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ZU KIEL



2



Erklärung

Hiermit versichere ich, die vorliegende Diplomarbeit ohne Hilfe Dritter und nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus den
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat
in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Kiel, den 27. August 2008 Oliver Fleischmann

3



4



Danksagung

Am Ende meiner Diplomarbeit und meines Studiums möchte ich all jenen danken, die
mich während der letzten Jahre unterstützt haben.
Dabei danke ich zunächst Prof. Gerald Sommer für seine fachliche Kompetenz und seine
Unterstützung beim wissenschaftlichen Arbeiten an seinem Lehrstuhl. Von Beginn der
Diplomarbeit an stand mir direkt am Lehrstuhl ein Platz in einem Büro zur Verfügung,
der ein angnehmes Arbeiten in der Gruppe ermöglichte. Zu besonderem Dank bin ich
meinem Betreuer Lennart Wietzke verp�ichtet, der mir stets bei Fragen zur Seite stand
und der in anregenden Diskussionen den Verlauf der Diplomarbeit förderte. Zudem danke
ich allen weiteren Mitarbeitern am Lehrstuhl für Kognitive Systeme für das angenheme
Arbeitsklima und die Integration in die Gruppe.
Prof. Thomas Wilke möchte ich dafür danken, dass ich während eines Groÿteils meiner
Studienzeit an seinem Lehrstuhl als Techniker tätig sein konnte.
Von ganzem Herzen danke ich meinen Eltern für die moralische und �nanzielle Unter-
stützung während des Studiums. Ferner gilt besonderer Dank meinem Bruder Lennart
für das Korrekturlesen der Diplomarbeit.

5



6



Contents

1 Introduction 9

2 Cli�ord Analysis 11

2.1 Monogenic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Generalized Hilbert transforms . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Cauchy integral formula . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Riesz transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Plemelj-Sokhotzki formula . . . . . . . . . . . . . . . . . . . . . . . 18

3 The Riesz transform in terms of the Radon transform 23

3.1 Properties of the Radon transform . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Analysis of i1D signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Analysis of superposed i1D signals . . . . . . . . . . . . . . . . . . . . . . 32

4 The monogenic curvature tensor 37

4.1 Basic di�erential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Analysis of i1D signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Analysis of superposed i1D signals . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Second Order Riesz transform convolution kernels . . . . . . . . . . . . . . 46
4.5 Third Order Riesz transform convolution kernels . . . . . . . . . . . . . . 51
4.6 Discussion of the monogenic curvature tensor . . . . . . . . . . . . . . . . 54

5 The conformal monogenic signal 59

5.1 Analysis of i1D signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Analysis of superposed i1D signals . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Analysis of circular signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Phase analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 The Hilbert transform on Sn . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 Application of the Hilbert transform on S2 . . . . . . . . . . . . . . . . . . 78
5.7 The Hilbert transform on S3 . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.8 Application: Normal and Gaussian curvature . . . . . . . . . . . . . . . . 85

6 Conclusion and outlook 91

7



Contents

8



1 Introduction

This thesis deals with low-level image processing to analyze features such as orientation,
phase and curvature of certain signal models. The analysis of low-level features is the
building block to construct detectors for higher-level structures like corners and edges.
Common edge and corner detectors are based on methods involving derivatives (see e.g.
[22, 25, 33]). Since operators based on derivatives are often sensitive to noise and illu-
mination changes one may focus on alternative techniques. One of these alternatives are
operators contained in the class of so called generalized Hilbert transforms. These opera-
tors arise in the context of Cli�ord analysis as the non-tangential boundary values of the
Cauchy-transform ([12, 5, 6]). The well known Hilbert transform and the Riesz transform
are just two operators contained in this class. The Hilbert transform has widely been
studied and used in one-dimensional signal processing. Dennis Gabor used the Hilbert
transform to construct the so called analytic signal in order to obtain the local phase
of one-dimensional signals [17].Michael Felsberg extended the idea of the analytic signal
with a generalization of the Hilbert transform called the Riesz transform to construct
the monogenic signal ([15, 14, 16]). The monogenic signal allows the determination of
the orientation and local phase for intrinsically one-dimensional (i1D) image structures.

Based on the monogenic signal Di Zang constructed a tensor pair with entries consisting
of second and third order Riesz transforms which was supposed to determine di�erential
geometric quantities such as the Gaussian and the mean curvature in addition to the
features obtained by the monogenic signal [32].

Although the monogenic signal turned out to determine the local phase and orientation
of i1D signals, it was a di�cult task to understand what the Riesz transform was actually
doing. This thesis focuses on the understanding of the Riesz transform via the Radon
transform, the detailed study of the monogenic curvature tensor and higher order Riesz
transforms and the construction and analysis of the lately introduced signal model called
the conformal monogenic signal [30].

The mathematical basis is introduced in chapter 2 in the context of Cli�ord analysis.
It provides the framework to generalize the Hilbert transform to arbitrary su�ciently
smooth closed surfaces in Rn. Furthermore it contains the theorems establishing the link
between the generalized Hilbert transform in Rn and the Radon transform .

Based on this mathematical background chapter 3 establishes the link between the Radon
transform and the Riesz transform to study and obtain a descriptive and imaginative un-
derstanding of the Riesz transform. This understanding is used to determine orientation,
local phase and the apex angle of intrinsically one-dimensional signals and their super-
position under certain constraints.

Using this knowledge the monogenic signal and the monogenic curvature tensor are an-
alyzed in detail in chapter 4. Exact convolution kernels for the second and third order
Riesz transforms are calculated in the Poisson scale space of the spatial domain to avoid

9



1 Introduction

the calculation in the Fourier domain. It is shown that the monogenic curvature ten-
sor does not represent any di�erential geometric quantities. Nonetheless it is proven
that the tensor pair is able to obtain the orientation, phase and apex angle of i1D and
superimposed i1D signals.
Following the idea of generalizing the Hilbert transform to higher dimensions the lately
introduced conformal monogenic signal [30] is analyzed in detail in chapter 5. It projects
a two-dimensional signal to the Riemann sphere in R3 in order to lift up the signal to a
higher dimensional space. By applying the Riesz transform in R3 it is proven that the
conformal monogenic signal contains the monogenic signal as a subset and furthermore
provides additional information in terms of isophote curvature and an additional phase
for plane waves in R3 which allows the analysis of a certain class of structures in R2.
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2 Cli�ord Analysis

This chapter is intended to provide the mathematical background for this thesis. It gives
a brief overview of Cli�ord analysis which includes di�erentiability properties and the
fundamental integral theorems which are of interest in the following chapters.

The starting point is the construction of the universal Cli�ord algebra R0,n over the vector
space R0,n which is the real vector space Rn equipped with a non-degenerate quadratic
signature (0, n). For an orthonormal basis (e1, ..., en) of R0,n the following multiplication
rules arise in R0,n:

eiej + ejei = −2δij , ∀i, j ∈ {1, .., n} (2.1)

In the following the notation eiej = eij is used. Now for a set A = {i1, ..., ih} ⊆ {1, ..., n}
with 1 ≤ i1 ≤ ... ≤ ih ≤ n and eA = ei1ei2 ...eih the basis (eA : A ⊆ {1...n}) forms a basis
for the Cli�ord algebra R0,n. Therefore an element a ∈ R0,n allows the representation
a =

∑n
k=0[a]k where [a]k =

∑
|A|=k aAeA is called k-vector. Vectors x = (x1, ..., xn) ∈ Rn

are identi�ed with one-vectors x =
∑n

j=1 xjej . The product of two vectors x, y ∈ R0,n is
then de�ned by

xy = − < x, y > +x ∧ y (2.2)

where the inner product

x • y =< x, y >=
n∑
i=1

xiyi = −1
2

(xy + yx) (2.3)

results in a scalar and the wedge product or outer product

x ∧ y =
∑
i<j

eiej(xiyj − xjyi) = −1
2

(xy + yx) (2.4)

results in a two-vector which is also known as a bivector. Furthermore the conjugation in
R0,n is given by ei = −ei and therefore the conjugation of a vector x results in x = −x.

2.1 Monogenic functions

Let f be a C1 function with values in the Cli�ord algebra R0,n+1. Under which conditions
is f di�erentiable? This is the �rst question one has to answer to �nd an entry to the
theory of functions in a Cli�ord analysis setting. In history di�erent terminologies of
complex- or hypercomplex- di�erentiable functions have been established. The terms
analytic, holomorphic and monogenic are all used to describe the property of being
di�erentiable in R0,n+1. To avoid confusion in the following the term monogenic will be
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2 Cli�ord Analysis

used. In order to de�ne monogenecity the �rst order linear di�erential operator called
Dirac operator is introduced as

∂x =
n∑
i=0

ei∂xi . (2.5)

Due to the noncommutativity of the standard product in R0,n+1 the result of the Dirac
operator can be applied from the left or from the right side to a function which will in
general lead to di�erent results.

Example 2.1.1. Consider f(x) = f1(x)e01 for x ∈ R0,2. Then

∂xf = (e0∂x0 + e1∂x1)f(x) = −∂f1(x)
∂x0

e1 +
∂f1(x)
∂x1

e0 (2.6)

but

f∂x = f(x)(e0∂x0 + e1∂x1) =
∂f1(x)
∂x0

e1 − ∂f1(x)
∂x1

e0 (2.7)

With the Dirac operator a monogenic function can now be de�ned as the solution of a
certain system of partial di�erential equations.

De�nition 2.1.2. Let G ⊂ R0,n+1 be an open set and let f be a C1(G) function with
values in R0,n+1. f is called left-/right-monogenic i�

∂xf = 0 respectively f∂x = 0 (2.8)

holds.

Apart from being used to de�ne monogenecity the Dirac operator factorizes the Laplace
operator.

∆ :=
n∑
i=0

∂2
i (2.9)

as [11]

−∆ = ∂2
x. (2.10)

Solutions of the di�erential equation ∆f = 0 are called harmonic functions. As a result
the component functions of a monogenic function f =

∑
A fAeA fA are harmonic with

∆fA = 0. The reader might notice the analogy to the complex case where every complex
di�erentiable function f can be written as a sum f = u(x, y) + iv(x, y) with ∆u = 0 and
∆v = 0. Furthermore setting x = x0 + x1e0e1 and applying ∂x to f = f0(x) + f1(x)e0e1
results in

∂xf =
∂f0

∂x0
e0 +

∂f0

∂x1
e1 +

∂f1

∂x0
e1 − ∂f1

∂x1
e0. (2.11)
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2.2 Generalized Hilbert transforms

It follows that ∂xf = 0 is only ful�lled if

∂f0

∂x0
e0 − ∂f1

∂x01
e0 = 0 and

∂f0

∂x1
e1 +

∂f1

∂x0
e1 = 0 (2.12)

which are nothing else but the classical Cauchy-Riemann-Equations in the complex case.

Therefore (2.1.2) can be considered as the higher dimensional analogue to the Cauchy-

Riemann-Equations.

2.2 Generalized Hilbert transforms

The Hilbert transform of a one dimensional function has been used frequently in signal
processing since Dennis Gabor proposed the analytic signal [17]. It rendered the possibil-
ity to determine the instantaneous phase and frequency of a given function. During the
last years the image processing community has tried to generalize the analytic signal to
two dimensions in order to determine an equivalent to the phase in the one dimensional
case. Especially Michael Felsberg succeeded in this research area with the proposition
of a two dimensional analogue called the monogenic signal [14]. Simultaneously to the
research of generalized Hilbert transforms in image processing the Cli�ord analysis com-
munity has followed the same goal, although they had not the same applications in mind.
Especially the Cli�ord Research group in Ghent has contributed fundamental work in
this area ([12, 5, 6, 8, 7]).

Instead of introducing the analytic and monogenic signal �rst and discussing the features
they are able to extract, this section starts with some basic integral theorems known from
Cli�ord analysis. Part of these integral theorems is the Plemelj-Sokhotzki formula which
is based on a generalized Hilbert transform in arbitrary dimensions. Having introduced
this general Hilbert transform it will be shown that the analytic and the monogenic signal
are just two special cases of the Plemelj-Sokhotzki formula for the dimensions n = 1 and
n = 2.

2.2.1 Cauchy integral formula

The fundamental theorem this section is based on is the Cauchy Integral Formula which
is well known from complex analysis and may be found in common complex analysis
literature like [1]. The theorem can be generalized in the context of Cli�ord analysis and
reads as follows (see e.g. [18]):

Theorem 2.2.1 (Cauchy integral theorem). Let G ⊂ Rn+1 with su�ciently smooth

boundary ∂G and let f be a left-monogenic function in C1(Ḡ). Then it holds that∫
∂G

En(x− y)f(y)n(y)dS(y) =

{
f(x), x ∈ G,

0, x ∈ Rn+1 \ Ḡ (2.13)

where n(y) is the outward pointing normal at y, dS is the surface element of ∂G and E
is the Cauchy kernel de�ned by

13



2 Cli�ord Analysis

En(x) =
1

An+1

x̄

|x|n+1
(2.14)

with the area An+1 of the unit sphere Sn.
It can be observed that a left-monogenic function in the given set is completely deter-
mined by its boundary values. Hence the Cauchy kernel is known to be a reproducing
kernel generating a monogenic function from its boundary values. The integral used in
the Cauchy integral formula de�nes a new operator called the Cauchy transform (see
reference [8]):

De�nition 2.2.2 (Cauchy transform). Let f ∈ L2(G). Then its Cauchy transform is
de�ned as

C[f ](x) =
∫
∂G

En(x− y)f(y)n(y)dS(y), x 6∈ ∂G (2.15)

Applying the Cauchy transform to a function f ∈ L2(∂G) will result in a function
which is monogenic in G. This property is quite similar to an integral transform known
from harmonic analysis called the Poisson integral. The Poisson integral reproduces a
harmonic function in a given region from its boundary values by convolution with the so
called Poisson kernel and the function describing the boundary values. The regions of
interest in this case are the upper half space Rn+1

+ and the ball Bn. For these domains
the Poisson kernels are explicitly known. Poisson kernels exist for other domains but it
is often complicated to �nd a closed form expression. The Poisson integrals for the ball
and the upper half space are de�ned as [2]:

De�nition 2.2.3 (Poisson integral in the upper half space Rn+1
+ ).

P[f ](x) = (Px0 ∗ f)(x) =
1

An+1

∫
Rn

2x0

|x0e0 + x− y|n+1
f(y)dV (y) (2.16)

with the Poisson kernel in the upper half space

Px0(x) =
2x0

|x0e0 + x|n+1
(2.17)

De�nition 2.2.4 (Poisson integral in the ball Bn).

P[f ](x) =
1

An+1

∫
Sn

1− |x|2
|x− ξ|n+1

f(ξ)dS(ξ) (2.18)

with x ∈ Bn and the Poisson kernel in the ball

PB(x, ξ) =
1− |x|2
|x− ξ|n+1

(2.19)
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2.2 Generalized Hilbert transforms

Having de�ned the Poisson integral formula and the involved kernels it is now possible to
solve the problem of �nding the harmonic function in the set by evaluating the Poisson
integral for the given boundary values. This problem is known as the Dirichlet problem
[2].

De�nition 2.2.5 (The Dirichlet problem for the upper half space). Let f ∈ L1(Rn+1)
and let Px0 be the Poisson kernel for the upper half space. Then the function u(x) de�ned
by

u(x) =

{
P[f ](x), x ∈ Rn+1

f(x), x ∈ Rn , (2.20)

is harmonic in Rn+1
+ .

In analogy to the Cauchy kernel the Poisson kernel generates a function from the values
on the boundary of a given set but instead of generating a monogenic function a harmonic
one is the result. According to de�nition 2.1.2 the components of a monogenic function
are harmonic. In the light of the Dirichlet problem the question comes up if there is
a connection between the Cauchy and the Poisson integral. This is indeed the case,
but before the relation between the two transforms can be formulated the notion of the
generalized Hilbert transform is required.
The Cauchy transform reproduces monogenic functions in a set G by the values on its
boundary ∂G. According to the de�nition this only holds for values in G\∂G. But what
happens with the integral (2.15) for values x ∈ ∂G? The integral turns into a strongly
singular integral which can only be formulated as a Cauchy principal value integral and
is called generalized Hilbert transform (see e.g. [12]):

De�nition 2.2.6 (Generalized Hilbert transform). Let G ⊂ Rm+1 and x ∈ ∂G. The
Hilbert transform on G reads:

H[f ](x) = 2
∫
∂G

En(x− y)f(y)n(y)dS(y), x ∈ ∂G (2.21)

=
2

An+1
P.V.

∫
∂G

y − x
|y − x|n+1

n(y)f(y)dS(y) (2.22)

with n(y) as the outward pointing normal at y and dS as the surface element of G.

Notice the subtle di�erence between (2.15) and (2.21): The integrals are quite similar
but the points at which they are evaluated are inside of G in the case of the Cauchy
transform and on the boundary ∂G in the case of the Hilbert transform. It has been
shown in [8] that with these preliminaries the Cauchy transform can be written as the
splitting

C[f ](x) =
1
2
P[f ](x) +

1
2
P[H[f ]](x) (2.23)

15



2 Cli�ord Analysis

where P[H(f)] = Q[f ] is also referred to as the conjugate Poisson integral.
This relation is important from two di�erent points of view: On the one hand given a
monogenic function f it can be expressed in terms of the Poisson integral and the Poisson
integral of its Hilbert transform. But on the other hand a monogenic function can be
generated by the Poisson integral and the Poisson integral of the Hilbert transform. This
concept might already be known from complex analysis and is shown for the complex
case in the followin example:

Example 2.2.7. To emphasise the analogy, the isomorphism R0,2
∼= C is used again

with the identi�cation i = e0e1. It is known that a function in C with values in C can
be written as f = u(x, y) + iv(x, y). Let f be monogenic, that is complex di�erentiable
in this case. Then both component functions u and v are harmonic with

u = P[f ] (2.24)

and

v = P[H(f)] = Q[f ] (2.25)

u and v are also called a pair of conjugate harmonics.

2.2.2 Riesz transforms

A special class of generalized Hilbert transforms arises for the upper half space G = Rn+1
+

where Rn+1
+ = {x = (x, xn) = (x0, x1, . . . , xn) : xn > 0}. The outward pointing unit

normal vector is then just en and the Hilbert transform is obtained as [12]:

H[f ](x) =
1

An+1
P.V.

∫
Rn

x− y
|x− y|n+1

emf(y)dy (2.26)

=
1

An+1
em

n−1∑
i=0

eiP.V.

∫
Rn

xi − yi
|x− y|n+1

f(y)dy

 (2.27)

with x ∈ ∂G = Rn.
The component integrals are also known as Riesz transforms and can be expressed as
n-dimensional convolutions

Rj [f ](x) =
1

An+1
P.V.

∫
Rn

xi − yi
|x− y|n+1

f(y)dy (2.28)

= (rj ∗ f)(x) (2.29)

with the so called Riesz kernels [29]:

r(x) =
1

An+1

x

|x|n+1
(2.30)
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2.2 Generalized Hilbert transforms

Note that in the case of n = 1 the Riesz kernel r1 is nothing else but the standard Hilbert
kernel known from the real line

r1(x) =
1
π

x

|x|2 =
1
πx
. (2.31)

Riesz transforms were introduced by Marcel Riesz in [27] and further studied by Horváth
in [20] as a class of singular integral kernels of the form

K = P.V.
k(ω)
rn

, x = rω, x ∈ Rn. (2.32)

The functions k(ω) are supposed to have vanishing spherical means:∫
Sn−1

k(ω)dS(ω) = 0 (2.33)

A a special class k(ω) of functions ful�lling this property is obtained from harmonic
homogenouous polynomials

xj = (x0e0 + x1e1 + · · ·+ xn−1en−1)j (2.34)

and their restrictions to the sphere

k(ω) =
xj

|x|n+j
=
Yj(ω)
rn

(2.35)

where Yj are also known as spherical harmonics. Horváth called the vectorial distribution

Hj =
1

An+1

xj

|x|n+j
(2.36)

vectorial Hilbert transform. Under these conditions the components of the Riesz trans-
form components turn out to be the components of the vectorial Hilbert transforms for
j = 1 with the kernels

Ki =
1

An+1

xi
|x|n+1

=
1

An+1

w

rn
, ki(ω) =

1
An+1

ωi (2.37)

Horváth showed in [20] that the Riesz kernels have a de�ned Fourier transform and act
as multipliers in the Fourier space denoted by

F [rj ](x) = −i xj|x| . (2.38)

Furthermore there exists a close connection between the Riesz transform and the partial
derivatives of a function described by the properties

∂2

∂ij
f = −RiRj [∆f ] (2.39)
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2 Cli�ord Analysis

where ∆ is the Laplace operator (see [9]).

The Riesz transform was one of the �rst attempts to generalize the Hilbert transform to
Rn+1

+ . In the context of this thesis Riesz transforms are of special interest. They are the
basis for the analytic, the monogenic, and the conformal signal which are discussed in
detail in the next chapter.

2.2.3 Plemelj-Sokhotzki formula

The general Hilbert transform has been introduced, up to a factor of two, as the Cauchy
transform for values on the boundary. Given the splitting in (2.23), what happens if the
evaluation point x moves more and more towards the boundary? To be more precise, how
does the limit of the splitting (2.23) behave for points moving non-tangentially towards
the boundary? The answer to this question is given by the Plemelj-Sokhotzki formula

[18]:

Theorem 2.2.8 (Plemelj-Sokhotzki formula). Let G ⊂ Rn+1 and let f be Holder con-

tinuous on the su�ciently smooth boundary ∂G. Then for every x ∈ ∂G

lim
t→x
C[f ](t) =

1
2
f(x) +

1
2
H[f ](x) (2.40)

where the limit is non-tangential.

The non-tangential boundary value of the Cauchy transform C[f ] is therefore a compo-
sition of the function f and its Hilbert transform H[f ]. Note that although the Cauchy
transform generates a monogenic function, the non-tangential boundary value of the
Plemelj-Sokhotzki formula is in general not monogenic.

The Plemelj-Sokhotzki formula is the generalization of what is called the analytic signal

for n = 1, G = R2 and the monogenic signal for n = 2, G = R3. To emphasize the
importance of this relationship these special cases are treated in detail.

Example 2.2.9 (Analytic Signal). Let n = 1 and G = R2
+. Consider a function f

de�ned on the boundary ∂G which is just the real line R in this case. To apply the
Plemelj-Sokhotzki formula the generalized Hilbert transform of f has to be known. For
the given boundary and n(y) = e1 as the outward pointing normal the Hilbert transform
(2.21) reads:

18



2.2 Generalized Hilbert transforms

H[f ](x) = 2
∫
∂G

En(x− y)f(y)n(y)dS(y), x ∈ ∂G (2.41)

=
2

2π
P.V.

∫
R

y − x
|y − x|2 e0e1f(y)dS(y) (2.42)

=
1
π
P.V.

+∞∫
y=−∞

y − x
|y − x|2 e0e1f(y)dy (2.43)

= e0e1
1
π
P.V.

+∞∫
y=−∞

1
x− y e1f(y)dy (2.44)

Identifying e0e1 again with the imaginary unit i by virtue of the isomorphism R0,1
∼= C

the result just reads:

H[f ](x) = iH[f ](x) (2.45)

where H[f ](x) is the classical Hilbert transform on the real line. Together with the
original function f the Plemelj-Sokhotzki formula is obtained as:

lim
t→x
C[f ](t) =

1
2
f(x) +

1
2
iH[f ](x) (2.46)

which is up to the factor 1
2 the analytic signal introduced by Dennis Gabor in [17].

Example 2.2.10 (Monogenic Signal). Let n = 2 and G = R3
+. The boundary ∂G where

the values of f reside is the plane R2. Working in the upper half space of R3 the outward
pointing normal is the directional vector along the negative e2 axis n(y) = e2. The
Hilbert transform (2.21) is obtained as:

H[f ](x) = 2
∫
∂G

En(x− y)f(y)n(y)dS(y), x ∈ ∂G (2.47)

=
2

4π2
P.V.

∫
R2

y − x
|y − x|3 e2f(y)dS(y) (2.48)

=
1

2π2
P.V.

∫
R2

y0 − x0

|y − x|3 e0e2f(y)dy (2.49)

+
1

2π2
P.V.

∫
R2

y1 − x1

|y − x|3 e1e2f(y)dy (2.50)

The component integrals can be expressed in terms of the Riesz transform introduced in
(2.28) as two-dimensional convolutions with the Riesz kernels
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Rj [f ](x) =
1

2π2
P.V.

∫
R2

yj − xj
|y − x|3 f(y)dy (2.51)

= (rj ∗ f)(x) (2.52)

resulting in the generalized Hilbert transform

H[f ](x) = e2 (e0(r0 ∗ f) + e1(r1 ∗ f)) (2.53)

= e2

1∑
i=0

eiRi[f ](x) (2.54)

and the according Plemelj-Sokhotzki formula:

lim
t→x
C[f ](t) =

1
2
f(x) +

1
2
H[f ](x) (2.55)

=
1
2
f(x) +

1
2
e2

1∑
i=0

eiRi[f ](x) (2.56)

This result coincides with the monogenic signal introduced by Michael Felsberg in [15].

It has already been mentioned above that the non-tangential boundary value of the
Plemelj-Sokhotzki formula is in general not monogenic. Therefore the names analytic and
monogenic signal are often confusing. Since they are non-tangential boundary values of
the Cauchy transform their results are in general neither analytic nor monogenic although
their names allow these assumptions.
One can conclude that the Riesz transform, itself being a generalization of the Hilbert
transform on the real line to Rn+1

+ , is just a special case of the generalized Hilbert
transform obtained in the Cli�ord analysis framework. While in the signal and image
processing community the signal representations, such as the analytic and the monogenic
signal, have been developed independently they were already included in the Cauchy
transform and the Plemelj-Sokhotzki formula. Furthermore the framework includes a
scale space concept known as the Poisson scale space. In conjunction with the monogenic
signal Felsberg introduced this scale space in [16] as an alternative to the standard
Gaussian scale space known from image processing (see e.g. [28]). He de�ned the Poisson
scale space representation of the monogenic signal as the convolution of the monogenic
signal with the Poisson kernel for R3

+:

P[f ](x) + P[
1∑
i=0

Ri[f ]](x) = P[f ](x) + P[H[f ]](x) (2.57)

which is up to the factor 1/2 nothing else but the Cauchy transform identi�ed by the
splitting introduced in (2.23). This relation is fundamental. First the Cauchy transform
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and its non-tangential boundary value which results in the generalized Hilbert transform
are therefore the entry to image analysis in the framework of Cli�ord analysis. It naturally
provides the concept of the Poisson scale space and contains the already known analytic
and monogenic signal as a subset. Second it is the entry to complex function theory
in higher dimensions. Since the Cauchy transform generates monogenic functions we
deal with such functions only if we work in the Poisson scale space. Important theorems
known from Cli�ord analysis depending on monogenic functions can therefore be applied.
This is not the case if the analysis is carried out in the standard Gaussian scale space.
This chapter has introduced the generalized Hilbert transform as a part of the non-
tangential boundary value of the Cauchy transform. The generalized Hilbert transform
is able to operate on the su�ciently smooth boundary ∂G of arbitrary connected sets
G ⊂ Rn+1. These boundaries might for example be plane curves, space curves, and
closed surfaces. Therefore the generalized Hilbert transform is not restricted to the
boundary of the upper half space Rn+1

+ as it is the case with the Riesz transform. As a
special class of generalized Hilbert transforms the Riesz transforms have been introduced
as a Hilbert transform on the boundary ∂G = Rn+1

+ . Classical signal representations such
as the analytic signal and the monogenic signal are based on the Riesz transform. These
representations which are combinations of the original signal and its Riesz transform
turned out to be special cases of the Plemelj-Sokhotzki formula. Since the Cli�ord anal-
ysis framework provides the possibility to apply the Hilbert transform on more complex
boundaries than the upper half spaces, the question arises how these Hilbert transforms
could be used in image processing. The next chapters provide an overview of the existing
signal representations, the features they are able to extract, and their drawbacks. New
signal representation involving the generalized Hilbert transform on manifolds di�erent
from the boundary of the upper half spaced are introduced and discussed.
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3 The Riesz transform in terms of the Radon transform

While the last chapter has introduced the formal concepts of the Cauchy transform and
the generalized Hilbert transform, their interpretation and application in the context of
image processing has not been discussed yet. The primary goal is the extraction of certain
features from a signal. To use the introduced Hilbert transform for feature extraction one
has to understand what it actually does if it is applied to a signal. In addition one has to
understand and mathematically model the features that are supposed to be extracted.
In the following, signals are considered which are functions f(x) from Ω ⊂ R2 to R with
f ∈ L2(R2,R) and f ∈ C2(R2,R).
Subscripts of the form fi0D, fi1D and fi2D will represent the intrinsic dimension of the
function which is de�ned according to [14] for a local neighbourhood N ⊂ Ω as:

f ∈


i0DN , f(xi) = f(xj) ∀xi, xj ∈ N
i1DN , f(x1, x2) = g(x1 cos(θ) + x2 sin(θ)) ∀(x1, x2) ∈ N,

g : R→ R ∧ g /∈ i0DN

i2DN , else

(3.1)

θMain will denote their main orientation. In the case of fi2D signals, which are superpo-
sitions of two i1D signals, θ1, θ2 are the orientations of corresponding i1D signals. ϕ1, ϕ2

will denote their local phases respectively.
The nD−Fourier transform of a function f will be denoted by F and is de�ned as

F [f ](u) =
∫

Rn

f(x) e−i2π<x,u>dx , u ∈ R2 (3.2)

The analytic signal The last chapter has introduced the analytic signal as a special case
of the Plemelj-Sokhotzki formula and therefore as the non-tangential boundary value
of the Cauchy transform for G = R2

+ and ∂G = R. Although the Plemelj-Sokhotzki
formula generalizes the analytic signal, it provides no interpretation of its e�ect on an
input function. Omitting the factor 1/2 found in the Plemelj-Sokhotzki formula (2.46)
in example 2.2.9 the analytic signal has been de�ned as

2 lim
t→x
C[f ](t) = fa(x) = f(x) + iH[f ](x) (3.3)

To interpret the analytic signal f : R→ R is assumed to be a cosine function

f(x) = k(x) cos(ωx+ φ), ω > 0, k ∈ R (3.4)

where k = k(x) is called the amplitude, the argument arg(f(x)) = ωx+φ is called instan-

taneous phase or just phase and d/dx arg(f(x)) is called instantaneous frequency. Since

23



3 The Riesz transform in terms of the Radon transform

the Hilbert transform of f readsH[f ](x) = k sin(ωx+φ) its analytic signal representation
is the function

fa(x) = k cos(ωx+ φ) + ik sin(ωx+ φ). = k(x)ei(ωx+φ) (3.5)

de�ned in the complex plane. The function

|fa(x)| =
√
f(x)2 +H[f ](x)2 (3.6)

is also known as the amplitude envelope or instantaneous amplitude.
The instantaneous phase is obtained by the arc tangent as

ωx+ φ = arctan
(H[f ](x)

f(x)

)
=
(

sin(ωx+ φ)
cos(ωx+ φ)

)
. (3.7)

Note that the instantaneous phase is only exactly determined for a single cosine or sine
function. For the phase of an arbitrary function f ∈ L2(R,R) consider their Fourier
series representation

f(x) =
∞∑

m=−∞
cme

imx (3.8)

with the Fourier coe�cients

cm =
1

2π

π∫
−π

f(x)e−imxdx (3.9)

Then due to the linearity of the Hilbert transform the expression

arctan
(H[f ](x)

f(x)

)
= arctan

(
H[
∑∞

m=−∞ cme
imx](x)∑∞

m=−∞ cme
imx

)
(3.10)

= arctan

(∑∞
m=−∞H[cmeimx](x)∑∞

m=−∞ cme
imx

)
(3.11)

is just the average of the component function phases. Hence for arbitrary L2 functions
the term phase is only signi�cant if the function is pre�ltered in such a way, that only
one frequency is obtained.

The monogenic signal One dimensional functions f ∈ L2(R,R) can be analyzed in
terms of the instantaneous phase, frequency and amplitude with the one dimensional
Hilbert transform. To generalize the Hilbert transform from the real line R to the plane
R2 for functions f ∈ L2(R2,R), the Hilbert transform on ∂G = R2 as the boundary of the
upper half space R3

+ is used. The outward pointing normal is then denoted by e2 pointing
down the negative e2 axis. It has already been mentioned that the generalized Hilbert
transform for the upper half space corresponds to the Riesz transform. In conjunction
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Figure 3.1: Left: Basic i1D signal. Right: One-dimensional signal obtained by restricting
the original signal along its orientation

with the original function f its Riesz transform leads to the Plemelj-Sokhotzki-formula
which is also known as the monogenic signal:

fm(x) = 2 lim
t→x
C[f ](t) (3.12)

= f(x) +H[f ](x) (3.13)

= f(x) + e2

1∑
i=0

eiRi[f ](x) (3.14)

Problems arise if one tries to interpret the monogenic signal in terms of the phase since
there is no exact de�nition of a two dimensional phase. Nonetheless, a motivation can be
given if the underlying signal model is assumed to be a cosine function depending on the
scalar product of the two dimensional input coordinates x ∈ R2 and a given orientation

vector u = (cos θ, sin θ)T .

f(x) = k cos(ω < x, u > +ϕ), ω > 0, k ∈ R (3.15)

which is the real part of so called plane wave functions

fp(x) = k ei(ω<x,u>+ϕ). (3.16)

Note that f is intrinsically one-dimensional since it is constant along the line perpendic-
ular to u.
For plane wave functions a phase can be de�ned according to the one dimensional de�-
nition as

arg(f(x)) = ω < x, u > +ϕ (3.17)
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3 The Riesz transform in terms of the Radon transform

In contrast to the one-dimensional case this phase function additonally depends on the
orientation u. If the orientation u is known, then the phase function can be deter-
mined by applying the concepts of the analytic signal from the previous section to the
one-dimensional function obtained by the restriction of f to a straight line along u. Fur-
thermore, with the knowledge of u one would obtain the orientation angle θ of the plane
wave which is important for orientation analysis of certain image structures.
The Riesz transform is able to obtain the orientation angle θ of plane waves and therefore
their phase. To understand the functionality of the Riesz transform, its close link with the
Radon transform is exploited. First a few preliminaries concerning the Radon transform
are necessary. Working in a Cli�ord analysis setting, the Radon transform of functions
with values in R0,n is considered which is discussed in detail in [7].

De�nition 3.0.11. Let f(x) ∈ L2(Rn,R0,n), u ∈ Sn−1 and s ∈ R. Then the Radon

transform R : Rn → Sn−1 × R of f is de�ned as:

R[f ](u, s) =
∫

x∈Rn

f(x) δ0(< x, u > −s)dy (3.18)

where δ0 ist the Dirac-Delta distribution.

The Radon transform integrates over all possible hyperplanes Rn described by the unit
vector u and the minimal distance s from the origin. Of interest are the cases n = 2 and
n = 3. For n = 2 the set of all possible hyperplanes in R2 are all possible straight lines.
In R3 n−dimensional hyperplanes correspond to ordinary planes in R3. In this scenario
the Radon transform is of special interest since it decomposes a given function into its
plane waves and is therefore also known under the name plane wave decomposition. If
the input function consists of a single plane wave like (3.15) it will be transformed into
a one-dimensional function in the new parameter space called Radon space (see Figure
3.2). The Radon space parameterizes the new one-dimensional functions depending on
the orientation described by u for each given plane waves. Since u ∈ Sn−1, it can be
described by n−1 angles in spherical coordinates. The Radon parameter space is spanned
by these n − 1 angles and the distance parameter s. One-dimensional functions in the
Radon space along s for a given u are also referred to as slices.

3.1 Properties of the Radon transform

The Radon transform shares some properties which will be used in the following. It is
invertible and its inversion will be denoted by (see [10])

f(x) = R−1[R[f ]](x) =
∫
|u|=1

h(u,< x, u >)du (3.19)

where

h(u, t) =

{
an

∂n−1

∂tn−1R[f ](u, t), for odd n

anH
[
∂n−1

∂pn−1R[f ](u, p)
]

(t), for even n

}
(3.20)
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3.1 Properties of the Radon transform

and

an =

{
in−1

2(2π)n−1 , for odd n
in

2(2π)n−1 , for even n

}
. (3.21)

Hence it is possible to reconstruct a function from its plane wave decomposition. Fur-
thermore, both the Radon transform and its inverse are linear integral transforms with

R[f ](u, s) = R
[∑

A

eAfA

]
(u, s) =

∑
A

eAR[fA](u, s). (3.22)

Shifting a function in the spatial domain by a vector v ∈ Rn results in a shift in the
Radon space along the s axis:

R[f(x+ t)](u, s) = R[f(x)](u, s+ < t, u >). (3.23)

Of special interest is the close connection between the Radon transform and the Fourier
transform:

Theorem 3.1.1 (Fourier slice theorem or central slice theorem). Let u be a unit vector

in Rn and t, s ∈ R. Then the following holds:

F [f(x)](tu) = Ft→s[R[f ](u, t)](s) (3.24)

where Ft→s denotes the one-dimensional Fourier transform along the slice at u evaluated

at s.

The Fourier slice theorem relates the n-dimensional Fourier transform of a function f
to the one-dimensional Fourier transform along the slice at the orientation described by
u. All points in the Fourier domain located along a given orientation u belong to the
same slice in the Radon domain and therefore to the same plane wave. The Fourier
slice theorem is the central theorem to establish the link between the generalized Hilbert
transform and the Radon transform which reads

Theorem 3.1.2 (Connection between the generalized Hilbert and the Radon transform).

R[H[f ]](u, s) = ie0uHt→s[R[f ](u, t)](s) (3.25)

where Ht→s denotes the one-dimensional Hilbert transform along the slice located at u
evaluated at s.

A proof for an arbitrary dimension n of the connection above using the Fourier slice
theorem may be found in [7]. Applying the inverse Radon transform to (3.25) results in

H[f ](x) = R−1[ie0uHt→s[R[f ](u, t)](s)](x) (3.26)

Similar to the Fourier slice theorem the equation above states that the generalized Hilbert
transform of a function in Rn evaluated at point (u, s) is the same as the inverse Radon
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3 The Riesz transform in terms of the Radon transform

transform of the one-dimensional Hilbert transform along the slice described by the
direction u in the Radon space. Therefore every generalized Hilbert transform on ∂G =
Rn

+ reduces to a one-dimensional Hilbert transform along the corresponding slices in the
Radon domain. This general link between the Hilbert and the Radon transform is the
basis for the following analysis of plane waves in R2. For these types of functions the
integral involved in the inverse Radon transform can be simpli�ed to reveal the orientation
of the plane wave.

3.2 Analysis of i1D signals

Single plane waves in R2 are equivalent to intrinsically one dimensional functions. Since
they depend on the scalar product of the desired direction vector u and the coordinate
vector x it is constant at every x along the direction perpendicular to u = (cos(θ), sin(θ))T

which is the de�nition of a i1D function. In the following these functions are denoted by
fi1D.

The Radon transform has been introduced as a plane wave decomposition. If it is applied
to a single plane wave function there is actually nothing to decompose since only one
plane wave is present. As a result the Radon transform of a plane wave is only a single
one-dimensional function along one slice at its orientation described by u. At all other
slices the resulting functions are constant:

Lemma 3.2.1. Let fi1D be a i1D function and let θMain ∈ [0, π) be its main orientation

with respect to the x1-axis. Then for all t1, t2 ∈ R and for all u = (cos θ, sin θ)T , θ ∈
[0, π] \ {θMain} the following holds:

R[f ](u, t1) = R[f ](u, t2) (3.27)

Proof. Consider two straight lines l1, l2 in R2 described by their orientation angle θ with
respect to the x1-axis an their distances t1, t2 from the origin. Now consider a point x1 on
l1 and the corresponding value f(x1)i1D. l1 and l2 are parallel, since they have the same
orientation angle but only di�ering distances from the origin. By de�nition the function
fi1D is a i1D function so it is constant along one orientation φ in the spatial domain. But
then x1 has a corresponding bijective projection on l2 along that orientation φ namely
x2 with f(x1)i1D = f(x2)i1D.

Corollary 3.2.2. Let fi1D be a i1D function and let θMain ∈ [0, π) be its main orientation

with respect to the x1-axis. Then for all u = (cos θ, sin θ)T , θ ∈ [0, π] \ {θMain} and for

all t ∈ R:

R[f ](u, t) = c (3.28)

where c ∈ R is some constant.

This constancy property at all slices di�erent from the slice at the angle θMain is a key
property for the determination of the orientation u with the Riesz transform. Using
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Figure 3.2: Left column: Original i1D signals in the spatial domain. Right column: The
corresponding Radon transformations. The Radon transform of i1D signals
has only non-constant values at θ = θMain

the de�nition of the inverse Radon transform (3.19) for n = 2 leads to the explicit
two-dimensional inversion formula

f(x) = R−1[R[f ]](x) =
1

2π2

∫
|u|=1

Ht→s[ ∂
∂t
R[f ](u, t)](< x, u >)du (3.29)
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3 The Riesz transform in terms of the Radon transform

In conjunction with the relation (3.26) the link between the Radon and the Hilbert
transform, which is the Riesz transform in this case, reads:

H[f ](x) = ie0R−1

{(
cos θ
sin θ

)
Ht→s[R{f}(u, t)](s)

}
(x)

= − ie0
2π2

∫
|u|=1

(
cos θ
sin θ

)
Ht→s[Ht→s[ ∂

∂t
R[f ](u, t)]](< x, u >)du

=
ie0
2π2

∫
|u|=1

(
cos θ
sin θ

)
∂

∂t
R[f ](u,< x, u >)du. (3.30)

The Riesz transforms are just the components(
Rx1 [f ](x)
Rx2 [f ](x)

)
=

1
2π2

∫
|u|=1

(
cos θ
sin θ

)
∂

∂t
R[f ](u,< x, u >)du. (3.31)

Having established the link between the generalized Hilbert transform and the Radon
transform, this concept can now be used to analyze single plane waves fi1D in R2. It has
been shown in (3.28) that the Radon transform of a i1D signal, which is the real part
of a plane wave, is only non-constant along one single slice in the Radon domain. This
slice corresponds to the orientation angle θMain of the signal. At every other slice the
one dimensional function along that slice is constant. Now imagine the inverse Radon
transform of such a signal. Since the inverse Radon transform involves partial derivatives
along each slice according to (3.31), these derivatives will vanish at all slices di�erent from
θMain. As a result the integration over all angles θ is just the slice function at θMain.
Hence with uMain = (cos θMain, sin θMain)T the Riesz transforms read:

(
Rx1 [fi1D](x)
Rx2 [fi1D](x)

)
=

1
2π2

(
cos θMain

sin θMain

)
∂

∂t
R[fi1D](uMain, < x, uMain >). (3.32)

With the abbrevation

s(θMain) =
1

2π2

∂

∂t
R[fi1D](uMain, < x, uMain >) (3.33)

the Riesz transform components along the x1 and the x2 axis read

(
Rx1 [fi1D](0, 0)
Rx2 [fi1D](0, 0)

)
= s(θMain)

(
cos θMain

sin θMain

)
. (3.34)

which allow the determination of the main orientation θMain as:
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3.2 Analysis of i1D signals

Rx2 [fi1D](0, 0)
Rx1 [fi1D](0, 0)

=
s(θMain) sin θMain

s(θMain) cos θMain
= tan θMain (3.35)

θMain = arctan
(

Rx2 [fi1D](0, 0)
Rx1 [fi1D](0, 0)

)
(3.36)

With the main orientation of the signal fi1D it is now possible to calculate the phase
of the signal by evaluating the one dimensional Hilbert transform along uMain from the
origin. But even this step can be expressed in terms of the Riesz transform. It turns
out that the one-dimensional Hilbert transform along uMain is exactly the same as the
inverse Radon transform of the one-dimensional Hilbert transform along each slice in the
Radon domain:

Theorem 3.2.3 (Hilbert transform in the Radon domain).

R−1[Ht→s[R[fi1D](u, t)]](s)s=<x,u>](x) = Ht→s[fi1D(t cos θMain, t sin θMain)](s). (3.37)

Proof. De�ne r(t, θ) = R[f ](t, θ).

R−1[h(t) ∗ R[fi1D](0, 0)

= R−1

 1
π

∞∫
τ=−∞

r(τ + t, θ)
−τ dτ

 (0, 0)

=
1

2π3

π∫
θ=0

∞∫
t=−∞

1
−t

 ∂
∂t

∞∫
τ=−∞

r(τ + t)
−τ dτ

 dtdθ
=

1
π

∞∫
τ=−∞

1
−τ

 1
2π2

π∫
θ=0

∞∫
t=−∞

1
(0 cos θ + 0 sin θ)− t

∂

∂t
r(τ + t, θ)dtdθ

 dτ
=

1
π

∞∫
τ=−∞

g(τ + 0)
−τ dτ

= (h ∗ g)(0)

= h(0) ∗ R−1[r(t, θ)](0, 0)
= (h ∗ fi1DθMain

)(0)

=
−1
π

∞∫
τ=−∞

fi1D(τ cos θMain, τ sin θMain)
τ

dτ

In conjunction with (3.31) the phase at the origin can now be expressed in terms of the
Riesz transforms as
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3 The Riesz transform in terms of the Radon transform

Theorem 3.2.4 (Phase of i1D signals).

ϕ = arctan 2(
√
Rx1 [fi1D](0, 0)2 +Rx2 [fi1D](0, 0)2, f(0, 0)) (3.38)

Proof. With the abbrevation

s(x) = R−1[Ht→s[R[f ](u, t)]](s)s=<x,u>](x) (3.39)

one has√
Rx1 [fi1D](0, 0)2 +Rx2 [fi1D](0, 0)2 =

√
s2(0, 0) cos2 θMain + s2(0, 0) sin2 θMain (3.40)

= s(0, 0). (3.41)

Using theorem 3.2.3 the assumption follows.

3.3 Analysis of superposed i1D signals

The transformation of a signal via the Radon transform and its inverse revealed the pos-
sibility of determining the main orientation and the phase of a i1D signal in a descriptive
manner. The question arises if it is possible to use the Radon transform and its inverse
in a similar manner for i2D signals. A starting point will be i2D signals which are a
superposition of two i1D signals.

De�nition 3.3.1. Let fi1D1 and fi1D2 be two i1D signals with main orientations θ1 and
θ2. Then the i2D signals in the section will be of the form:

fi2D = fi1D1 + fi1D2

θMain = θ1+θ2
2 will denote the main orientation of the i2D signal.

Proceeding analogous to the last section the Riesz transform of a fi2D function using
(3.30) is obtained as:

(
Rx1 [fi2D](x)
Rx2 [fi2D](x)

)
=
(
Rx1 [fi1D1 + fi1D2 ](x)
Rx2 [fi1D1 + fi1D2 ](x)

)
= R−1

{(
cos θ
sin θ

)
Ht→s[R[fi1D1 + fi1D2 ](u, t)](s)s=<x,u>

}
(x)

= R−1

{(
cos θ
sin θ

)
Ht→s[R[fi1D1 ](u, t)](s)s=<x,u>

}
(x)+

R−1

{(
cos θ
sin θ

)
Ht→s[R[fi1D2 ](u, t)](s)s=<x,u>

}
(x)

=
1

2π2

(
cos θ1
sin θ1

)
∂

∂t
R[fi1D1 ](uθ1 , t)t=<x,uθ1>+

1
2π2

(
cos θ2
sin θ2

)
∂

∂t
R[fi1D2 ](uθ2 , t)t=<x,uθ2>
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With

s(x, θ) :=
1

2π2

∂

∂t
R[fi1D](uθ, t)t=<x,uθ>

the above result shortens to

(
Rx1 [fi2D](x)
Rx2 [fi2D](x)

)
= s(x, θ1)

(
cos θ1
sin θ1

)
+ s(x, θ2)

(
cos θ2
sin θ2

)
(3.42)

In general s(θ1) 6= s(θ2) which prohibits the approach we used in Eq. (3.36). To derive
the main orientation from this equation either demands that we know θ1, θ2 in advance or
further assumptions about the two i1D signals are required. In the following it is assumed
that the two i1D functions fi1D1 and fi1D2 have the same but an arbitrary phase.

Theorem 3.3.2 (Main orientation of i2D signals with same but arbitrary phase). Let
fi1D1 and fi1D2 be two i1D signals with arbitrary but same phase. Then the main orien-

tation θMain of fi2D = fi1D1 + fi1D2:

θMain =
θ1 + θ2

2
= arctan

(
Rx2 [fi1D](0, 0)
Rx1 [fi2D](0, 0)

)
(3.43)

Proof. If the two i1D signals are assumed to have an arbitrary but the same phase, the
integrals s(θ1) and s(θ2) will be equal and lead to:

(
Rx1 [fi2D](0, 0)
Rx2 [fi2D](0, 0)

)
= s(θ1)

(
cos θ1
sin θ1

)
+ s(θ2)

(
cos θ2
sin θ2

)
(3.44)

=
(

cos θ1 + cos θ2
sin θ1 + sin θ2

)
s. (3.45)

This directly reveals the main orientation in the same manner as in Eq. (3.36)

Note that the main orientation is equal to the average of the i1D signal orientations for
two or more superposed i1D signals.
In addition to the main orientation it is possible to determine the apex angle |θ1 − θ2|
of the two superposed i1D signals. With the knowledge of the main orientation and the
apex angle the two orientation angles θ1 and θ2 can be calculated.

Theorem 3.3.3. Let fi1Di and fi1D2 be two i1D signals with arbitrary but same phase

and amplitude and main orientations θ1, θ2. Further de�ne:

s := s(x, θ1) = s(x, θ2)
q1 := (cos θ1 + cos θ2)s
q2 := (sin θ1 + sin θ2)s
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3 The Riesz transform in terms of the Radon transform

Then the apex angle θ1 − θ2 of fi2D = fi1D1 + fi1D2 can be determined by:

θ1 − θ2 = arccos
(
q21 + q22

2s2
− 1
)

(3.46)

Proof. According to the identities of the trigonometric functions one gets:

q21 = (s(cos θ1 + cos θ2))2

=
(

2s sin
(
θ1 + θ2

2

)
cos
(
θ1 − θ2

2

))2

and

q22 = (s(cos θ1 + cos θ2))2

=
(

2s cos
(
θ1 + θ2

2

)
cos
(
θ1 − θ2

2

))2

Therefore:

q21 + q22
2s2

− 1 =
4s2 cos

(
θ1−θ2

2

)(
sin2

(
θ1+θ2

2

)
+ cos2

(
θ1+θ2

2

))
2s2

− 1

= 2 cos2

(
θ1 − θ2

2

)
− 1

= cos(2
θ1 − θ2

2
)

= cos(θ1 − θ2)

To extend the phase calculation for i1D signals seen in (3.38) to i2D structures, it is
again assumed that the signal fi2D is a superposition of two fi1D signals with same but
arbitrary phase. Furthermore, the orientations θ1, θ2 are assumed to be known.

Theorem 3.3.4. Let fi2D be the superposition of two fi1D signals with same but arbitrary

phase. Let θ1, θ2 be their main orientations. Then the Hilbert transform along θ1, θ2 is

obtained as:

Hθ1 [fi2D(t cos θ1, t sin θ1)](0) = Hθ2 [fi2D(t cos θ1, t sin θ1)](0) (3.47)

=
Rx1 [fi2D](0, 0)

cos(θ1) + cos(θ2)
(3.48)

=
Rx2 [fi2D](0, 0)

sin(θ1) + sin(θ2)
(3.49)

where Hθ is the one-dimensional partial Hilbert transform along θ.
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3.3 Analysis of superposed i1D signals

Proof. Evaluating the Riesz transform along the x1-axis using (3.42) and using the de�-
nition (3.33) for s(θ) leads to

Rx1 [fi2D](0, 0) = cos(θ1)s(θ1) + cos(θ2)s(θ2) (3.50)

Since the two i1D signals have the same phase it follows that s(θ1) = s(θ2). Using (3.37)
the Riesz transform becomes

Rx1 [fi2D](0, 0) = s(θ1/2)(cos(θ1) + cos(θ2)) (3.51)

= (cos(θ1) + cos(θ2))Hθ1 [fi2D(t cos θ1, t sin θ1)](0) (3.52)

= (cos(θ1) + cos(θ2))Hθ2 [fi2D(t cos θ1, t sin θ1)](0). (3.53)

x2

x1

t

θ1 θθ2

x2

x1

t

θ1 θθ2

Figure 3.3: Left column: Original i2D signals which are superpositions of two i1D signals
in the spatial domain. Right column: The corresponding Radon transforma-
tions. As it has already been stated, the Radon transform of i1D signals has
only non-constant values at θ1, θ2

The goal of this section was an imaginative description of the generalized Hilbert trans-
form on the boundary ∂G = R2 of G = R3

+ which coincides with the Riesz transform.
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3 The Riesz transform in terms of the Radon transform

Using the relation between the Riesz transfrom and the Radon transform it was possi-
ble to show that the Riesz transform is just a one-dimensional Hilbert transform in the
Radon domain. With this knowledge, certain properties such as orientation and phase
of i1D signals (plane waves) and i2D signals which are a superposition of i1D signals
have been determined. Since the monogenic signal representation consists of the Riesz
transform and generalizes the analytic signal to plane wave analysis in R2, it provides
the framework for the achieved results. Nevertheless, it is limited to the analysis of plane
waves and therefore i1D structures.
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4 The monogenic curvature tensor

Since the monogenic signal is limited to the analysis of i1D functions, there have been
attempts to further extend the monogenic signal in order to analyze arbitrary i2D signals.
One attempt is the monogenic curvature signal introduced by Di Zang in [32]. The main
idea is to interpret the given signal as a Monge patch surface in R3 to connect the
monogenic signal with curvature invariants known from di�erential geometry. Based on
the Hessian matrix, a tensor pair consisting of the second order derivatives and its Riesz
transform is constructed.
Although the idea of coupling di�erential geometry with the monogenic signal might
lead to a framework for the analysis of i2D structures, the monogenic curvature tensor is
limited. It is shown how to extract the properties like orientation, apex angle and phase
with the monogenic curvature tensor.

4.1 Basic di�erential geometry

Before the monogenic curvature tensor is covered in detail, some di�erential geometric
basics are introduced. They will serve as a basis for the comparison between the enti-
ties the monogenic curvature tensor is supposed to and the quantities it actually does
determine.
The geometric object of interest is the Monge patch embedding of an input signal f :
R2 → R in R3 given by:

S(x1, x2) = x1e1 + x2e2 + f(x1, x2)e3. (4.1)

Given this embedding one can study di�erential geometric invariants of the surface. The
subject of interest in this case are the Gaussian and mean curvature which are based on
the Gauss map. To every surface point p the Gauss map assigns its oriented unit normal

N(p) =
Sx1(p)× Sx2(p)
|Sx1(p)× Sx2(p)| (4.2)

where × is the cross product in R3.
Therefore it is a map from the surface to the unit sphere S2. The di�erential of the Gauss
map dN is a linear map from the tangent space Tp(S) of the surface at the point p to the
tangent space TN(p)(S2) of the unit sphere. Using the basis {Sx1 , Sx2} it may be written
as a matrix

A =
(
a11 a21

a12 a22

)
(4.3)

with
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4 The monogenic curvature tensor

a11 =
fF − eG
EG− F 2

a12 =
gF − fG
EG− F 2

(4.4)

a21 =
eF − fE
EG− F 2

a22 =
fF − gE
EG− F 2

(4.5)

where E,G, F are the coe�cients of the �rst and e, g, f are the coe�cients of the second
fundamental form. The matrix A is also known as the Weingarten map and the equations
of its entries are known as the Weingarten equations [13]. It is a well known fact that
the coe�cients for a Monge patch are given by

E = 1 + f2
x1
, e =

fx1x1√
1 + f2

x1
+ f2

x2

(4.6)

F = fx1fx2 , f =
fx1x2√

1 + f2
x1

+ f2
x2

(4.7)

G = 1 + f2
x2
, g =

fx2x2√
1 + f2

x1
+ f2

x2

(4.8)

(4.9)

The Gaussian and mean curvature are then obtained as

K = det(A) =
fx1x1fx2x2 − f2

x1x2

(1 + f2
x1

+ f2
x2

)2
(4.10)

H =
1
2

(1 + f2
x1

)fx2x2 − 2fx1fx2fx1x2 + (1 + fx2)2fx1x1

(1 + f2
x1

+ f2
x2

)3/2
. (4.11)

These two curvatures can be used to obtain the two principal curvatures κ1, κ2 which are
the eigenvalues of the Weingarten map. They correspond to the eigenvectors pointing
along directions with maximum and minimum normal curvature, also known as principal
directions, which are the two principal curvatures. They are obtained as

κ1/2 = H ±
√
H2 −K (4.12)

In image processing Gaussian and the mean are of interest since it is possible to classify
surfaces based on the sign of their Gaussian and mean curvature [13]. Surfaces with
K > 0 correspond to elliptic patches and can further be classi�ed as convex (H > 0)
and concave patches (H < 0). Negative Gaussian curvature indicates a hyperbolic patch.
These di�erent surface types are used to distinguish between i1D and di�erent i2D regions
in the target image. This classi�cation possibility serves as the main idea to couple
di�erential geometry with the monogenic signal to extend it in order to analyze i2D
regions.
As a starting point to construct the monogenic curvature tensor, Di Zang uses the Hessian
matrix
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4.1 Basic di�erential geometry

HM =

[
∂2

∂x2
1
f(x) ∂2

∂x1x2
f(x)

∂2

∂x1x2
f(x) ∂2

∂x2
2
f(x)

]
. (4.13)

Switching to the Fourier domain and using polar coordinates

uT = (r cos(θ), r sin(θ))T (4.14)

the entries of the Fourier transformed Hessian matrix read:

F [fx1x1 ](u) = (i r cos(θ))2 F [f ](u) = −r2 cos2(θ) F [f ](u)
F [fx1x2 ](u) = (i r cos(θ))(i r sin(θ)) F [f ](u) = −r2 sin(θ) cos(θ) F [f ](u)
F [fx2x1 ](u) = −(F [fx2x1 ](u))
F [fx2x2 ](u) = (i r sin(θ))2 F [f ](u) = −r2 sin2(θ) F [f ](u)

The so called even tensor part is constructed by ignoring the radial factors r2 in the
Fourier domain:

He =
[

cos2(θ)F [f ] − cos(θ) sin(θ) F [f ]e12

cos(θ) sin(θ) F [f ]e12 sin2(θ)F [f ]

]
(4.15)

The ignorance of the radial factors in the Fourier domain has a crucial consequence for the
entries in the tensor. Although they are supposed to represent second order derivatives
in Fourier domain, the entries are just the second order Riesz transforms in the Fourier
domain. To point out this fact consider the second order Riesz kernels in the Fourier
domain

F [Rx1 Rx1 ](u) =
(
i u1
|u|

)2
= − r2 cos2(θ)

r2
= − cos2(θ)

F [Rx1 Rx2 ](u) =
(
i u1
|u|

)(
i u2
|u|

)
= − r2 cos(θ)sin(θ)

r2
= − cos(θ)sin(θ)

F [Rx2 Rx2 ](u) =
(
i u2
|u|

)2
= − r2 sin2(θ)

r2
= −sin2(θ)

. (4.16)

As one can see these are exactly the factors used in the even tensor entries. Therefore,
the even tensor part can be written in terms of the second order Riesz transforms as

Te =
[

Rx1x1 [f ] −Rx1x2 [f ]e12

Rx1x2 [f ]e12 Rx2x2 [f ]

]
. (4.17)

The odd tensor part in the spatial domain is constructed by applying the Riesz transform
again to the even tensor entries.
The terms even and odd in conjunction with the tensor parts are related to the argument
of the sine and cosine functions which serve as basis functions. While the even tensor
consists of even basis functions of order 0 and 2, the odd part consists of odd basis
functions. Since the Riesz kernels have their origin in the study of kernels derived from
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4 The monogenic curvature tensor

spherical harmonics as it has been shown in (2.35), the sine and cosine functions in this
case are also referred to as spherical harmonics on the unit sphere S in R2.
Now that the two tensor parts have been expressed in terms of the Riesz transform, the
single tensor entries can be interpreted in terms of the Radon transform. In the last
chapter the relation between the Riesz and the Radon transform has been introduced.
Applying the link (3.30) between the two transforms to the single tensor entries results
in the following representation in the Radon domain:

Rx1x1 [f ] = R−1[cos(θ)H[R[R−1[cos(θ)H[R[f ]]]]]] (4.18)

= R−1[cos(θ)H[cos(θ)H[R[f ]]]] (4.19)

= R−1[− cos2(θ)R[f ]] (4.20)

Rx1x2 [f ] = Rx2x1 [f ] (4.21)

= R−1[cos(θ)H[R[R−1[sin(θ)H[R[f ]]]]]] (4.22)

= R−1[cos(θ)H[sin(θ)H[R[f ]]]] (4.23)

= R−1[− cos(θ) sin(θ)R[f ]] (4.24)

Rx2x2 [f ] = R−1[sin(θ)H[R[R−1[sin(θ)H[R[f ]]]]]] (4.25)

= R−1[sin(θ)H[sin(θ)H[R[f ]]]] (4.26)

= R−1[− sin2(θ)R[f ]] (4.27)

where the property H[H[f ]] = −f of the Hilbert transform has been used. Using these
components the even tensor in terms of the Radon transform reads

Te =
[ R−1[cos2(θ)R[f ]] R−1[− cos(θ) sin(θ)R[f ]]e12

R−1[cos(θ) sin(θ)R[f ]]e12 R−1[sin2(θ)R[f ]]

]
. (4.28)

Proceeding in the same way as above, relating the odd tensor to the Radon transform
results in

To =
[
To11 To21
To12 To22

]
(4.29)

with

To11 = R−1[cos3(θ)H[R[f ]]] +R−1[cos2(θ) sin(θ)H[R[f ]]]e12 (4.30)

To12 = R−1[cos2(θ) sin(θ)H[R[f ]]]e12 +R−1[cos(θ) sin2(θ)H[R[f ]]]e12 (4.31)

To21 = R−1[− cos2(θ) sin(θ)H[R[f ]]]e12 +R−1[cos(θ) sin2(θ)H[R[f ]]]e12 (4.32)

To22 = R−1[sin3(θ)H[R[f ]]]e12 +R−1[cos(θ) sin2(θ)H[R[f ]]] (4.33)

(4.34)
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4.2 Analysis of i1D signals

The above representation allows the splitting into the x1 and x2 components as

To = Tox1 + Tox2 (4.35)

with

Tox1 =
[ R−1[cos3(θ)H[R[f ]]] R−1[cos2(θ) sin(θ)H[R[f ]]]
R−1[cos2(θ) sin(θ)H[R[f ]]] R−1[cos(θ) sin2(θ)H[R[f ]]]

]
(4.36)

and

Tox2 =
[R−1[cos2(θ) sin(θ)H[R[f ]]] R−1[cos(θ) sin2(θ)H[R[f ]]]
R−1[cos(θ) sin2(θ)H[R[f ]]] R−1[sin3(θ)H[R[f ]]]

]
(4.37)

With the constructed tensor pairs the monogenic curvature signal according to [32] is
de�ned as:

De�nition 4.1.1 (Monogenic curvature signal).

fi2D = det(Te)e3 + det(To)e1 = det(Te)e3 + det(Tox1 )e1 + det(Tox2 )e2 (4.38)

4.2 Analysis of i1D signals

Before discussing the di�erential geometric entities the signal is supposed to represent,
it will be shown that the monogenic curvature signal is as powerful as the monogenic
signal in terms of determining main orientation, phase and apex angle of i1D and two
superposed i1D signals with the same but arbitrary phase and amplitude.

Theorem 4.2.1. Let fi1D be a i1D signal with main orientation θMain. Then the main

orientation is obtained by:

θMain = arctan

(√
Te22
Te11

)
= arctan

(√
Te12
Te11

)
= arctan

(√
Te22
Te12

)
(4.39)

Proof. Since the target signal is a i1D signal its corresponding Radon transform has only
one non-constant slice function located at θMain. Therefore, according to the orientation
determination with the monogenic signal in (3.36), it is legitimate to move the sine and
cosine terms out of the inverse Radon transform integral as it has already been done in
the last chapter. This results in

arctan

(√
Te22
Te11

)
= arctan

√R−1[sin2(θ)R[fi1D]]
R−1[cos2(θ)R[fi1D]]

 (4.40)

= arctan

√ sin2(θMain)R−1[R[fi1D]]
cos2(θMain)R−1[R[fi1D]]

 (4.41)

= arctan
(
sin(θMain)
cos(θMain)

)
(4.42)
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4 The monogenic curvature tensor

In addition it is possible to determine the local phase of the i1D signal.

Theorem 4.2.2. Let fi1D be a i1D signal with main orientation θMain. Then the local

phase is given by:

ϕ = arctan
(

trace(Tox2 )
sin(θMain)trace(Te)

)
(4.43)

Proof. Using (3.37) and moving again the sine and cosine terms out of the inverse Radon
transform integral one obtains

trace(Tox2 )
sin(θMain)trace(Te)

=
R−1[cos2(θ) sin(θ)H[R[fi1D]]] +R−1[sin3(θ)H[R[fi1D]]]
sin(θMain) (R−1[cos2(θ)R[fi1D]] +R−1[sin2(θ)R[fi1D]])

(4.44)

=
sin(θMain)R−1[H[R[fi1D]]]

sin(θMain) R−1[R[fi1D]]
(4.45)

=
Ht→s[fi1D(t cos θMain, t sin θMain)](s)

fi1D
. (4.46)

4.3 Analysis of superposed i1D signals

Proceeding analogously to the previous section, the monogenic curvature signal is used
to determine the main orientation, the apex angle, and the phase of two superposed i1D
signals

fi2D = fi1D1 + fi1D2 (4.47)

The main orientations of the two i1D signals are denoted by θ1, θ2 and the local phases
by ϕ1, ϕ2. Further on the following abbreviations will be used:

a := cos(θ1), b := cos(θ2), c := sin(θ1), d := sin(θ2) (4.48)

s(θ(1/2)) = R−1[H[R[f ]]]. (4.49)

With these abbrevations the even and odd tensors for a fi2D signal as it has been de�ned
above read:

Te = fi2D

[
a2 + b2 ca+ db
ca+ db c2 + d2

]
(4.50)

To = s(θ1/2)
[

(a2c+ b2d)e12 + a3 + b3 −(ca2 + db2)e12 + c2a+ d2b
ca2 + db2)e12 − (c2a+ d2b) (c2a+ d2)e12 + bc3 + d3

]
(4.51)
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4.3 Analysis of superposed i1D signals

The determinant is then obtained as:

e1det(To) = e1s
2(θ1/2) (a3d2b+ b3c2a− ca2d3 − db2c3 − 2ca2db2 + 2c2ad2b) (4.52)

+ e2s
2(θ1/2) (a3d3 + b3c3 − db2c2a− ca2d2b) (4.53)

= e1det(Tox1 ) + e2det(Tox2 ). (4.54)

With the determinants of the tensor parts Tox1 and Tox2 the main orientation of i2D
signals can be calculated.

Theorem 4.3.1. Let fi2D = fi1D1 + fi1D2 be the superposition of two i1D signals with

main orientations θ1, θ2. Then the main orientation θMain of fi2D is obtained by:

θMain =
1
2

arctan

(
det(Tox2 )
det(Tox1 )

)
(4.55)

Proof. det(Tox1 ) and det(Tox2 ) can be written as:

det(Tox1 ) = s(θ1/2)2(a3d2b+ b3c2a− ca2d3 − db2c3 − 2ca2db2 + 2c2ad2b)

(4.56)

= s(θ1/2)2(a2d2(ab− cd) + b2c2(ab− cd)− 2abcd(ab− cd)) (4.57)

= s(θ1/2)2((ab− cd)(a2d2 + b2c2 − 2abcd)) (4.58)

and

det(Tox2 ) = s(θ1/2)2(a3d3 + b3c3 − ab2c2a− ca2d2b) (4.59)

= s(θ1/2)2((ad+ bc)(a2d2 − abcd+ b2c2)− abcd(ad+ bc)) (4.60)

= s(θ1/2)2((ad+ bc)a2d2 + (ad+ bc)b2c2 − 2abcd(ad+ bc)) (4.61)

= s(θ1/2)2((ad+ bc)(a2d2 + b2c2 − 2abcd)) (4.62)

therefore:

B

C
=

(ad− cd)(a2d2 + b2c2 − 2abcd)
(ad+ bc)(a2d2 + b2c2 − 2abcd)

(4.63)

=
ab− cd
ad+ bc

(4.64)

=
cos(θ1) cos(θ2)− sin(θ1) sin(θ2)
cos(θ1) sin(θ2) + cos(θ2) sin(θ1)

(4.65)

=
cos(θ1 + θ2)
sin(θ1 + θ2)

(4.66)

=
1

tan(θ1 + θ2)
(4.67)
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4 The monogenic curvature tensor

and

arctan

(
det(Tox1 )
det(Tox2 )

)
= arctan(

1
tan(θ1 + θ2)

) (4.68)

=
π

2
− arctan(tan(θ1 + θ2)) (4.69)

=
π

2
− (θ1 + θ2) (4.70)

Apart from the main orientation and the local phase, two superposed i1D signals provide
an additional feature: the apex angle of the two i1D structures. The previous section
already introduced the apex angle calculation in terms of �rst order Riesz transforms.
Now the apex angle is determined in terms of second order Riesz transforms following an
approach from di�erential geometry which �rst appeared in [31]. The two superposed i1D
signals are assumed to have the same but arbitrary phase and amplitude. Analysis of the
signal is performed at the origin (0, 0)T . Furthermore, the signal is embedded in R3 as a
Monge patch S(x) = x1e1 + x2e2 + f(x)e3. From di�erential geometry it is known that
the normal curvatures along the two orientations θ1, θ2 of the two i1D signals at the origin
is equal to 0 since the radius of the osculating circle at that point is in�nite. Additionally
the signal is assumed to be rotated in such a way, that the maximum curvature direction
nk1 points along the x1 axis and the minimum curvature direction points along the x2

axis. The problem of determining the apex angle α reduces to the determination of the
angle between the maximum curvature direction and θ1. According to Meusnier's and
Eueler's theorem the normal curvature along α

2 reads

k(
α

2
) = cos2(

α

2
) + sin2(

α

2
). (4.71)

Solving for k(α2 ) = 0

α = 2 arctan

(√
|k1|
|k2|

)
(4.72)

expresses the apex angle α in terms of the principal curvatures k1, k2. The principal
curvatures have been introdued as the eigenvalues of the Weingarten map and allow
the representation in terms of the mean and Gaussian curvature of the Monge patch
embedding as

k1/2 = H ±
√
H2 −K. (4.73)

Recalling the de�ntions (4.10) for the curvatures H, K on an notice that �rst order
derivatives are involved. Due to the nature of the underlying signal model which is the
superposition of the plane waves, the �rst order derivatives vanish at the origin (0, 0)T

at which the evaluation takes place. Hence for this special signal model the mean and
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4.3 Analysis of superposed i1D signals

Gaussian curvature can be represented as the trace and the determinant of the Hessian
matrix

H(0, 0) = trace(HM )(0, 0) = fx1x1(0, 0) + fx2x2(0, 0) (4.74)

K(0, 0) = det(HM )(0, 0) = fx1x1(0, 0)fy1y1(0, 0)− f2
x1x2

(0, 0) (4.75)

The question arises, if one can proceed accordingly involving quantities, that is second
order Riesz transforms, from the even monogenic curvature tensor, which is answered by
the following theorem:

Theorem 4.3.2. Let fi2D = fi1D1 + fi1D2 be the superposition of two i1D signals with

main orientations θ1, θ2. Further de�ne:

H :=
1
2
trace(Te) = s

1
2

(a2 + b2 + c2 + d2) = s (4.76)

K := det(Te) = s2(a2d2 + b2c2 − 2abcd) (4.77)

Then the apex angle θ1 − θ2 of fi2D is obtained by:

θ1 − θ2 = 2 arctan

√√√√∣∣∣∣∣H −
√
H2 −K

H +
√
H2 −K

∣∣∣∣∣ (4.78)

= 2 arctan

√√√√∣∣∣∣∣ s(1−
√

1− (a2d2 + b2c2 − 2abcd)
s(1 +

√
1− (a2d2 + b2c2 − 2abcd))

∣∣∣∣∣ (4.79)

Proof.

1−
√

1− det(Te) = 1−
√

1− a2d2 + b2c2 − 2abcd (4.80)

= 1−
√

1− (bc− ad)2 (4.81)

= 1−
√

1− (cos(θ2) sin(θ1)− cos(θ1) sin(θ2))2 (4.82)

= 1−
√

1− sin2(θ1 − θ2) (4.83)

= 1− cos(θ1 − θ2) (4.84)

equivalently

1 +
√

1 + det(Te) = 1 + cos(θ1 − θ2) (4.85)

Therefore the following holds:

1−√1− det(Te)
1 +

√
1− det(Te)

=
1− cos(θ1 − θ2)
1 + cos(θ1 − θ2)

(4.86)

=

√
2 sin2( θ1−θ22 )√
2 cos2( θ1−θ22 )

(4.87)

= tan2(
θ1 − θ2

2
) (4.88)
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From the above formula follows

arctan

(√
tan2(

θ1 − θ2
2

)

)
=
∣∣∣∣θ1 − θ22

∣∣∣∣ (4.89)

In (3.47) it has been shown how the phase of two superposed i1D signals with arbitrary
but same phase could be determined via the Riesz transform and the assumption, that
the main orientations θ1, θ2 are known. We will now state the result in terms of the
monogenic curvature tensor. Using the de�nitions from above for Tox1 , Tox2 and de�ning
further

det(Te) = f2
i2D

[
(a2 + b2)(c2 + d2)− (ca+ db)2

]
(4.90)

= f2
i2D

[
a2d2 + b2c2 − 2abcd

]
(4.91)

leads to:√
det(Tox1 )2 + det(Tox2 )2

det(Te)
=

√
(h(t) ∗ fi2D)2(a2b2 + c2 + d2 + a2d2 + c2b2)

f2
i2D

(4.92)

=

√
(h(t) ∗ fi2D)2(cos2(θ1) + sin2(θ1))

f2
i2D

(4.93)

=
(h(t) ∗ fi2D)2

f2
i2D

(4.94)

4.4 Second Order Riesz transform convolution kernels

The features of i1D and superposed i1D signals in terms of the monogenic curvature tensor
use the second order Riesz transforms. These transforms are obtained by convolution
with the appropriate kernels in the spatial domain. Convoluting in the spatial domain
overcomes the calculation in the Fourier domain. Nonetheless, the convolution kernels
have to be determined �rst. For the �rst order Riesz transforms in R2 these kernels have
already been introduced as

r1 =
x1

|x|3 , r2 =
x2

|x|3 (4.95)

To obtain the kernels for the second order Riesz transforms, the Hilbert-transform like
operator

H(m)[f ](z) =
−|m|
2π

∫
C

f(ξ)
(z − ξ)m|z − ξ|2−mdξ (4.96)
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with z ∈ C which has been introduced in [21] is considered. For m = 1 the operator
H1[f ](z) evaluates to:

H(1)[f ](z) =
−1
2π

∫
C

f(ξ)
(z − ξ)|z − ξ|dξ (4.97)

=
−1
2π

∫
C

f(ξ)((z1 − ξ1)− i(z2 − ξ2))
((z1 − ξ1)− i(z2 − ξ2))((z1 − ξ1) + i(z2 − ξ2))|z − ξ|dξ (4.98)

=
−1
2π

∫
C

f(ξ)(z1 − ξ1)− i(z2 − ξ2))
|z − ξ|2|z − ξ| dξ (4.99)

=
−1
2π

∫
C

f(ξ)(z1 − ξ1)
|z − ξ|3 dξ +

i

2π

∫
C

f(ξ)(z2 − ξ2)
|z − ξ|3 dξ (4.100)

= −Rx1 [f ](z) + iRx2 [f ](z) (4.101)

which is nothing else but a complex operator representing the �rst order Riesz transform
in terms of the already known convolution integrals. In the case of m = 2 the operator
results in the Beurling-Ahlfors transform [21] with the Fourier multiplier (see [4]):

F [H(2)[f ]](ξ) = −ξ
ξ

(4.102)

which will be used to prove the following theorem which establishes the link between the
Beurling-Ahlfors transform and the second order Riesz transforms:

Theorem 4.4.1.

H(2)[f ](z) = −R11[f ](z) +R22[f ](z) + 2iR12[f ](z) (4.103)

Proof. Switching to the Fourier domain and using the Fourier multipliers of the Riesz
transforms

F [rj ] = i
ξj
|ξ| (4.104)

one obtains:

F [Rx1x1 [f ]−Rx2x2 [f ]− 2iRx1x2 [f ]](ξ) = − ξ21
|ξ|2 +− ξ22

|ξ|2 + 2i
ξ1ξ2
|ξ|2 (4.105)

= −(ξ1 − iξ2)2

|ξ|2 (4.106)

=
ξ
2

ξξ
= −ξ

ξ
= F [H2[f ]](ξ) (4.107)
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4 The monogenic curvature tensor

Since the Beurling-Ahlfors transform is an operator consisting of second order Riesz
transforms the convolution integral is now split up into its components to obtain the
convolution kernels:

H(2)[f ](z) =
−2
2π

∫
C

f(ξ)
(z − ξ)2dξ (4.108)

=
−2
2π

∫
C

f(ξ)
((z1 − ξ1) + i(z2 − ξ2))2

dξ (4.109)

=
−2
2π

∫
C

f(ξ)
(z1 − ξ1)2 + 2i(z1 − ξ1)(z2 − ξ2)− (z2 − ξ2)2

dξ (4.110)

=
−2
2π

∫
C

f(ξ)((z1 − ξ1)2 − 2i(z1 − ξ1)(z2 − ξ2)− (z2 − ξ2)2)
((z1 − ξ1)2 + 2i(z1 − ξ1)(z2 − ξ2)− (z2 − ξ2)2)
((z1 − ξ1)2 − 2i(z1 − ξ1)(z2 − ξ2)− (z2 − ξ2)2)

dξ (4.111)

=
−2
2π

∫
C

f(ξ)((z1 − ξ1)2 − 2i(z1 − ξ1)(z2 − ξ2)− (z2 − ξ2)2)
((z1 − ξ1)2 − (z2 − ξ2)2)2 + 4(z1 − ξ1)2(z2 − ξ2)2

dξ (4.112)

=
−2
2π

∫
C

f(ξ)(z1 − ξ1)2

((z1 − ξ1)2 − (z2 − ξ2)2)2 + 4(z1 − ξ1)2(z2 − ξ2)2
dξ (4.113)

+
2

2π

∫
C

f(ξ)(z2 − ξ2)2

((z1 − ξ1)2 − (z2 − ξ2)2)2 + 4(z1 − ξ1)2(z2 − ξ2)2
dξ (4.114)

+
4i
2π

∫
C

f(ξ)(z1 − ξ1)(z2 − ξ2)
((z1 − ξ1)2 − (z2 − ξ2)2)2 + 4(z1 − ξ1)2(z2 − ξ2)2

dξ (4.115)

= Rx1x1 [f ](z)−Rx2x2 [f ](z)− 2iRx1x2 [f ](z) (4.116)

Therefore the convolution kernels read:

r11 =
1
π

x2
1

(x2
1 − x2

2)2 + 4x2
1x

2
2

=
x2

1

|x|4
1
π

(4.117)

r22 =
1
π

x2
2

(x2
1 − x2

2)2 + 4x2
1x

2
2

=
x2

2

|x|4
1
π

(4.118)

r12 =
1
π

x1x2

(x2
1 − x2

2)2 + 4x2
1x

2
2

=
x1x2

|x|4
1
π

(4.119)

According to the �rst order Riesz transforms the convolutions are singular integrals which
only exist as Cauchy principal values. In order to use them in the Poisson scale space
concept their Poisson transforms are of interest. They are obtained by convoluting the
kernels with the Poisson kernel in the spatial domain. Using the Fourier convolution
theorem this convolution corresponds to a multiplication in the Fourier domain.
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4.4 Second Order Riesz transform convolution kernels

Using the Fourier multipliers of the Beurling-Ahlfors transform operator and the Poisson
kernel

F [Ps](u) = e−2π|u|s = e−2πrs, u ∈ R2, s ∈ R+ (4.120)

F [H(2)[f ]](ξ) = −ξ
ξ

(4.121)

the convolution kernel in the spatial domain is obtained by applying the inverse Fourier
transform in polar coordinates to the product of the Poisson- and the Beurling-Ahlfors
multiplier in the Fourier domain with x ∈ C, x = keiϕ:

F−1[−e−2πrse−i2θ](x) = (2π)

∞∫
0

2π∫
0

−e−2πrse−i2θei2πkr cos(θ−ϕ)rdθdr (4.122)

= (2π)

∞∫
0

2π∫
0

−e−2πrse−i2(θ+ϕ)ei2πkr cos(θ)rdθdr (4.123)

= −(2π)e−i2ϕ
∞∫
0

e−2πrs

2π∫
0

e−i2θei2πkr cos(θ)rdθdr (4.124)

= −(2π)e−i2ϕ
∞∫
0

e−2πrsJ2(2πkr)rdr (4.125)

where J2 is a Bessel function of the �rst kind and order 2. In the following the abbreva-
tions α = 2πs and β = 2πk will be used. J2 can be written due to the recurrence relation
for Bessel functions as

J2(2πkr) = J2(βr) =
2
βr
J1(βr)− J0(βr) (4.126)

which leads to
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4 The monogenic curvature tensor

− (2π)e−i2ϕ
∞∫
0

e−αrJ2(βr)rdr (4.127)

= −(2π)e−i2ϕ
∞∫
0

e−αr
2
βr
J1(βr)rdr (4.128)

−−(2π)e−i2ϕ
∞∫
0

e−αrJ0(βr)rdr (4.129)

= −(2π)e−i2ϕ

 2
β

∞∫
0

e−αrJ1(βr)dr − e−i2ϕ
∞∫
0

e−αrJ0(βr)rdr

 (4.130)

(4.131)

According to common integral tables like [23], one obtains the evaluation of the two
Bessel integrals as

∞∫
0

e−αr
2
β
J1(βr)dr =

4(
√
α2 + β2 − α)

β2
√
α2 + β2

(4.132)

and

∞∫
0

e−αrJ0(βr)rdr =
2αΓ(3

2)√
π(α2 + β2)3/2

=
2α
√
π

2√
π(α2 + β2)3/2

(4.133)

Applying these results to the equations above results in
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4.5 Third Order Riesz transform convolution kernels

− (2π)e−i2ϕ
∞∫
0

e−αrJ2(2πkr)rdr (4.134)

= −(2π)e−i2ϕ
(

2
β

2
√
α2 + β2 − α
β
√
α2 + β2

− 2α
√
π

2√
π(α2 + β2)(3/2)

)
(4.135)

= −(2π)e−i2ϕ
(

2
√
π(α2 + β2)(3/2) − 2

√
πα(α2 + β2)− αβ2√π√

πβ2(α2 + β2)(3/2)

)
(4.136)

= −(2π)e−i2ϕ
(

(−2α3 − 2αβ2 − αβ2) + 2(α2 + β2)(3/2)

β2(α2 + β2)(3/2)

)
(4.137)

= −(2π)e−i2ϕ
(

2(α2 + β2)(3/2) − α(2α2 + 3β2)
β2(α2 + β2)(3/2)

)
(4.138)

= −e−i2ϕ
(

2(s2 + k2)(3/2) − s(2s2 + 3k2)
(2π)k2(s2 + k2)(3/2)

)
(4.139)

= (x1 − ix2)2
(
s(2s2 + 3k2)− 2(s2 + k2)(3/2)

(2π)k4(s2 + k2)(3/2)

)
(4.140)

= (x2
1 − 2ix1x2 − x2

2)

(
s(2s2 + 3k2)− 2(s2 + k2)(3/2)

(2π)k4(s2 + k2)(3/2)

)
(4.141)

which leads to the three convolution kernels (see �gure 4.1).

Rx1x1 = x2
1

(
s(2s2 + 3k2)− 2(s2 + k2)(3/2)

(2π)k4(s2 + k2)(3/2)

)
(4.142)

Rx1x2 = −x1x2

(
s(2s2 + 3k2)− 2(s2 + k2)(3/2)

(2π)k4(s2 + k2)(3/2)

)
(4.143)

Rx2x2 = −x2
2

(
s(2s2 + 3k2)− 2(s2 + k2)(3/2)

(2π)k4(s2 + k2)(3/2)

)
(4.144)

4.5 Third Order Riesz transform convolution kernels

To obtain the convolution kernels in the Poisson scale space for the third order Riesz
transforms, the operator H(3) is studied accordingly to (4.122) in the Fourier domain.
Its multiplier reads F [H(3)] = e−i3ϕ. Following (4.122) one obtains the inverse Fourier
transform
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Figure 4.1: 3D and density plots of the second order Riesz transform convolution kernels
in the Poisson scale space with scale parameters �ne=1.1 and coarse=1.5
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F−1[−e−2πrse−i3θ](x) = (2π)

∞∫
0

2π∫
0

−e−2πrse−i3θei2πkr cos(θ−ϕ)rdθdr (4.145)

= (2π)

∞∫
0

2π∫
0

−e−2πrse−i3(θ+ϕ)ei2πkr cos(θ)rdθdr (4.146)

= −(2π)e−i3ϕ
∞∫
0

e−2πrs

2π∫
0

e−i2θei2πkr cos(θ)rdθdr (4.147)

= −(2π)e−i3ϕ
∞∫
0

e−2πrsJ3(2πkr)rdr (4.148)

Using the recurrence relation

J3(2πkr) = J3(βr) =
4
βr
J2(βr)− J1(βr) (4.149)

leads to

− (2π)e−i3ϕ
∞∫
0

e−αrJ3(2πkr)rdr (4.150)

= −(2π)e−i3ϕ
(

4
(
√
α2 + β2 − α)2

β3
√
α2 + β2

− β

(α2 + β2)(3/2)

)
(4.151)

= −(2π)e−i3ϕ
(

4(α2 + β2)2 − 8α(α2 + β2)(3/2) + 4α2(α2 + β2)− β4

β3(α2 + β2)(3/2)

)
(4.152)

= −(2π)e−i3ϕ
(

8α4 + 12α2β2 + 3β4 − 8α(α2 + β2)(3/2)

β3(α2 + β2)(3/2)

)
(4.153)

= −(2π)(x− iy)3
(

8k4 + 12k2s2 + 3s4 − 8k(k2 + s2)(3/2)

s6(k2 + s2)(3/2)

)
(4.154)

=: RK3 (4.155)

which allows the decomposition into the four third order convolution kernels (see �gure
4.2).
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Rx1x1x1 = x3
1RK3 (4.156)

Rx1x1x2 = −3x2
1x2RK3 (4.157)

Rx1x2x2 = −3x1x
2
2RK3 (4.158)

Rx2x2x2 = x3
2RK3 (4.159)

4.6 Discussion of the monogenic curvature tensor

So far the monogenic curvature tensor has been able to extract the same information
as the monogenic signal. As it has been mentioned in the introduction of the chapter
the goal of the monogenic curvature tensor is an extension of the monogenic signal.
This extension is supposed to be achieved by the coupling of the monogenic signal and
concepts from di�erential geometry. In addition, the traces and determinants of the even
and odd tensors are supposed to represent the Gaussian and the mean curvature of the
Monge patch embedding to allow a further analysis and detection of i2D structures which
is not limited to the case of two superposed i1D signals with same but arbitrary phase.
In the following the di�erential geometric properties obtained from the tensor parts are
analyzed and compared with the Gaussian and mean curvature.
It has already been shown in (4.16) that the second order Riesz transforms were obtained
by the ignorance of the second order derivative radial factors in the Fourier domain.
As a consequence the monogenic curvature tensor pair does not represent any partial
derivatives and is therefore not able to describe curvature properties of the Monge patch
embedding. This drawback can be overcome by using the connection between the second
order partial derivatives and the second order Riesz transforms described by the identity

∂2f

∂ij
= −Rij [∆f ]. (4.160)

where i, j ∈ {x1, x2} and ∆ is the Laplace operator [29]. Built upon this identity the
Hessian matrix and hence the even tensor part can be rewritten in terms of the Riesz
transform:

T̂e =
[−Rx1x1 [∆f ](x) −Rx2x1 [∆f ](x)
−Rx1x2 [∆f ](x) −Rx2x2 [∆f ](x)

]
(4.161)

to obtain an even tensor consisting of the second order derivatives.
According the the original tensor pair the odd counterpart can be constructed by applying
the Riesz transform to Te resulting in:

T̂o =
[

Rx1x1x1 [∆f ] +Rx1x1x2 [∆f ]e12 Rx1x1x2 [∆f ]e12 −Rx1x2x2 [∆f ]
−Rx1x1x2 [∆f ]e12 +Rx1x2x2 [∆f ] Rx1x2x2 [∆f ] +Rx2x2x2 [∆f ]e12

]
(4.162)
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Figure 4.2: 3D and density plots of the third order Riesz transform convolution kernels
in the Poisson scale space with scale parameters �ne=1.1 and coarse=1.5
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Examining the determinant of the even tensor part

det(T̂e) = Rx1x1 [∆f ]Rx2x2 [∆f ]−Rx1x2 [∆f ]2 (4.163)

=
∂2f

∂x2
1

∂2f

∂x2
2

− ∂2f

∂x1x2

∂2f

∂x2x1
(4.164)

one can notice that it is up to the factor (1 + f2
x + f2

y )2 equal to the Gaussian curvature
of a Monge patch de�ned in (4.10). Comparing the curvature representation of the new
tensor pair with the one introduced by Di Zang

KTe = det(Te) = Rxx{f}Ryy{f} −Rxy{f}2

it is obvious that the quantity KTe does not represent the Gaussian curvature of the
considered Monge patch. Due to the ignorance of the radial factors in the Fourier domain,
the Laplace operator disappears. T̂e serves as the correct alternative to the proposed even
tensor which obviously is not related to the second order derivatives.
Nonetheless, one may ask if the proposed techniques to determine the orientation, the
phase and the apex angle of i1D and superposed i1D structures stay valid in conjunction
with the new tensor pair. This is indeed the case. Using the Radon transform of the
Laplace operator applied to f one obtains (see [10]):

R[∆f ](x) = |u|2∂
2R[f ](p, u)

∂p2
=
∂2R[f ](p, u)

∂p2
(4.165)

The Laplace operator acts as a second order partial derivative along each slice in the
Radon domain and only a�ects each single slice. Therefore all the proposed methods can
be applied according to the old tensor pair.
But even with the new proposed tensor pair the determinant of the even tensor di�ers
from the Gaussian curvature of a Monge patch by the area element 1/(1 + f2

x + f2
y )2.

Only in the case of the evaluation at a point with vanishing �rst order derivatives the
two terms would coincide. By consequently neglecting the area element factor containing
the �rst order derivatives the following situation is assumed:
From di�erential geometry it is known that an in�nitely small neighbourhood U of a
point p on a regular surface S may be parameterized as z = h(x1, x2) [13]. This is done
by choosing a coordinate system in R3 in such a way that the origin of the coordinate
system is the point p and the z-axis is directed along the positive normal of S at p. As
a consequence, the �rst order derivatives at the origin of the chosen coordinate system
vanish with h(0, 0) = hx1(0, 0) = hx2(0, 0) = 0. The Gaussian curvature in terms of the
new parametrization at the origin then reads

KU(p)(0, 0) = hx1x1(0, 0)hx2x2(0, 0)− h2
x1x2

(0, 0) (4.166)

which is identical quantity KT̂e
evaluated at the origin. Due to the abscence of the

�rst order derivatives, KT̂e
always assumes a local coordinate system chosen in the way
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described above. But if a new coordinate system is chosen, the parameterization of the
local Monge patch has to be adjusted. The same transformation operation that is applied
to retrieve the new coordinate system has to be applied to the point where the curvature
is supposed to be evaluated. This fact is not taken into consideration in the calculation
of KT̂e

.

As a result of this section one can summarize that the tensor pair T̂e, T̂o serves as the
correct alternative to the pair introduced by Di Zang in terms of representing second order
derivatives. But neither det(Te) nor det(T̂e) are able to represent the correct Gaussian
curvature of a Monge patch in Euclidean space due to the lack of the area element factor.
Nonetheless, the elliptic(i2D), hyperbolic(i2D), parabolic(i1D) and planar(i0D) surface
types are characterized by the sign of the Gaussian and mean curvature[13]. Since the
factor (1/(1+f2

x+f2
y )2) is always positive, it has no e�ect on the sign of the determinants

det(Te) and det(T̂e). Therefore it is possible to determine the shape type with new even
tensor det(T̂e). The question comes up if it might also be possible to determine the shape
type by the determinant of the old even tensor Te. This would be the case if

Rx1x1 [f ]Rx2x2 [f ]−Rx1x2 [f ]2 ◦ 0⇔ fx1x1fx2x2 − f2
xy ◦ 0 (4.167)

holds where ◦ ∈ {<,>,=}. To show that (4.167) the identity (4.160) is used again to
rewrite the above equation as:

Rx1x1 [f ]Rx2x2 [f ]−Rx1x2 [f ]2 ◦ 0⇔ Rx1x1 [∆f ]Rx2x2 [∆f ]−Rx1x2 [∆f ]2 ◦ 0. (4.168)

The two sides of the inequality di�er only by the usage of the Laplace operator. At
this point the interpretation of the Riesz transform in the Radon domain is considred in
conjunction with (4.165) to express the second order derivatives as:

fx1x1 = Rx1x1 [∆f ] = R−1[cos2(θ)
∂2

∂p2
R[f ]] (4.169)

fx1x2 = fx2x2 = Rx1x1 [∆f ] = R−1[cos(θ) sin(θ)
∂2

∂p2
R[f ]] (4.170)

fx2x2 = Rx1x1 [∆f ] = R−1[sin2(θ)
∂2

∂p2
R[f ]] (4.171)

Speaking in terms of the Radon transform the second order Riesz transforms and the
second order derivatives di�er by second order di�erentiation along the p-axis at each one-
dimensional slice in the Radon domain. Since the derivation is a linear approximation
inequality (4.167) indeed holds. It is therefore possible to determine the sign of the
Gaussian and mean curvatures with Te and T̂e.
Now that it is known that the determinants of Te and To provide no curvature information,
the amplitude of the monogenic curvature signal has to be reinterpreted, since it has been
used to detect certain i2D features in terms of curvature information.
Using the monogenic curvature signal
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4 The monogenic curvature tensor

fi2D = det(Te)e3 + det(To)e1
= (Rx1x1Rx2x2 −R2

x1x2
)e3

+ (Rx1x1x1Rx1x2x2 −Rx1x1x2Rx2x2x2 −R2
x1x1x2

+R2
x1x2x2

)e1
+ (Rx1x1x2Rx1x2x2 +Rx1x1x1Rx2x2x2 − 2Rx1x1x2Rx1x2x2)e2
= Ae3 +Be1 + Ce2

its amplitude reads:

|fi2D| =
√
A2 +B2 + C3. (4.172)

Using again the interpretation of the Riesz transform in the Radon domain for a i1D
signal it is possible to show that the indices in a product of Riesz transforms may be
exchanged arbitrarily. The following holds:

Rx1x1 [fi1D]Rx2x2 [fi1D] = R−1[cos2(θMain)R[fi1D]] R−1[sin2(θMain)R[fi1D]]

= cos2(θMain)R−1[R[fi1D]] sin2(θMain)R−1[R[fi1D]]

= cos2(θMain)s(θMain) sin2(θMain)s(θMain)
= cos(θMain) sin(θMain) s(θMain) cos(θMain) sin(θMain) s(θMain)
= Rx1x2 [fi1D]Rx1x2 [fi1D]

It follows that the determinant of the even tensor is 0 for i1D signals. The same holds for
the determinant of the odd tensor which can be seen by applying the above rule to (4.38).
As soon as there is more than one non-constant slice function in the Radon domain the
above does not hold. The energy will be non-zero. It can be concluded that the energy
measures the amount of non-constant slice functions in the Radon domain and therefore
the intrinsic dimensionality.
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5 The conformal monogenic signal

In the previous sections the Riesz transform and its interpretation via the Radon trans-
form in R2 has been used to analyze i1D and i2D signals. The interpretation in the Radon
domain played an important role to determine features such as orientation, phase, and
the apex angle of two superposed i1D signals with same but arbitrary phase. Nonethe-
less it was limited in the sense of analyzing plane waves and their superpositions. In this
chapter the conformal monogenic signal introduced in [30] is discussed. It provides an
extension of the concepts from the last chapters in R2 to R3 by inverse stereographically
projecting the signal on the unit sphere and applying the Riesz transform in R3. It is
shown that this concept contains the monogenic signal as a subset and further extends
it by the possibility to analyze circles and therefore the isophote curvature of signals.
Furthermore, it is shown that for certain signal models the concept is equivalent to the
generalized Hilbert transform on the unit sphere in R4.
The basis for the analysis of signals f : R2 → R is the inverse stereographic projection
to the sphere SR with center (0, 0, 1

2) and radius 1
2 (see [18]):

De�nition 5.0.1 (Stereographic projection on S2
R). The stereographic projection S−1 :

R2 → SR and its inverse mapping S : SR → R2 are de�ned as:

S : (x, y, z) 7→ (
x

1− z ,
y

1− z ) (5.1)

and

S−1 : (x, y) 7→ (
x

1 + x2 + y2
,

y

1 + x2 + y2
,

x2 + y2

1 + x2 + y2
) (5.2)

The whole plane R2 is mapped conformally to the sphere. S−1 shares some important
properties which are of special interest throughout the whole chapter:

• angles are preserved

• circles in the plane are mapped to circles on the sphere

• straight lines in the plane are mapped to circles passing through the northpole

• straight lines through the origin in the plane are mapped to great circles passing
through the northpole

With the inverse stereographic projection the signal f is embedded into R3 as fS(x) with

fS(x) =
{
f(S(x)), x ∈ SR
0, else

(5.3)
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5 The conformal monogenic signal

taking only values on the sphere. This embedding allows the application of the Riesz
transform in three dimensions to the mapped signal fS . According to (2.28) the Riesz
transforms in R3 read

Rj [f ](x) =
1
A4
P.V.

∫
R3

xi − yi
|x− y|n+1

f(y)dy =
1
A4

(
xj
|x|4 ∗ f)(x) (5.4)

To continue the concept from the last chapters in order to interpret the Riesz transform in
an imaginative and descriptive way, its relation to the Radon transform is used. Therefore
the Radon transform in R3 has to be investigated in �rst. It has already been mentioned
that the Radon transform integrates over all hyperplanes in the target space. In the case
of R2 the hyperplanes were described by straight lines. In R3 hyperplanes are described
by planes in R3. Compared to straight lines in R2, which are described by one orientation
angle of its normal θ and the distance from the origin, planes in R3 have an additional
angle describing their orientation. The plane equation for a plane P in R3 in Hessian
normal form reads

< n, p >= −d (5.5)

where n = (cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ))T is the unit normal of the plane, p is an
arbitrary point on P and d is its distance from the origin. Equation (3.25) describes the
link between the Riesz and the Radon transform for an arbitrary dimension n. In the
case of n = 3 this relationship takes the following form:

Theorem 5.0.2 (Relation between the Riesz and the Radon transform in R3).

fR(x) = (Rx1 [f ](x), Rx2 [f ](x), Rx3 [f ](x))T (5.6)

= R−1[uH[R[f ](u, t)]t=<x,u>](x) (5.7)

= −1
2

∆
∫
|u|=1

uH[R[f ](u, t)]t=<x,u>du (5.8)

where x ∈ R3, u ∈ S2 with u = (cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ))T .

Proof. Let F (su) = F [f ](x) denote the three-dimensional Fourier transform of f and
FR(su) = F [fR](x) the three-dimensional Fourier transform of fR with s ∈ R and u =
(cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ))T . Consider the inverse three-dimensional Fourier
transform:

fR(x) = F−1[FR](su)

=

∞∫
0

s2ds

∫
|u|=1

F (qu)eis(<x,u>)du
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Since we know that the Radon transform is symmetric with respect to the t axis and
F [R[f ](u, t)] = F , we can replace the integral over q from 0 to ∞ with one-half of the
integral from −∞ to ∞. Rearranging the integrands results in:

fR(x) =
1
2

∫
|u|=1

du

 ∞∫
−∞

s2FR(su)eis(<x,u>)

 ds
=

1
2

∫
|u|=1

F−1

[
su

|su|s
2F (su)eis(<x,u>)

]
du

=
1
2

∫
|u|=1

F−1
[
u sgn(u)s2F (su)eis(<x,u>)

]
du

=
1
2

∫
|u|=1

uF−1
[
sgn(u)s2F (su)eis(<x,u>)

]
du

=
1
2

∫
|u|=1

uH
[
F−1

[
s2F (su)eis(<x,u>)

]]
du

= −1
2

∫
|u|=1

uH
[
∂2

∂t2
R[f ](u, t)

]
t=<x,u>

du

= −1
2

∆
∫
|u|=1

uH [R[f ](u, t)]t=<x,u> du

Using the inverse Radon transform formula

f(x) = −1
2

∆
∫
|u|=1

R[f ](u,< x, u >)du (5.9)

which may be found in [10] it follows that

− 1
2

∆
∫
|u|=1

uH [R[f ](u, t)]t=<x,u> du (5.10)

= R−1[uH[R[f ](u, t)]t=<x,u>](x) (5.11)

=

 R−1[cos(θ) sin(ϕ)H[R[f ]]t=<x,u>](x)
R−1[sin(θ) sin(ϕ)H[R[f ]]t=<x,u>](x)
R−1[cos(ϕ)H[R[f ]]t=<x,u>](x)

 (5.12)

= (Rx1 [f ](x), Rx2 [f ](x), Rx3 [f ](x))T . (5.13)
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5 The conformal monogenic signal

Figure 5.1: Left: i1D signal. Right: Its projection to the sphere SR

According to the two dimensional case, the Riesz transform performs a one-dimensional
Hilbert transform in the Radon domain along each orientation described by the two angles
θ and ϕ. Since the Radon space has also increased in its dimension, the orientation is
described by two orientation angles instead of one in the two dimensional case. The
additional angle is the key feature of the conformal monogenic signal. Together with the
inverse stereographic projection to the sphere it provides the information to determine
the isophote curvature of signals. In the following certain signal models will be studied
in terms of the conformal monogenic signal to show that it is able to determine all the
properties the monogenic signal does and in addition the isophote curvature a given
signal.

5.1 Analysis of i1D signals

The analysis of signals with the conformal monogenic signal is governed by the geometric
entities the investigated signal models represent after their projection to the sphere SR.
Instrinsically one dimensional signals have been de�ned as signals which are constant
along an orientation angle θMain. Hence they can be considered as a set of straight lines
with constant function values along these lines with orientation θMain. As the underlying
geometric model the single straight line passing through the origin (0, 0) with orientation
angle θMain is chosen. Let L be the straight line described by the set of points p

L = {p :< n, p >= 0} (5.14)

where n = (cos(θMain), sin(θMain))T is the normal of the line with angle θMain. Pro-
jecting this line to the sphere SR as S−1(L) results in a great circle passing through the
north- and the southpole, with azimuthal angle θMain [26] (see Figure 5.2).
It is known from geometry that a circle on a sphere in R3 can be described by the
intersection of a plane and the sphere (see e.g. [26]). This relationship establishes the
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5.2 Analysis of superposed i1D signals

link to the Radon transform in R3 since planes in R3 are the entities the Radon transform
integrates over. Let PL be the plane with

S−1(L) = PL ∩ SR. (5.15)

The plane can be written in Hessian normal form as:

PL = {p :< n, p >= 0}. (5.16)

Since the plane describes a great circle passing through the north- and the southpole the
zenithal angle ϕ of the normal n is equal to π

4 resulting in the explicit form:

PL =

p : <

 cos(θ) sin(ϕ)
sin(θ) sin(ϕ)

cos(ϕ)

 , p >= 0

 (5.17)

=

p : <

 cos(θMain)
sin(θMain)

0

 , p >= 0

 . (5.18)

The signal model can be described by the intersection of one single plane in R3 with the
sphere SR. Hence the Radon transform of the projected signal has, according the two
dimensional case, only one single non-constant slice function at

(θ, ϕ, d)T = (θMain,
π

4
, 0)T (5.19)

in the three dimensional Radon space. The situation is the three dimensional analogue
of the already introduced interpretation of the two dimensional Riesz transform in the
Radon domain for i1D signals. Since the Riesz transform in R3 can be represented in
terms of the Radon transform and its inverse (see (5.6)), the sine and cosine terms can
be moved out of inverse Radon transform integral due to the existence of just one single
non-constant slice at (θMain,

π
4 , 0)T . The angle θMain is then obtained as

θMain =
Rx2 [fS ](0, 0, 0)
Rx1 [fS ](0, 0, 0)

. (5.20)

just as it was the case in R2.

5.2 Analysis of superposed i1D signals

The concept can be extended to two superposed i1D signals fi12D = fi1D1 + fi1D2 with
orientations θ1, θ2, main orientation θMain, and apex angle α. The underlying geometric
entities are two straight lines L1, L2 with the above orientations passing through the
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5 The conformal monogenic signal

L

PL

θMain

S(L) = C

Figure 5.2: Geometric model of a line L projected to SR resulting in the circle C

PL1

PL2

L1

L2

θ1

θ2

α

θMain

S(L2) = C2S(L1) = C1

Figure 5.3: Geometric model of two lines L1, L2 projected to SR resulting in the circles
C1, C2
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5.2 Analysis of superposed i1D signals

origin (0, 0) in R2. Projecting them to SR as S−1(L1) and S−1(L2) results in two great
circles passing through the north- and the southpole with azimuthal angles θ1, θ2, zenithal
angle π

4 , and apex angle α (see Figure 5.3). Characterizing the circles as intersections of
planes with SR leads to the two planes PL1 and PL2 with

PL1 =

p : <

 cos(θ1)
sin(θ1)

0

 , p >= 0

 . (5.21)

and

PL2 =

p : <

 cos(θ2)
sin(θ2)

0

 , p >= 0

 . (5.22)

Considering the Radon transform, integrating over all planes in R3 applied to the target
function, which has only non-zero function values along the two circles, results in two

non-constant slice functions in the Radon domain. Using the Riesz transform in R3 and
its interpretation in terms of the Radon transform and its inverse one obtains:

Rx1 = cos(θ1)R−1[H[R[fS ]]](0, 0, 0) + cos(θ2)R−1[H[R[fS ]]](0, 0, 0) (5.23)

Rx2 = sin(θ1)R−1[H[R[fS ]]](0, 0, 0) + sin(θ2)R−1[H[R[fS ]]](0, 0, 0) (5.24)

which allows the calculation of θMain and α according to (3.44) and (3.3.3).

α = |θ1 − θ2|

α = |θ1 − θ2|

Figure 5.4: Left: Superposition of two i1D signals. Right: Superposition of of two i1D
signals and its projection to the sphere SR
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5 The conformal monogenic signal

5.3 Analysis of circular signals

In addition to the already studied signal types the conformal monogenic signal is able
to analyze circular signals whose underlying signal model is a circle passing through the
origin. It is possible to exactly calculate the radius of such a circle. Let C be a circle
through the origin (0, 0) in R2 with center m = (mx1 ,mx2) and radius r described by
the set

C = {p : p = (r cos(θ) +mx1 , r sin(θ) +mx2)T ,
√
m2
x1

+m2
x2

= r} (5.25)

The orientation of the circle is then given by mx1√
m2
x1

+m2
x2mx2√

m2
x1

+m2
x2

 =
(

cos(θMain)
sin(θMain)

)
(5.26)

and the signal model in R2 is de�ned as

f(x) =
{
c, x ∈ C
0, else

(5.27)

The inverse stereographic projection S−1(C) maps C to the circle CS on SR with center
mS and radius rS which passes through the southpole (see 5.3). Accordingly, the inverse
stereographic projection of the signal f is denoted by fS with

fS(x) =
{
c, x ∈ S−1(C)
0, else

(5.28)

CS can be described by the intersection of a plane PC and SR. In contrast to the planes
that represented the projections of i1D signals, the plane PC describing the circle of
the projected circular signal has a zenithal angle ϕ di�erent from π

4 . Its zenithal angle
depends on the radius of the projected circle. If the radius r of the circle increases, ϕ
increases according to the relation

tan(ϕ) = 2r (5.29)

which is illustrated in Figure 5.3 for di�erent radii. PC can be written in Hessian normal
form as

PC =

p : <

 cos(θMain) sin(ϕ)
sin(θMain) sin(ϕ)

cos(ϕ)

 , p >= −d
 . (5.30)
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5.3 Analysis of circular signals

ϕ

C

ϕ

C

ϕ

C

ϕ

C

Figure 5.5: Circles with increasing radii sterographically projected to SR. The angle ϕ
of the plane intersecting SR which describes the projected circle is obtained
as ϕ = arctan(2r

1 ), hence r = tan(ϕ)
2 .
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5 The conformal monogenic signal

Figure 5.6: Left: Circular signal Right: Its projection to the sphere SR

The Radon transform results again in one single non-constant slice function located at
(θ, ϕ, d)T . It is characterized by the angles of its normal vector above and the distance
d from the origin. Hence the Riesz transform written in terms of the Radon transform
allows again to move the sine and cosine terms out of the invers eRadon transform integral
resulting in the three components:

Rx1 = cos(θMain) sin(ϕ)R−1[H[R[fS ]]](0, 0, 0) (5.31)

Rx2 = sin(θMain) sin(ϕ)R−1[H[R[fS ]]](0, 0, 0) (5.32)

Rx3 = cos(ϕ)R−1[H[R[fS ]]](0, 0, 0) (5.33)

Using the Riesz transform components it is possible to determine several properties of
the circular signal which are discussed in the following.

Theorem 5.3.1. The orientation θMain of C is obtained by

θMain =
Rx2 [fS ](0, 0, 0)
Rx1 [fS ](0, 0, 0)

. (5.34)

In addition to the main orientation it is possible to obtain the radius of the circle C from
the Riesz transform components as:

Theorem 5.3.2.

r =
1
2

tan(ϕ) =
1
2

tan

(√
Rx1 [fS ](0, 0, 0)2 +Rx2 [fS ](0, 0, 0)2

Rx3 [fS ](0, 0, 0)

)
. (5.35)

The same theorem can be formulated working in the Poisson scale space where it stays
valid and is independent from the interpretation in the Radon domain. The vectors
in R3 will be denoted by x and the Poisson transformed vectors in R4 are denoted by
x = (x0, x) where x0 is the new coordinate in R4. Furthermore one should recall that
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5.3 Analysis of circular signals

the conjugate Poisson kernel obtained by the Poisson transform of the Riesz kernels in
Rn+1

+ reads

Q(x) :=
n∑
i=1

eiQx0,i(x) (5.36)

=
n∑
i=1

ei(Px0,i(x) ∗Ri(x)) (5.37)

with the Riesz Kernels

rj(x) =
xj
|x|n+1

, j = 1, 2, 3. (5.38)

With these preliminaries the following theorem is stated:

Theorem 5.3.3. The radius r of C is obtained by:

r =
1
2

tan

(√
(Qx0,1(x) ∗ fS(x))(0)2 + (Qx0,2(x) ∗ fS(x))(0)2

(Qx0,3(x) ∗ fS(x))(0)

)
. (5.39)

Proof. Consider the convolution

(Q(x) ∗ fS(x))(x0, 0, 0, 0) =
∫

R3
+

Q(x− 0)fS(x)dx

=
∫

R3
+

Q(x)fS(x)dx (5.40)

=
∫

R3
+

(
x

|x|4 ∗ Px0(x))fS(x)dx. (5.41)

Since the values of fS(x) are only non-zero for x ∈ CS the integration can be restricted
to the integration over the volume of the ball B(mS , rS).

∫
R3

+

Q(x)fS(x)dx =
∫

B(mS ,rS)

Q(x)fS(x)dx. (5.42)

Let S(m, r) be the sphere whose intersection with S(mS , rS) results in CS . Then CS is
a circle on the surface of S(mS , rS) and S(m, r). The integration over the volumes of
B(m, r) and B(mS , rS) will be the same:
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5 The conformal monogenic signal

∫
B(mS ,rS)

Q(x)fS(x)dx =
∫

B(m,r)

Q(x)fS(x)dx. (5.43)

According to well known results from harmonic analysis (see e.g. [2]), the convolution of
a function in Rn with the Poisson kernel Px0 in upper the half space Rn+1

+ results in a
harmonic function in Rn+1

+ . Therefore Q(x) = ( x
|x|4 ∗ P(x)) is harmonic in R3+1

+ . Using

the mean value theorem for harmonic functions it follows that

∫
B(m,r)

Q(x)dx = k Q(m) (5.44)

with

Qx0,1 =
cos(θMain) sin(ϕ)
|m+ x0e0|4 ,Qx0,2 =

sin(θMain) sin(ϕ)
|m+ x0e0|4 ,Qx0,3 =

cos(ϕ)
|m+ x0e0|4 . (5.45)

Since fS(x) is constant for x ∈ CS per de�nition, one obtains:

∫
B(m,r)

Q(x)fS(x)dx = c

∫
B(m,r)

Q(x)dx (5.46)

= c k Q(m). (5.47)

With Eq. (5.39) it is now possible to determine sin(ϕ)
cos(ϕ) . Figure (5.7) illustrates that this

is exactly 2r
2rS

. Since rS = 1
2 , it follows that

1
2

sin(ϕ)
cos(ϕ) = r.

The above method provides the possibility of determining the radius of a circle passing
through the origin. It is known from di�erential geometry that the curvature of a plane
curve γ(t) at some point x is determined by the radius of the osculating circle touching
the curve at x (see Figure 5.8). Therefore given a plane curve γ(t) and applying the
above method for an in�nitely small neighbourhood at some point x will result in the
radius of the osculating circle at that point. Being able to determine the curvature of
a plane curve turns out to be extremely useful in the �eld of image processing, since
it allows the analysis of the curvature for so called isophotes. Isophotes in images are
de�ned as curves consisting of a a set of points with the same height which is in the
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5.3 Analysis of circular signals

ϕ

C

sin(ϕ)
cos(ϕ) = tan(ϕ) = 2r

d = 2r

n

Figure 5.7: Relation between the angle ϕ describing the zenithal orientation of plane
intersecting SR resulting in the projected circle S−1(S) and the radius of the
original circle C in R2

γ(t)

C

r κ = 1
r

x2

x1

x

Figure 5.8: Osculating circle with radius r of the curve γ(t) at the point x. The curvature
of γ(t) at x is equal to 1

r
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5 The conformal monogenic signal

Figure 5.9: Three 11x11 convolution kernels used to obtain the Riesz transforms along
the x1, x2 and x3 directions.

language of image processing the same pixel value. The classical method to calculate the
isophote curvature for a signal f : R2 → R is given in terms of �rst and second order
derivatives as (see for example [28]):

κ =
2fx1fx2fx1x2 − f2

x1
fx2x2 − fx2fx1x1

(f2
x1

+ f2
x2

)(3/2)
(5.48)

which is sensitive to noise and illumination changes due to the nature of the �rst and
second order derivatives. Although most of these drawbacks arising from the derivatives
can be overcome working in the Gaussian scale space and using Gaussian derivatives (see
e.g. [28]), the conformal monogenic signal provides an innovative way to calculate the
isophote curvature without using derivatives at all. Furthermore, the calculation is as
e�cient as the Gaussian derivative analogue. It is implemented as a two dimensional
convolution in the spatial domain. Although the operation carried out is a Riesz trans-
form in R3, the manifold which is the target of the integration is the sphere SR which
is a two dimensional manifold. Hence one can discretize the plane R2, inverse stereo-
graphically project the discretized points to SR, and convolute the two dimensional �lter
masks with the input signal. Since the Riesz transform is applied in the x1, x2 and x3

directions three convolutions with the appropriate �lter masks have to be calculated (see
�gure 5.3). These operations have the same complexity as the convolutions with the
three Gaussian derivative �lter masks.

5.4 Phase analysis

The conformal monogenic signal is supposed to extend the monogenic signal and provide
additional information such as the radius of a circular signal which can be used to obtain
the isophote curvature of signals. But in order to serve as an extension it has to be able
to determine the same features as the monogenic signal does. So far only orientation
and curvature information has been covered by the conformal monogenic signal. The
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5.4 Phase analysis

Figure 5.10: Left: Original input signals. Right: Curvature output of the conformal
monogenic signal with convolution mask size 5x5 pixels and scale space
parameters �ne= 1.3, coarse= 1.5.
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phase analysis and calculation has not been covered up to this section since there exists
a link between the radius of a circular signal and therefore the isophote curvature and
the phase of an i1D signal.

i1D Signals

The monogenic signal is able to determine the phase of i1D signals. The phase of an
i1D signal represents the phase of the one dimensional function obtained by restricting
the signal to a one-dimensional slice perpendicular to its orientation and calculating the
argument of its Hilbert transform pair. Furthermore, the phase of a i1D function can
be described as the translation ϕ ∈ [0, 2π] of a cosine function obtained by the one-
dimensional restriction perpendicular to its orientation. Figure 5.11 shows an i1D signal
with di�erent phases. The phase equals the distance of the cosine peak which can be
modeled as the distance of the straight line L with orientation θ from the origin. In
order to establish the link between the phase of an i1D signal and the radius of a circular
signal passing through the origin, the inversion at the unit circle S1 is used to map circles
through the origin into straight lines not passing through the origin and vice versa. The
inversion of a point x = (x1, x2)T = r(cos(θ), sin(θ))T ∈ R2 at the unit circle in R2 is
given by

I(x) =
x

|x|2 =
(cos(θ), sin(θ))T

r
. (5.49)

A straight line L with distance p from the origin is mapped to a circle C passing through
the origin with radius r = 1

2p . Since the conformal monogenic signal is able to determine
the radius r of a circle passing through the origin, it follows that the phase is obtained
as p = 1

2r (see Figure 5.11). Hence, in the case of i1D signals the conformal monogenic
signal additionally encodes the phase information in the curvature.

3D plane waves

In addition to the phase of i1D signals in R2 the conformal monogenic signal is able to
analyze the phase of plane waves in R3 restricted to SR:

fp(x) = Re[A ei(k<x,u>+φ)] (5.50)

= A cos(k < x, u > +φ) (5.51)

= A cos(cos(k(θ) sin(ϕ) + sin(θ) sin(ϕ) + cos(ϕ)) + φ) (5.52)

where A, k ∈ R, k > 0 and x ∈ SR, u ∈ S2.

According to the the two dimensional case, it is achieved by a one dimensional Hilbert
transform along the one-dimensional non constant slice function in the Radon domain:
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L
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d

L

d

a

a = p(cos(θ), sin(θ))T

b = d(cos(θ), sin(θ))T

d = 1
p = 2r

S1

L = C

a

b

a = p(cos(θ), sin(θ))T

b = d(cos(θ), sin(θ))T

d = 1
p = 2rL

S1

C

a

b

a = p(cos(θ), sin(θ))T

b = d(cos(θ), sin(θ))T

d = 1
p = 2rL

S1

C

Figure 5.11: Upper row: i1D signal with increasing phase. Lower row: Relation between
the distance of the straight line described by the peak of the i1D signal and
the radius of its inversion at the unit circle.

Theorem 5.4.1. Phase of three dimensional plane waves

φ = arg(fS(0, 0, 0)) = arg(Re[A ei(k<(0,0,0)T ,u>+φ)] (5.53)

= arctan

(√
Rx1 [fS ](0, 0, 0)2 +Rx2 [fS ](0, 0, 0)2 +Rx3 [fS ](0, 0, 0)2

fS(0, 0, 0)

)
(5.54)

= arctan
(R−1[H[R[fS ]]](0, 0, 0)

fS(0, 0, 0)

)
(5.55)

In contrast to two-dimensional plane waves, the orientation of the three dimensional
analogue is determined by an additional orientation angle ϕ. Its phase is, as it is also the
case for the phase of two dimensional plane waves, invariant against rotations in R3 and
therefore all rotations of SR. Hence di�erent rotated version of the same plane wave may
have the same phase. Since the signals of intereset are two-dimensional signals projected
to SR, it is of interest which functions in R2 correspond to these rotated versions. These
di�erent rotated versions correspond to various structures in R2 if they are back-projected
to R3 with the inverse stereographic projection . The azimuthal rotation angle θ controls
the rotation in the x1, x2 plane of the backprojected signal in R2 whereas the angle ϕ
controls the structure of the backprojection as it can bee seen in �gure 5.13. Hence the
two angles θ, ϕ completely characterize the image structure, that is being analyzed in
terms of the phase. Consequently, the conformal monogenic signal extends the phase
determination from straight lines to all structures of the kind
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x1

x2

x3

t

ϕ
θ

Figure 5.12: Left: Real part of a three dimensional plane wave restricted to SR with
orientation (θ, φ) = (3.5, 0.8). Right: Cut through the three-dimensional
Radon space to obtain a view of the transformed plane wave.

cos
(
k

(
x1u1

1 + x2
1 + x2

2

+
x2u2

1 + x2
1 + x2

2

+
(x2

1 + x2
2)u3

1 + x2
1 + x2

2

)
+ φ

)
(5.56)

= cos
(
k

(
x1 cos(θ) sin(ϕ)

1 + x2
1 + x2

2

+
x2 sin(θ) sin(ϕ)

1 + x2
1 + x2

2

+
(x2

1 + x2
2) cos(ϕ)

1 + x2
1 + x2

2

)
+ φ

)
(5.57)

where u = (u1, u2, u3) is the orientation vector of the plane wave in R3.

5.5 The Hilbert transform on Sn

The Riesz transform has been introduced as the generalized Hilbert transform for the
upper half space G = Rn+1

+ with the boundary ∂G = Rn. The conformal monogenic
signal uses the Riesz transform for signals projected to the sphere SR. In this setting
the question arises if the generalized Hilbert transform (2.21) with ∂G = Sn leads to
equivalent results. The Hilbert transform on the unit sphere in the Cli�ord analysis
setting has for example been introduced in [12]. In this section, the Hilbert transforms
on S2 and S3 are investigated and the equivalence between them and the Riesz transforms
in R2 and R3 for certain signal models is shown.
Starting from the generalized Hilbert transform (2.21) with G = Bn and ∂G = Sn the
de�nition of the Hilbert transform on the unit sphere in Rn+1 is obtained.

De�nition 5.5.1. Hilbert transform on Sn
Let ω, ξ be points on Sn. The Hilbert transform on Sn reads:

Hf(ξ) =
2

An+1
P.V.

∫
Sn

ξ − ω
|ξ − ω|n+1

ωf(ω)dS(ω) (5.58)
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5.5 The Hilbert transform on Sn

Figure 5.13: Left: Real part of a plane wave in R3 restricted to SR with zenithal angles
ϕ = 0, ϕ = π

2 , ϕ = π
2 . Right: The corresponding stereographic projections

to R2.
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where An+1 is the surface area and dS is the surface element of Sn.

5.6 Application of the Hilbert transform on S2

It has already been shown that the orientation of i1D signals and the main orientation
of two superposed i1D signals with same but arbitrary phase can be obtained by the
monogenic signal and hence the conformal monogenic signal. The monogenic signal uses
the two dimensional Riesz transform in the plane R2 to determine these features. An
illustrative interpretation in the Radon domain has been given in previous section. In
the following, the same features are determined by the Hilbert transform on S2.

Let ξ, ω, ξ0 ∈ S2 with ξ0 = (0, 0,−1). To interpret the singular integral (5.58) in a
geometric way, the geometric product (ξ − ω)ω is rewritten as:

(ξ − ω)ω = −(ξ1 − ω1)ω1 − (ξ2 − ω2)ω2 − (ξ3 − ω3)ω3

+ (ξ1ω2 − ξ2ω1)e1e2
+ (ξ1ω3 − ξ3ω1)e1e3
+ (ξ2ω3 − ξ3ω2)e2e3

As the evaluation point ξ0 the south pole of S2 is used. Since the Hilbert transform on
the unit sphere S2 and not on SR the southpole is not the origin (0, 0, 0), as it was the
case in the conformal monogenic signal setting, but (0, 0,−1). Evaluating at that point,
the above expressions shorten to:

(ξ0 − ω)ω = ω2
1 + ω2

2 + ω2
3 + ω3 + ω1e1e3 + ω2e2e3 (5.59)

= 1 + ω3 + ω1e1e3 + ω2e2e3 (5.60)

In addition, the evaluation of |ξ − ω|3 at ξ0 results in:

|ξ0 − ω|3 =
(√

(−ω1)2 + (−ω2)2 + (−1− ω3)2
)3

(5.61)

=
(√

ω2
1 + ω2

2 + ω2
3 + 2ω3 + 1

)3

(5.62)

=
(√

2 + 2ω3

)3
(5.63)

With these results de�nition 5.58 evaluated at ξ0 reads:
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H[f ](ξ0) =
2
A3
P.V.

∫
S2

f(ω)√
2 + 2ω3dS(ω)

+
2
A3
P.V.

∫
S2

ω1√
2 + 2ω3 f(ω)dS(ω)e1e3

+
2
A3
P.V.

∫
S2

ω2√
2 + 2ω3 f(ω)dS(ω)e2e3

+
2
A3
P.V.

∫
S2

ω3√
2 + 2ω3 f(ω)dS(ω)

= H0[f ](ξ0) +H1[f ](ξ0)e1e3 +H2[f ](ξ0)e2e3 +H3[f ](ξ0)

where dS is the surface element of S2. Switching to spherical coordinates for ω

ω = ω1e1 + ω2e2 + ω3e3

= cos(θ) sin(ϕ)e1 + sin(θ) sin(ϕ)e2 + cos(ϕ)e3

where ϕ is the zenith and θ is the azimuth yields to:

H[f ](ξ0) =
2
A3
P.V.

∫
S2

f(ω)√
2 + 2ω3dS(ω)

+
2
A3
P.V.

∫
S2

cos(θ) sin(ϕ)√
2 + 2ω3 f(ω)dS(ω)e1e3

+
2
A3
P.V.

∫
S2

sin(θ) sin(ϕ)√
2 + 2ω3 f(ω)dS(ω)e2e3

+
2
A3
P.V.

∫
S2

cos(ϕ)√
2 + 2ω3 f(ω)dS(ω)

= H0[f ](ξ0) +H1[f ](ξ0)e1e3 +H2[f ](ξ0)e2e3 +H3[f ](ξ0) (5.64)

In order to apply the Hilbert transform on S2 to a signal, it is again projected with the
inverse stereographic projection. In contrast to the steregraphic projection used in the
previous section, the projection in this case maps to the unit sphere Sn instead of SR
which results in a slightly di�erent de�nition which may be found in [26]:

De�nition 5.6.1 (Stereographic projection on S2). The stereographic projection S−1 :
R2 → S2 and its inverse mapping S : S2 → R2 are de�ned as:

S : (x, y, z) 7→ (
x

1− z ,
y

1− z ) (5.65)
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and

S−1 : (x, y) 7→ (
2x

1 + x2 + y2
,

2y
1 + x2 + y2

,
−1 + x2 + y2

1 + x2 + y2
) (5.66)

Proceeding analogously to the previous section i1D signals are studied �rst. Let f be a
i1D signal and fS the inverse stereographic projection to S2. The underlying geometric
model is again a straight line with orientation θMain with an inverse stereographic pro-
jection resulting in a great circle CS on S2 passing through the north- and the southpole
at the azimuthal angle θMain (see Figure 5.14). The projected signal fS has constant
function values along CS and is zero for all other points. Hence the integration over the
sphere reduces to the integration over ϕ for θ = θMain which allows to move the expres-
sions depending on θ out of the integral. The evaluation of the integrals H1[fS ](ξ0) and
H2[fS ](ξ0) in (5.64) for fS at ξ0 simpli�es to:

H1[fS ](ξ0) =
2
A3
P.V.

∫
S2

cos(θ) sin(ϕ)c√
2 + 2ω3 dS(ω)e1e3

=
2
A3

cos(θMain)P.V.
∫
S2

sin(ϕ)c√
2 + 2ω3dS(ω)e1e3

= cos(θMain) k s(ξ0) (5.67)

H2[fS ](ξ0) =
2
A3
P.V.

∫
S2

sin(θ) sin(ϕ)c√
2 + 2ω3 dS(ω)e1e3

=
2
A3

sin(θMain)P.V.
∫
S2

sin(ϕ)c√
2 + 2ω3dS(ω)e1e3

= sin(θMain) k s(ξ0) (5.68)

From (5.67) and (5.68) it follows that θMain can be determined as:

θMain = arctan
(
H2[fS ](ξ0)
H1[fS ](ξ0)

)
(5.69)

The same idea is used to study superpositions of i1D signals with same but arbitrary
phase. Let f = fi1D1+fi1D2 be a superposition of two i1D signals with same but arbitrary
phase and let fS be its stereographic projection. The underlying geometric model are
two straight lines L1, L2 passing through the origin with angles θ1, θ2, main orientation
θMain, and apex angle α. Projecting L1 and L2 to S2 results in the two circles C1, C2

with the azimuthal angles θ1, θ2 on the sphere. Figure (5.15) illustrates the superposition
case. The projected function fS has constant function values for points on the circles
C1, C2 and is zero elsewhere. Hence the integration over the sphere is reduced to the
integration over ϕ for θ1 and θ2. The integrals H1[fS ](ξ0) and H2[fS ](ξ0) from (5.64)
simplify to:
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ϕ

L

S(L) = C

Figure 5.14: Geometric model of the straight line L projected to S2 resulting in the circle
C

H1[fS ](ξ0) =
2
A3
P.V.

∫
S2

cos(θ) sin(ϕ)c√
2 + 2ω3 dS(ω)e1e3

=
2
A3

cos(θ1)P.V.
∫
S2

sin(ϕ)c√
2 + 2ω3dS(ω)e1e3

+
2
A3

cos(θ2)P.V.
∫
S2

sin(ϕ)c√
2 + 2ω3dS(ω)e1e3

= cos(θMain1) c s(ξ0) + cos(θMain2) c s(ξ0) (5.70)

H2[fS ](ξ0) =
2
A3
P.V.

∫
S2

sin(θ) sin(ϕ)c√
2 + 2ω3 dS(ω)e1e3

=
2
A3

sin(θ1)P.V.
∫
S2

sin(ϕ)c√
2 + 2ω3dS(ω)e1e3

+
2
A3

sin(θ2)P.V.
∫
S2

sin(θϕ)c√
2 + 2ω3dS(ω)e1e3

= sin(θ1) c s(ξ0) + sin(θ2) c s(ξ0) (5.71)

It follows that θMain can be written as:
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α
L1

L2

S(L2) = C2

S(L1) = C1

θ2

θ1

Figure 5.15: Straight lines L1 L2 with orientation angles θ1, θ2 projected to the sphere
resulting two circles C1, C2 with azimuthal angles θ1, θ2

θMain =
θ1 + θ2

2
= arctan

(
H2[fS ](ξ0)
H1[fS ](ξ0)

)
(5.72)

According to theorem 3.3.3, the apex angle α can be determined with the now known
values for H1[fS ](ξ0), H2[fS ](ξ0) and θMain.

The conformal monogenic signal extended the monogenic signal and provided the possi-
bility to extract the isophote curvature from the given signal in addition to the classical
monogenic signal features. The curvature which corresponds to the radius of the under-
lying circular signal model has been determined by the additional angle characterized
by the normal of the plane intersecting the sphere which results in the projected circle.
Using the interpretation of the Riesz transform in terms of the Radon transform and its
inverse, the additional angle has been determined. In the case of the Hilbert transform
on Sn the relation to the Radon transform and therefore a suitable interpretation of the
Hilbert transform on Sn is lost. Nonetheless, theorem 5.3.3 has been formulated in terms
of the Poisson and conjugate Poisson transform without involving the Radon transform
at all. The Hilbert transform has been de�ned as the non-tangential boundary value
of the conjugate Poisson transform. In the case of the unit ball the Poisson integral
has been given in (2.18). Therefore by just switching the domain from the upper half
space R3+1 to the unit ball S2 the proof of 5.3.3 remains valid if the Riesz transforms are
replaced by the components of the Hilbert transform on the unit sphere.
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Figure 5.16: The three convolution kernels of the Riesz transforms in R3 inverse stereo-
graphically projected to the sphere.

5.7 The Hilbert transform on S3

The Hilbert transform on S2 is able to determine all the features that have also been
determined by the Riesz transform in R3. Although it is possible to extract the same
information from signals with the Hilbert transform on S2, it is not the same as the
Riesz transform in R3 applied to a inverse stereographically projected function restricted
to the unit sphere. A comparison of the components Rj of the Riesz transform with the
components Hj of the Hilbert transform on the sphere will show the di�erences.

Recalling from the previous sections, the components evaluated at ξ0 read:

Rj = P.V.
1

2π

∫
R3

xj
|x|4 fS(x)dx

Hj = P.V.
1

2π

∫
S2

ωj√
(2(1 + ω3))

3 fS(ω)dS(ω)

fS(x) has only non-zero function values values for x ∈ S2. Hence fS(x) can be restricted
to the set {x : 0 ≤ |x| ≤ 1} (see [3]) resulting in the Riesz transform components :

Rj [fS ](ξ0) = P.V.
1

2π

∫
0≤|x|≤1

xj
|x|4 fS(x)dx

= P.V.
1

2π

1∫
0

r2

∫
S2

ωj√
(2(1 + ω3))

4 fS(rω)dS(ω)

 dr

= P.V.
1

2π

∫
S2

ωj√
(2(1 + ω3))

4 fS(w)dS(ω) (5.73)
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The only di�erence between the two transforms for the circular signal model is the factor
1/
√

2(1 + ω3) under the integral sign. As a consequence a faster decay and rise of the
Rj kernels toward the southpole can be noticed (Figure 5.7). In order to obtain the
same results as the Riesz transform in R3 the Hilbert transform on S3 is considered.
Since S2 ⊂ S3, the embedding ω̃ = (ω, 0)T with ω ∈ S2 is used. The signal fS is then
embedded as

f̃S(ω′) =
{
fS(ω) if ω′ = (ω, 0), ω ∈ S2

0 else
(5.74)

Using de�nition (5.58) with n = 3 and the calculations from the previous section yields
to the Hilbert transform on S3 evaluated at ξ̃0 = (0, 0,−1, 0) as

H[f̃S ](ξ̃0) =
2
A3
P.V.

∫
S3

f̃(ω)
(
√

2 + 2ω3)4
dS(ω)

+
2
A3
P.V.

∫
S3

ω1

(
√

2 + 2ω3)4
f̃(ω)dS(ω)e1e4

+
2
A3
P.V.

∫
S3

ω2

(
√

2 + 2ω3)4
f̃(ω)dS(ω)e2e4

+
2
A3
P.V.

∫
S3

ω3

(
√

2 + 2ω3)4
f̃(ω)dS(ω)

+
2
A3
P.V.

∫
S3

ω4

(
√

2 + 2ω3)4
f̃(ω)dS(ω)e3e4

= H0[f̃S ](ξ̃0) +H1[f̃S ](ξ̃0)e1e4 +H2[f̃S ](ξ̃0)e2e4
+H3[f̃S ](ξ̃0) +H4[f̃S ](ξ̃0)e3e4 (5.75)

Since ω4 = 0 for all ω ∈ S3 with f̃(ω) 6= 0 due to the nature of the embedding, it follows
that H4[f̃S ](ξ̃0) = 0. Furthermore, considering spherical coordinates in S3

ω = ω1e1 + ω2e2 + ω3e3 + ω4e4

= sin(θ) cos(ϕ)e1 + sin(θ) sin(ϕ) cos(γ)e2
+ cos(θ)e3 + sin(θ) sin(ϕ) sin(γ)e4

and using ω4 = 0 where f̃S(ω) 6= 0 yields to γ = 0. But then the components Hj [f̃S ](ξ̃0)
are exactly the same components as the components Rj [fS ] in R3. As a conclusion it
has been shown that the Riesz transform in R3 restricted to the sphere and the Hilbert
transform on S3 are equivalent for the discussed signal models.
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Now why is the link between the generalized Hilbert transform on the unit sphere and
the conformal monogenic signal of importance? If it is as powerful as the conformal
monogenic signal, would it not be su�cient to deal with the conformal monogenic signal
if one is only interested in working with signals arising in R2? The answer would be yes.
But from a theoretical point of view, generalized Hilbert transforms arising in the context
of Cli�ord analysis open up the possibility to work with Hilbert transforms on arbitrary
closed surfaces in Rn. These include for example signals arising on the unit sphere
such as geophysical data captured on the earth or images captured with catadioptric
cameras. In these cases a projection on the sphere is not necessary since the signals
are already de�ned on this manifold in the higher dimensional space. Furthermore since
the Hilbert transform arises from Cauchy transform, a scale space concept for arbitrary
closed surfaces in Rn is already provided. Therefore the introduction of the usage and
equivalence between the generalized Hilbert transforms and the conformal monogenic
signal for certain signal types was only the �rst step in the application of generalized
Hilbert transforms in the �eld of image processing.

5.8 Application: Normal and Gaussian curvature

The conformal monogenic signal is able to extract the isophote curvature at a given
point of a signal without using derivatives. To establish an alternative to the monogenic
curvature tensor, the conformal monogenic signal will be used to calculate the normal
curvature and the Gaussian curvature at a point of a signal interpreted as a Monge
patch. Consider the Monge patch embedding S : (x, y)→ (x, y, f(x, y))T of a signal f in
Euclidean space and let kn denote the normal curvature at a point P = (x0, y0, f(x0, y0))T

along a direction n. Furthermore, let c be the contour curve that is obtained by the
orthogonal projection Λ of the patch to the plane with normal vector vector n (see Fig.
5.17). The curvature of the contour c at the orthogonal projection Λ(P ) is denoted by
kc. For this setting Koenderink formulated the following theorem in [24]:

Theorem 5.8.1 (Shape from contour). The Gaussian curvature at P is given by

K = knkc. (5.76)

Instead of determining the maximum and minimum normal curvatures at P to calculate
the Gaussian curvature, it is possible to use the normal curvature along any direction
and the contour curvature of the surface. This idea is now applied to a point P of the
Monge patch embedding and combined with the conformal monogenic signal which is
used to obtain the single curvatures kn and kc.

Foremost a normal curvature direction has to be chosen. Since theorem 5.8.1 holds for
any normal curvature direction, n is de�ned as n = (0, 1, 0)T . This decision will be
useful in the concrete implementation since the normal curvature along n will just be the
curvature of the curve described by the pixels along the y axis in a local neighbourhood.
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Λ(P )

P
n

S : (x, y)→ (x, y, cos(x) cos(y))

c

γ

Figure 5.17: The Gaussian curvature K at P is determined by the curvature kc of c at
Λ(P ) the curvature kn of γ at P
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The decision is justi�ed as follows: Let Π1 be the plane spanned by the normal vector
at P and the tangent vector v in the direction n. The normal curvature along n is then
described by the curvature of the curve obtained by the intersection of the S and Π1.
According to Meusnier's theorem [13] the normal curvatures along n at a point P of all
curves with tangent v at P are equal. Let Π2 be the plane spanned be (0, 0, 1)T and the
tangent at P along n. Then Π1 and Π2 contain the same tangent v at P along n and
therefore their intersection curves with S have the same curvature.

The projection plane characterized by the normal vector n = (0, 1, 0)T is a plane parallel
to the xz plane. The points of the patch along n describe the space curve γ in the yz plane
with curvature kn at P . It has been shown that the conformal monogenic signal is able to
determine the curvature of curves in a plane. Since γ is a curve residing in a plane, it can
be interpreted as a new input signal fγ . Projecting fγ to the sphere and convolving with
the 3-dimensional Riesz kernel results in the conformal monogenic signal representation
of fγ . The evaluation of (5.35) for the conformal monogenic signal representation of fγ
provides the curvature of γ at P which is denoted by kn. Additionally, the orthogonal
projection of the patch to the xz plane results in the contour c of the patch. In the same
manner as above kc is obtained by interpreting c as a new input signal fc and evaluating
(5.35) for the conformal monogenic signal representation fc.

The concept described can be transferred to the discrete case. For each pixel in the input
signal f a local neighbourhoodM of k× l pixels describes a surface in Monge patch form.
Without loss of generality n is again the direction (0, 1, 0)T pointing along the y-axis.
The pixels along the middle column of the neighbourhood described by the set

γ = {M(bk/2c, i)|i = 1 . . . l} (5.77)

with bxc := max{z ∈ Z|z <= x} constitute the curve γ. The orthogonal projection c to
the xz plane is determined by the set

c = {Li|Li = max
j

(M(i, j)), i = 1 . . . l} (5.78)

which are the pixels with the maximum height in each column (see Fig. 5.18). Both
curves γ and c are now interpreted as two new separate k × l pixels wide input signals
fγ and fc. They are projected to the sphere and convolved with the 3D Riesz kernel
according to the previous section in order to obtain the conformal monogenic signal
representation. Using Eq. (5.35) the curvatures kc and kn are obtained. The Gaussian
curvature then reads K = kckn.

In addition to the Gaussian curvature the normal curvature along an arbitrary direction
can be obtained by applying a subset of the steps above. n is then de�ned as the normal
curvature direction of interest. The pixels along this direction describe again a space
curve with curvature kn that can be determined by the conformal monogenic signal.

Figure 5.19 demonstrates the results of the proposed method in contrast to the standard
method based on �rst and second order derivatives. The images have been convolved
with a Poisson kernel and scaling parameter 2.0 before the two methods were applied. It
turns out that the new method is less noisy and more accurate along edges. At corners
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5 The conformal monogenic signal

Figure 5.18: Left: 7x7 neighbourhood M taken from the Lena test image Middle: γ ob-
tained by the pixels in the middle column {M(i, 4)|i = 1..7} Right: Contour
c of the projection described by the maximum pixel values of each column
{Li|Li = maxj(M(i, j))}

and junctions a higher curvature output is established which can be used for the detection
of these features. Nonetheless the new method is far more complex than the standard
one. For each pixel the maximum of the the columns in the neighbourhood M has to be
calculated for the contour c. Furthermore two Riesz transforms involved in the conformal
monogenic signal have to be calculated for γ and c in order to obtain the curvatures kn
and kc.
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5.8 Application: Normal and Gaussian curvature

Figure 5.19: Left: Original test images Middle: Gaussian curvature calculated with �nite
di�erences in Poisson scale space (s=2.0) Right: Gaussian curvature calcu-
lated with the conformal monogenic signal method and �lter mask size 15
pixel(s=2.0)
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5 The conformal monogenic signal
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6 Conclusion and outlook

This thesis introduced generalized Hilbert transforms known from Cli�ord analysis which
arise as boundary values of the Cauchy transform. They can be applied to arbitrary
closed surfaces with su�ciently smooth boundary in Rn. The Hilbert transforms on the
sets Rn with the boundaries Rn+1

+ have been identi�ed with the Riesz transforms where
the case n = 1 turned out the be the classical Hilbert transform on the real line. As a
consequence the generalized Hilbert transform turned out to be the next step following
the Riesz transform in the idea of further generalizing the classical Hilbert transform to
higher dimensions and manifolds di�erent from the upper half spaces.

Emphasis has been put on the link between the Riesz transform and the Radon transform
in order to interpret the Riesz transform in an innovative and descriptive way. This
strategy allowed the determination of signal features such as orientation, local phase and
the apex angle of i1D signals and their superposition with same but arbitrary phase and
amplitude.

Furthermore, higher order Riesz transforms in R2 have been studied in conjunction with
the monogenic curvature tensor to justify that the monogenic curvature tensor is in
general not able to extract di�erential geometric properties such as the Gaussian and the
mean curvature. It turned out that only for special signal models such as i1D signals
and the superposition of two i1D signals the entities of the monogenic curvature tensor,
which were supposed to represent the mean and Gaussian curvature, coincided with the
actual mean and Gaussian curvature due to vanishing �rst order derivatives at the origin.

To compute the second and third order Riesz transforms in R2, exact convolution kernels
have been determined for the spatial domain. They have been calculated in the Poisson
scale space. These kernels circumvent the calculation of the higher order Riesz transforms
in the Fourier domain.

Following the idea of lifting up a signal to a higher dimension, the conformal monogenic
signal has been introduced. By inverse stereographically projecting the signal to the
sphere SR the Riesz transform in R3 has been used to extend the monogenic signal. It is
able to obtain all the features the monogenic signal does plus an additional information.
A formal proof has been given that this additional information is equal to the isophote
curvature of a two-dimensional signal. Hence the conformal monogenic signal turned out
to calculate the isophote curvature in a completely new way using no derivatives at all.
As an application the ability to calculate the isophote curvature was used to obtain the
mean and Gaussian curvature.

To establish the link to the generalized Hilbert transforms on arbitrary closed surfaces
with su�ciently smooth boundary in R3 the Hilbert transform on the unit sphere has been
studied and compared with the conformal monogenic signal for i1D signals, superpositions
of two i1D signals and circular signals. For these signal types they turned out to be
equivalent.
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6 Conclusion and outlook

Future work might split into two directions. One possibility is the modi�cation of the con-
formal monogenic signal. Instead of projecting the two-dimensional signal to the sphere
other manifolds are possible which might reveal new kinds of features. Furthermore, the
conformal monogenic signal can be extended to R4 in order to analyze image sequences
or volumetric image data. Due to the increasing dimension the geometric entities turn
from circles to spheres.
Another possibility is the study of the generalized Hilbert transform on manifolds such
as the unit sphere. Yet there is no link to a Radon-like transform for generalized Hilbert
transforms di�erent from the Riesz transform in Rn. Nonetheless, in the case of the unit
sphere the recently introduced Radon transform on SO(3) which may be found in [19]
is of interest. The authors establish a Fourier slice theorem for the Radon transform
on SO(3) which might be useful in relating the Hilbert transform on S2 to the Radon
transform on SO(3). Motivations for a detailed study of the Hilbert transform on S2 are
given by signals naturally arising on S2 such as geophysical data captured around the
earth or catadioptric cameras.
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List of symbols

Cr(Rn,Rm) space continuous functions which are r−times di�erentiable
Lr(Rn,Rm) space continuous functions which are r−times integrable
Sn unit sphere in Rn

SR sphere with center (0, 0, 1
2) and radius 1

2 in R3

R0,n vector space Rn of signature (0, n)
R0,n Universal cli�ord algebra over the vector space n
F [f ] Fourier transform
R[f ] Radon transform
R[f ] Riesz transform
P[f ] Poisson transform
Q[f ] Conjugate Poisson transform
H[f ] generalized Hilbert transform in the Cli�ord analysis setting
H[f ] classical one-dimensional Hilbert transform
r Riesz transform convolution kernel
h One-dimensional Hilbert transform convolution kernel
Px0 Poisson kernel
Qx0 conjugate Poisson kernel
S−1 stereographic projection
fxi �rst order derivative along the xi direction
fxixj second order derivative along the xi and xj direction
θMain main orientation of a signal
An surface area of the unit sphere Sn

93



6 Conclusion and outlook

94



Bibliography

[1] L. Ahlfors. Complex Analysis. McGraw-Hill Science/Engineering/Math, 1979.

[2] S. Axler, P. Bourdon, and W. Ramey. Harmonic Function Theory (Graduate Texts

in Mathematics, Vol 137). Springer, 2002.

[3] J. A. Baker. Integration over spheres and the divergence theorem for balls. The

American Mathematical Monthly, 104(1):36�47, 1997.

[4] R. Banuelos and A. Lindeman. A martingale study of the Beurling-Ahlfors trans-
form. Journal of Functional Analysis, pages 224�265, 1997.

[5] F. Brackx, R. Delanghe, and F. C. Sommen. On conjugate harmonic functions in
Euclidean space. Mathematical Methods in the Applied Sciences, 25(16-18):1553�
1562, 2002.

[6] F. Brackx, B. De Knock, and H. De Schepper. Generalized multidimensional Hilbert
transforms in Cli�ord analysis. International Journal of Mathematics and Mathe-

matical Sciences, 2006, 2006.

[7] F. Brackx, B. De Knock, and H. De Schepper. On generalized Hilbert transforms
and their interaction with the Radon transform in Cli�ord analysis. Mathematical

Methods in the Applied Sciences, 30(9):1071�1092, 2007.

[8] F. Brackx, B. De Knock, H. De Schepper, and D. Eelbode. On the interplay between
the Hilbert transform and conjugate harmonic functions. Mathematical Methods in

the Applied Sciences, 29(12):1435�1450, 2006.

[9] A. P. Calderon and A. Zygmund. Singular integral operators and di�erential equa-
tions. American Journal of Mathematics, 79(4):901�921, 1957.

[10] L. Debnath and D. Bhatta. Integral Transforms and Their Applications, Second

Edition. Chapman & Hall/CRC, 2006.

[11] R. Delanghe. Cli�ord analysis: History and perspective. Computational Methods

and Function Theory, 1(1):107�153, 2001.

[12] R. Delanghe. On some properties of the Hilbert transform in Euclidean space. Bull.
Belg. Math. Soc. Simon Stevin, 11(2):163�180, 2004.

[13] M. P. do Carmo. Di�erential Geometry of Curves and Surfaces. Prentice-Hall,
Englewood Cli�s, NJ, 1976.

95



Bibliography

[14] M. Felsberg. Low-Level Image Processing with the Structure Multivector. PhD thesis,
Inst. f. Informatik u. Prakt. Math. der Christian-Albrechts-Universität zu Kiel, 2002.

[15] M. Felsberg and G. Sommer. The monogenic signal. Signal Processing, IEEE Trans-

actions on, 49(12):3136�3144, 2001.

[16] M. Felsberg and G. Sommer. The monogenic scale-space: A unifying approach to
phase-based image processing in scale-space, 2003.

[17] D. Gabor. Theory of communication. Journal of the IEE (London), 93:429�457,
1946.

[18] K. Gürlebeck, K. Habetha, and W. Sprössig. Funktionentheorie in der Ebene und

im Raum (Grundstudium Mathematik). Birkhäuser Basel, 2006.

[19] R. Hielscher, D. Potts, J. Prestin, H. Schaeben, and M. Schmalz. The Radon trans-
form on SO(3): A Fourier slice theorem and numerical inversion. Inverse Problems,
24(2):025011+, 2008.

[20] J. Horvath. Singular integral operators and spherical harmonics. Transactions of

the American Mathematical Society, 82(1):52�63, 1956.

[21] T. Iwaniec and G. Martin. Geometric Function Theory and Non-linear Analysis.
Oxford University Press, USA, 1st edition, 2002.

[22] B. Jähne. Digital Image Processing. Springer, 6th revised and extended ed. edition,
1997.

[23] A. Je�rey and D. Zwillinger. Table of Integrals, Series, and Products, Seventh Edi-

tion. Academic Press, 7 edition, 2007.

[24] J. J. Koenderink. What does the occluding contour tell us about solid shape?
Perception, 13(3):321�330, 1984.

[25] U. Köthe and M. Felsberg. Riesz-transforms versus derivatives: On the relationship
between the boundary tensor and the energy tensor. pages 179�191. 2005.

[26] T. Needham. Visual Complex Analysis. Oxford University Press, Oxford, 1997.

[27] M. Riesz. L'intégrale de Riemann-Liouville et le problème de Cauchy. Acta Mathe-

matica, 81(1):1�222, 1949.

[28] M. B. Romeny. Geometry-Driven Di�usion in Computer Vision. Kluwer Academic
Publishers, Norwell, MA, USA, 1994.

[29] E. M. Stein. Singular Integrals and Di�erentiability Properties of Functions. (PMS-

30). Princeton University Press, 1971.

[30] L. Wietzke, O. Fleischmann, and G. Sommer. 2d image analysis by generalized
hilbert transforms in conformal space. In ECCV, 2008.

96



Bibliography

[31] L. Wietzke, G. Sommer, C. Schmaltz, and J. Weickert. Di�erential geometry of
monogenic signal representations. In RobVis08, pages 454�465, 2008.

[32] D. Zang, L. Wietzke, C. Schmaltz, and G. Sommer. Dense optical �ow estimation
from the monogenic curvature tensor. In Fiorella Sgallari, Almerico Murli, and Nikos
Paragios, editors, Scale Space and Variational Methods in Computer Vision, volume
4485, pages 239�250. SSVM 2007, Springer-Verlag, 2007.

[33] D. Ziou and S. Tabbone. Edge detection techniques - an overview. Technical report,
International Journal of Pattern Recognition and Image Analysis, 1997.

97


	Introduction
	Clifford Analysis
	Monogenic functions
	Generalized Hilbert transforms
	Cauchy integral formula
	Riesz transforms
	Plemelj-Sokhotzki formula


	The Riesz transform in terms of the Radon transform
	Properties of the Radon transform
	Analysis of i1D signals
	Analysis of superposed i1D signals

	The monogenic curvature tensor
	Basic differential geometry
	Analysis of i1D signals
	Analysis of superposed i1D signals
	Second Order Riesz transform convolution kernels
	Third Order Riesz transform convolution kernels
	Discussion of the monogenic curvature tensor

	The conformal monogenic signal
	Analysis of i1D signals
	Analysis of superposed i1D signals
	Analysis of circular signals
	Phase analysis
	The Hilbert transform on Sn
	Application of the Hilbert transform on S2
	The Hilbert transform on S3
	Application: Normal and Gaussian curvature

	Conclusion and outlook

