applied. For the cactus, the algorithm is more sen-
sitive to translations iny direction, which corresponds
to translations in the major axis direction (see figure
4), while relatively large translations are allowed inx
direction (minor axis direction). The same effect can
be seen for the puzzle model. The figures show that
for certain positions the correspondence search is bet-
ter conditioned. As the translation increases, the prob-
ability to find more bad conditioned correspondences
also increases and therefore the pose error. The puz-
zle model and the cactus are complex objects, with
enough structure to deal with relatively large trans-
lations. The bottom figure shows the result for the
mouse model. In this case the mouse model does not
have much structural information. Therefore, as can
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Figure 7: Pose error for the translation case for the cactus
model (top left), for the puzzle model (top right) and for the
mouse model (bottom).

be seen in the figure 7, for large translations the error
increases considerably.

Finally, we applied our algorithm to image se-
quences of a real scenario. The algorithm was tested
on a Linux based system with a 3 Ghz. Intel Pentium
4 processor. Some examples of the test sequences are
shown in the figure 8. The left column shows the ini-
tial position of our model and the right column the
pose result using our ICP structural variant and the
projective pose estimation algorithm. For every im-
age the monogenic signal response was obtained and
a contour search algorithm based on the local orien-
tation and phase information was applied to detect
the edge segments, then from these detected contour
points the structural features were calculated. The av-
erage computing time per frame, for the hole image
processing module, was 225 milliseconds. Due to the
relatively large displacement of the object, more iter-
ation steps are needed for the algorithm to converge
and therefore the computational time increases. For
these sequences the average computation time (image
processing plus pose estimation) was 2.65 seconds.

6 CONCLUSIONS AND FUTURE
WORK

A new variant of the ICP algorithm for pose esti-
mation of 3D free-form contours based on local struc-
tural model and image features was presented. The
experimental test proved that our structural ICP algo-
rithm performs efficiently for rich structured objects,
for large translations and rotations between scene and
object model. The experiments show that our ICP



Figure 8: Initial position (left images) and estimated pose
(right images) for the cactus, puzzle and mouse model.

algorithm combined with the projective pose estima-
tion approach can handle larger object displacements.
That means, the feature constraints used to search cor-
respondences and the pose estimation constraints in-
volved in the minimization problem are better con-
ditioned in the image plane. Although our approach
does not reach requirements for real time applica-
tions (Rusinkiewicz and Levoy, 2001), the computa-
tion times reported for the test sequences are a good
tradeoff if we consider that the tracking assumption
has been significatively overcome. A natural exten-
sion for our approach is to consider the pose estima-
tion of non-planar free-form contours and surfaces
and to combine local and global structural features
(from model and image) to develop an approach capa-
ble to deal with even larger translations and rotations.
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