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Abstract

In this paper we present a new representation for 3D
free-form contours in the conformal geometric algebra
G4,1. This new representation allows to extract local geo-
metrical feature information which is used to solve the cor-
respondence problem for pose estimation applications. Un-
der perspective projection, local features are extracted from
a projected contour segment and compared with image fea-
tures obtained from the monogenic signal. We tested our
approach using synthetical and real data for several pose
estimation algorithms.

1. Introduction

Commonly a 3D free-form contour is represented by a
set of chained points or by a set of parametrical functions,
one function for every coordinate axis, see [8]. Rosenhahn
and Sommer [6] use sets of coupled twist to model free-
form contours and to gain spectral domain representations
by applying the Fourier transform. This global representa-
tion is embedded in conformal geometric algebra, which al-
lows to embed all the mathematical entities involved in the
pose estimation problem in the same mathematical frame
work.

In general, the main problem to solve before applying
any pose estimation algorithm is the correspondence prob-
lem. Rosenhahn et al. [5] uses a modified ICP algorithm
to find correspondences for occluded objects. In this case it
is possible to select a threshold value to eliminate possible
outliers. A disadvantage of this method is that it only works
when the difference between the previous and actual pose
is very small. To handle this problem in a more robust way,
local features which characterize image and model points
are needed.

To extract image features we use the monogenic signal
approach presented by Felsberg and Sommer [2], which
provides local amplitude, phase and orientation informa-

tion. In a later work [3], an extension of the monogenic
signal approach was presented to deal with phase based im-
age processing problems like edge detection in a monogenic
scale-space.

This paper is organized as follows: in section 2 we in-
troduce the concepts of the entities in geometric conformal
algebra which we use. A brief overview of the monogenic
scale-space representation is presented in section 3. Instead
of the global approach used in [5] and [7], we present in
section 4 a local representation for 3D free-form contours,
based on approximations of contour segments with motors
(entities defined in conformal space as a combination or
translations and rotations). This allows to get information
in 3D space like local orientation and curvature. Since, the
main idea is to fit 3D contour models to images, it is de-
sirable to find model features which are compatible with
image features. For this purpose, the contour segments and
their features are projected onto the image plane to get this
feature compatibility. We present in section 5 an ICP algo-
rithm which combines local orientation information derived
from our local model representation and from the image to
get correspondences for the case of occluded objects in a
more robust way. Finally, some experimental results are
presented in section 6.

2. Entities in Conformal Geometric Algebra

An introduction to the basic concepts of conformal geo-
metric algebra can be found in [6]. PointsX ∈ G3,1, lines
L ∈ G3,1 or planesP ∈ G3,1 in projective geometric algebra
can be embedded to the conformal geometric algebraG4,1

as shown in equation (1). This leads to dual representation
of these entities.

e ∧X = X∗ = ex + E ∈ G4,1

e ∧ L = L∗ = Er + em ∈ G4,1

e ∧P = P∗ = En + edIE ∈ G4,1,
(1)

A line is parameterized with the vectorsm andr, which
stand for moment and direction respectively. A plane is pa-



rameterized by its normal vectorn and the distanced to the
origin. We use this dual representations in the next sections.
To simplify the notation we will neglect the *-sign .

Motors in conformal geometric algebraM ∈ G4,1 are
expressed as a consecutive application of rotations and
translations. Then, a motor can model a rotation of any en-
tity around an arbitrary line in space. The idea is to translate
the entity with the direction vector between the line and the
origin, perform the rotation and translate it back to its orig-
inal position. The exponential representation of a motor is
shown in equation (2), wherem andr are the parameters of
the rotation line.

M = exp
(− θ

2 (r + em)
)

T = exp
(
et
2

) (2)

A translatorT is a special rotation acting at infinity,
wheret ∈ G3 is the Euclidean translation vector.

3. Monogenic Signal

In [2] the monogenic signal of an image is defined as a
combination of the original image and its Riesz transform
to gain local geometric and structural information (ampli-
tude, orientation and phase). An extension of this idea is
the monogenic scale-space representation of an image [3].
If p(x; s) and q(x; s) are the filter responses of an image
convolved with the Poisson and conjugate Poisson kernels
respectively, local amplitudeA(x; s) and phaser(x; s) are
obtained for a scales as shown in equation (3).

A(x; s) =
√
|q(x; s)|2 + |p(x; s)|2

r(x; s) = q(x;s)
|q(x;s)| arctan

(
|q(x;s)|
p(x;s)

)
.

(3)

The local amplitude is related to the local energy of the
signal. The local orientation and local phase are combined
in the local phase vector. The local phase gives information
about the local symmetry of the signal and the local orien-
tation gives the direction of the highest signal variance. We
use the differential phase congruency approach presented
in [3] to detect edges form local amplitude and phase infor-
mation. Then, for an edge point we get the local features
orientation and phase angles inx andx directions.

F im
i = {φi, ‖ rx

i ‖, ‖ ry
i ‖}. (4)

4. Local Free-form Contours

The aim of our proposed local representation is to ap-
proximate a contour point and its neighbors by a motor.
This local approach is in contrast to the global approach
used in [7], where motors have been used to model com-
plete contours. The motor parameters (rotation line and an-
gle) can be obtained geometrically from the parameters of a

circle (radius and center). The figure 1 shows the basic idea
of getting a circle from 3 points. The algebraic description
of a circle in conformal geometric algebra is the dual of the
outer product of these three points. Because three points,
Xi−1,Xi ,Xi+1 ∈ G4,1 define a plane, parameterized with
its normaln and distanced , the problem is locally mapped
to that plane to make the computations easier.

Figure 1. Left figure: local rotor for a 3D con-
tour, right figure: local coordinate system
needed to get the circle parameters and the
motor.

In order to map the points (3D) in the plane (2D), a local
coordinate system must be defined. To simplify the calcula-
tions we use the Euclidian part of the contour points, that is
xi ,xi−1,xi+1 ∈ G3, and we set the origin inxi as shown
in the figure 1. The basis vectors are given by:

i1 = xi−xi−1
‖xi−xi−1‖ i2 = n i3 = i1×i2

‖i1×i2‖ , (5)

The operator× is defined in the geometric algebra as the
commutator product (in our case, its equivalent operation
in Euclidian 3D space is the cross product). Once that the
local coordinate system is defined, it is possible to get the
coordinates of the points in the plane, defined by the basis
vectorsi1 andi3. As can be seen in the figure 1, the center of
the circleCp = ai1 +bi3 and the radius vectorri are easily
calculated. The rotation line of the motor in 3D is obtained
with the center of the circle and the normal vectorn and
the rotation angleθi is the angle defined by the segment
Xi−1CpXi+1.

4.1. Contour Features

For every point of the 3D contour a local rotor is con-
structed, then several features can be extracted. We define
the different features for a pointXi by

F 3D
i = {Oi , θi , ‖ri‖}, (6)

whereOi ∈ G4,1 is the local orientation line. It represents
the orientation of the contour segment in the 3D coordinate
system as the tangent line at the pointXi . The rotation
angleθi describes the amount of rotation needed to approx-
imate the contour points and‖ri‖ is the radius of curvature.



In the cases where a local segment is described as a transla-
tor, from the direction of the translation the orientation line
is calculated and the radius of curvature goes to infinity.

To find contour features, which are compatible with the
image features (orientation and phase) obtained from the
monogenic signal, we project the contour point and its ori-
entation line onto the image plane. As can be seen in figure
2, from the projected line a normalized orientation vector
oi ∈ G2,1 is calculated and the corresponding orientation
angleαi.

The concept of phase in the image plane delivers infor-
mation of the local structure of the image. In the case of
edges, the phase encodes a transition from one gray value to
another inx andy directions. For 3D contours it is not pos-
sible to compute directly phase information in that sense,
even if we project them onto the image plane. The mono-
genic signal can be calculated only from gray value images
which contain structural information. An image with an
artificially projected 3D contour lacks the structural infor-
mation to compute the monogenic signal and therefore the
phase. Despite of that, it is possible to assign a feature value
for a contour point that represents such transition under cer-
tain assumptions. We call this feature transition index. The
figure 2 shows an example of transitions inx andy direc-
tions for a point, under the assumption that our model rep-
resents a dark object on a bright background (or vice versa).
The transition takes a value depending on the orientation of
the vectoroi and the object assumption. Thus, for a pro-
jected contour point we obtain as a features the orientation
and transition indexes

F con
i = {αi, txi , tyi }. (7)

Figure 2. The transition index is determined
according to the position of the normalized
orientation vector in image coordinates and
the object assumption (dark object on a
bright background).

5. ICP with Local Features Approach

We combine an ICP algorithm with local features to find
correspondences between segment pairs (image edges and

contour segments) by analyzing its local structure. Since
we make this analysis locally, there is no need of complete
contour information to find correspondences.

The first step is to project a contour point and to find
its nearest image edge point. Then, an edge following al-
gorithm is applied to get edge segments of a determined
lengthn. For each edge segment its orientation and phase
values are stored in the feature vectors{aim ,bim} respec-
tively. The next step is to find the nearest contour segment
to the detected edge segment and to interpolate it to get the
same number of points (contour and edge). Similarly, fea-
ture vectors are generated from contour segments contain-
ing the orientation and transition index{acon ,bcon}.

We use the feature correlation matrix to measure how
strong our model and image features are related. For two
feature vectorsacon andaim it is given by

Corr(acon ,aim) =
Cov(acon ,aim)√

VconVim

, (8)

whereCov(acon ,aim) is the covariance matrix andVcon,
Vim are the diagonal elements of the covariance ma-
trix. The correlation may vary in a range of−1 ≤
Corr(acon ,aim) ≤ 1, where -1 indicates perfect negative
correspondence , 0 indicates no correspondence and 1 indi-
cates perfect correspondence. A segment pair is considered
as outlier if its correlation is below some threshold value.

This process is repeated to get as many correspondence
pairs as possible.

6. Experiments

We tested our correspondence search approach on artifi-
cial images for two different contour models. These are a
mouse model which consists of curved segments and a cac-
tus model which has mainly straight lines. Then the pose
was calculated with these correspondences. Three pose es-
timation algorithms were tested: point-line [7], projective
[1] and orthogonal iteration [4]. In figure 3 the average pose
error is shown.

Occlusions on the models were simulated in a syntec-
tic image. As can be seen in figure 3 for the mouse model
the point-line and orthogonal iteration algorithms have an
acceptable error at about30% of occlusion and at about
20% in case of the cactus model. The mouse contains only
curve segments and the correspondences can be found prop-
erly. For models containing more line segments like the
cactus, the correspondence search algorithm are more sen-
sitive to errors and therefore to occlusions. This results from
the fact that a straight line has the same orientation for all
its points, which causes uncertainty while searching corre-
spondences. In both cases the projective pose estimation al-
gorithm seems to be more robust with respect to occlusions
and wrong correspondences.
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Figure 3. Absolute error in millimeters for
the mouse model (left) and the cactus model
(right) while increasing the occlusion.

Examples for experiments on real images are presented
in the figure 4. The top row shows the initial position of
the contour model, the next row shows all the detected con-
tour segments. The detected segments which correspond to
occlusions are removed as outliers. This happens when we
have no correlation or negative correlation between image
features (orientation and phase) and model features (orien-
tation and transition index). The bottom row shows the fit-
ting of the model with the image contour.

7. Conclusions and Future Work

In this paper we presented a new representation for 3D
free-form contours, which delivers local geometrical infor-
mation in 3D space and in the image plane. The local infor-
mation allows us to couple model features and image fea-
tures to solve the correspondence problem when the object
is partially occluded. Since we are using the local orienta-
tion as a feature, the correspondence search works better for
models containing mainly curved segments.

The representation in the conformal geometric algebra
allows to treat a single point or a segment as an element
of the algebra, making our local representation compatible
with the pose estimation constraints presented by Rosen-
hahn and Sommer [7]. An extension of this approach can
also be applied for modelling 3D surfaces and extracting
3D silhouettes from surfaces. Since the idea of this local
approach is similar to the kinematic chains, it could also be
applied to the problem of pose estimation of contours and
surfaces with local deformations.

Figure 4. The top images show the initial
pose, the middle row shows the detected
segments and the bottom row shows the
pose results.
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