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Abstract. This paper presents the fusion of monogenic signal process-
ing and differential geometry to enable monogenic analyzing of local
intrinsic 2D features of low level image data. New rotational invariant
features such like structure and geometry (angle of intersection) of two
superimposed intrinsic 1D signals will be extracted without the need of
any steerable filters. These features are important for all kinds of low
level image matching tasks in robot vision because they are invariant
against local and global illumination changes and result from one unique
framework within the monogenic scale-space.
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1 Introduction

Local image analysis is the first step and therefore very important for detecting
key points in robot vision. One aim is to decompose a given signal into as many
as possible features. In low level image analysis it is necessary not to loose any
information but to be invariant against certain features in which two similar key
points are allowed to differ, i.e. two crossing lines (see figure 1) can have different
main orientations in two images which have to be matched but they should
have the same structure (phase) and apex angle (angle of intersection) in both
images. The local phase ϕ(t) of an assumed signal model cos(ϕ(t)) and the apex
angle of two superimposed signals are rotational invariant features of images and
therefore very important for matching tasks in robot vision. Two superimposed
patterns are of big interest being analyzed because they are the most frequently
(after intrinsic 0D and 1D signals) appearing 2D structures in images. In this
paper we present how to decompose 2D image signals which consist locally of two
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intrinsical 1D signals. To extract the essential features like the main orientation,
the apex angle and the phase of those signals no heuristics will be applied in
this paper like in many other works [Stuke2004] but a fundamental access to the
local geometry of two superimposed 1D signals will be given. This paper will
be the first step and provides also the grasp to analyze an arbitrary number of
superimposed signals in future work. In the following 2D signals f ∈ L2(Ω, R)

1Minimum curvature κ

2Maximum curvature κ

Normal vector

Relation

Fig. 1. This figure illustrates the relation of signal processing and differential geometry
in R3. Images will be visualized in their Monge patch embedding with the normal vector
of the tangential plane being always at the point of origin (0, 0) ∈ R2. From left to
right: The image pattern in Monge patch embedding and its corresponding assumed
local curvature saddle point model. Note that the normal section in direction of the two
superimposed lines has zero curvature in the image pattern as well as in the curvature
model.

will be analyzed in the Monge patch embedding (see figure 1) If = {xe1 +ye2 +
f(x, y)e3|(x, y) ∈ Ω ⊂ R2} which is well known from differential geometry with
{1, e1, e2, e3, e12, e13, e23, e123} as the set of basis vectors of the Clifford algebra
R3 [Porteous1995]. A 2D signal f will be classified into local regions N ⊆ Ω of
different intrinsic dimension (also known as codimension):

f ∈

 i0DN , f(xi) = f(xj) ∀xi,xj ∈ N
i1DN , f(x, y) = g(x cos θ + y sin θ) ∀(x, y) ∈ N, g ∈ RR, f /∈ i0DN

i2DN , else
(1)



The set of signals being analyzed in this work can be written as the superposition
of two i1D signals such as two crossing lines or a checkerboard:

⋃
N⊆Ω

f ∈ L2(Ω, R)|f(x) =
∑

i∈{1,2}

fi(x) ∀x ∈ N, fi ∈ i1DN

 ⊂ i2D (2)

The set of i1D signals can be completely analyzed by the monogenic signal
[Felsberg2001] which splits the signal locally into phase, orientation and ampli-
tude information. Two superimposed i1D signals with arbitrary main orientation
and phase can be analyzed by the structure multivector [Felsberg2002] with the
significant restriction that the two signals must be orthogonal, i.e. their apex
angle must be fixed to 90◦. Recently the monogenic curvature tensor has been
introduced by [Zang2007] to decompose i2D signals into main orientation and
phase information. Proofs and an exact signal model have not been given. This
paper refers to [Felsberg2002,Felsberg2004,Zang2007] and fuses monogenic signal
processing with differential geometry to analyze two superimposed i1D signals.
The results of this work will be proofs concerning the monogenic curvature ten-
sor and in addition the exact derivation of the apex angle (angle of intersection
between two crossing lines) without the use of any heuristic. Future work will
contain analysis of an arbitrary number of superimposed i1D signals.

1.1 The 2D Radon Transform

In this paper the monogenic signal [Felsberg2001] and the monogenic curvature
tensor [Zang2007] will be interpreted in Radon space which gives beautiful access
to analyzing the concatenation of Riesz transforms of any order. Remember that
the Riesz transform of a 2D signal can be interpreted as the well known Hilbert
transform of 1D signals within the Radon space. Therefore all odd order Riesz
transforms (i.e. the concatenation of an odd number of Riesz transforms) apply
a one dimensional Hilbert transform to multidimensional signals in a certain
orientation which is determined by the Radon transform [Beyerer2002]. The
Radon transform is defined as:

r := r(t, θ) := R{f}(t, θ) :=
∫

(x,y)∈Ω

f(x, y)δ0(x cos θ + y sin θ − t)d(x, y) (3)

with θ ∈ [0..π) as the orientation, t ∈ R as the minimal distance of the line from
the origin and δ0 as the delta distribution (see figure 2). The inverse Radon
transform exists and is defined by:

R−1{r(t, θ)}(x, y) :=
1

2π2

∫ π

θ=0

∫
t∈R

1
x cos θ + y sin θ − t

∂

∂t
r(t, θ)dtdθ (4)

The point of interest where the phase and orientation information should be
obtained within the whole signal will always be translated to the origin (0, 0) for
each point (x, y) ∈ Ω so that the inverse Radon transform can be simplified to:

R−1{r}(0, 0) = − 1
2π2

∑
i∈I

∫
t∈R

1
t

∂

∂t
r(t, θi)dt (5)
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Fig. 2. All the values lying on the line defined by the distance t and the orientation θ
will be summed up to define the value r(t, θ) in the Radon space.

This simplification is an important new result because the integral of the θ
can be replaced by the finite sum of discrete angles θi to enable modeling the
superposition of an arbitrary number of i1D signals. The integral of θ vanishes
because of the fact that r(t1, θ) = r(t2, θ) ∀t1, t2 ∈ R ∀θ ∈ [0..π) −

⋃
i∈I{θi}

implies ∂
∂tr(t, θ) = 0 ∀t ∈ R ∀θ ∈ [0..π) −

⋃
i∈I{θi} for a finite number |I| ∈ N

of superimposed i1D signals which build the i2D signal f =
∑

i∈I fi where each
single i1D signal fi has its own orientation θi. Note that in this work we restrict
the set of signals to |I| = 2.

2 Interpretation of the Riesz Transform in Radon Space

The Riesz transform R{f} extends the function f to a monogenic (holomorphic)
function. The Riesz transform is a possible but not the only generalization of
the Hilbert transform to a multidimensional domain and reads:

R{f}(x, y) =
[

Rx{f}(x, y)
Ry{f}(x, y)

]
=

 x

2π(x2+y2)
3
2
∗ f(x, y)

y

2π(x2+y2)
3
2
∗ f(x, y)

 (6)

(with ∗ as the convolution operation). The Riesz transform can be also written
in terms of the Radon transform:

R{f}(x, y) = R−1{h1(t) ∗ r(t, θ)nθ}(x, y) (7)

with nθ = [cos θ, sin θ]T and h1 as the one dimensional Hilbert kernel in spatial
domain. Applying the Riesz transform to an i1D signal with orientation θm



results in: [
Rx{f}(0, 0)
Ry{f}(0, 0)

]
=

[
− 1

2π2

∫
t∈R

1
t
h1(t) ∗

∂

∂t
r(t, θm)dt

]
︸ ︷︷ ︸

=:s(θm)

nθm
(8)

Note that ∂
∂t (h1(t) ∗ r(t, θ)) = h1(t)∗ ∂

∂tr(t, θ). The orientation of the signal can
therefore be derived by:

arctan
Ry{f}(0, 0)
Rx{f}(0, 0)

= arctan
s(θm) sin θm

s(θm) cos θm
= θm (9)

(see also figure 3). The Hilbert transform of f and with it also the one dimen-
sional phase can be calculated by:√

[Rx{f}(0, 0)]2 + [Ry{f}(0, 0)]2 = (h1 ∗ fθm
)(0) (10)

with the partial Hilbert transform [Hahn1996] (h1∗fθ)(0) = − 1
π

∫
τ∈R

f(τ cos θ,τ sin θ)
τ dτ .

The first order Riesz transform of any i2D signal consisting of a number |I| of

x

y

mθ

θ

t

mθ

Fig. 3. From left to right: i1D signal in spatial domain with x- and y-axis and with main
orientation θm and in Radon space with θ- and t-axis. Even though in the right figure
some artifacts can be seen in the Radon space, those artifacts do not exist in case of an
infinite support of the image patterns and therefore the artifacts will be neglected in this
work: ∂

∂t
r(t, θ) = 0 ∀t ∀θ 6= θm and in the left figure r(t1, θ) = r(t2, θ) ∀t1, t2 ∀θ 6= θm

i1D signals therefore reads:[
Rx{f}(0, 0)
Ry{f}(0, 0)

]
=

∑
i∈I

[
− 1

2π2

∫
t∈R

1
t
h1(t) ∗

∂

∂t
r(t, θi)dt

]
︸ ︷︷ ︸

=:s(θi)

nθi
=

∑
i∈I

s(θi)nθi
(11)

With the assumption that e.g. two superimposed i1D signals have arbitrary but
same phase the main orientation θm of the resulting i2D signal can be calculated:

s := s(θ1) = s(θ2) ⇒
[

Rx{f}(0, 0)
Ry{f}(0, 0)

]
= s

[
cos θ1 + cos θ2

sin θ1 + sin θ2

]
(12)



⇒ arctan
Ry{f}(0, 0)
Rx{f}(0, 0)

=
θ1 + θ2

2
= θm (13)

The most important conclusion of this result is that the monogenic signal can be
used not only to interpret i1D signals but also to calculate the main orientation
of the superposition of two and more i1D signals which construct the complex
i2D signals.

3 Analyzing the Monogenic Curvature Tensor

Recently the monogenic curvature tensor has been introduced by [Zang2007] to
extend the monogenic signal to analyze also i2D signals. It has been shown that
the monogenic curvature tensor already contains the monogenic signal. Roughly
spoken the monogenic curvature tensor has been motivated by the concept of
the Hessian matrix of differential geometry and so far has only been known in
Fourier domain. This drawback makes interpretation hard when applying the
monogenic curvature tensor to a certain signal model with explicit features such
like orientation, apex angle and phase information. Instead, this problem can
be solved by the analysis of the spatial domain of the Riesz transform. Now
any i2D signal will be regarded as the superposition of a finite number of i1D
signals f =

∑
i∈I fi. With the properties R{R−1{r}} = r and R{

∑
i∈I fi} =∑

i∈I R{fi} [Toft1996] and because of h1 ∗ h1 ∗ f = −f the even part of the
monogenic curvature tensor Te can be also written in terms of the concatenation
of two Riesz transforms and therefore also in terms of the Radon transform and
its inverse [Stein1970]:

Te(f) := F−1

{
F{f}(α, ρ)

[
cos2 α − sinα cos αe12

sinα cos αe12 sin2 α

]}
= (14)

=
[

Rx{Rx{f}} −Rx{Ry{f}}e12

Rx{Ry{f}}e12 Ry{Ry{f}}

]
(15)

With F{f}(α, ρ) as the Fourier transform of the signal f in polar coordinates
with α as the angular component and ρ as the radial component and F−1 as
the inverse Fourier transform. To understand the motivation of the monogenic
curvature tensor please compare the even Tensor Te(f) with the well known
Hessian matrix:

MHesse(f) :=
[

fxx −fxye12

fxye12 fyy

]
(16)

where the partial derivative of the signal f simply have been replaced by the
corresponding Riesz transforms. Now as a new result of this work the even tensor
in Radon space reads:

Te(f) = −
[

R−1{cos2 θR{f}} −R−1{sin θ cos θR{f}}e12

R−1{sin θ cos θR{f}}e12 R−1{sin2 θR{f}}

]
(17)

The advantage of this form is that the signal features such like the orientation θ
is explicitly given. In the Fourier form the orientation is not given. So with the



previous results of the Radon interpretation of the Riesz transform the features
of the signal can be easily extracted. For the sake of completeness the odd tensor
is defined as the Riesz transform of the even tensor:

To(f) = Te(Rx{f}+ Ry{f}e12) (18)

So the monogenic curvature tensor can be written as T (f) = Te(f) + To(f).
Only the even part Te of the monogenic curvature tensor T will be used in the
following.

3.1 Interpretation of Two Superimposed i1D Signals

x

y

θ

t

1θ 2θ

Apex Angle

Fig. 4. From left to right: Two superimposed i1D signals with orientation θ1 and θ2

in spatial domain and in Radon space. Assuming that both signals have same phase ϕ
the signal information can be separated by the Riesz transform.

In the following two superimposed i1D signals with orientations θ1, θ2 and
arbitrary but same phase ϕ for both i1D signals will be analyzed in Radon space
(see figure 4). With the abbreviations: a := cos θ1, b := cos θ2, c := sin θ1, d :=
sin θ2 the even tensor for two superimposed i1D signals reads:

Te = f(0, 0)
[

a2 + b2 −(ca + db)e12

(ca + db)e12 c2 + d2

]
(19)

According to differential geometry the well known Gaussian curvature K :=
κ1κ2 and the main curvature H := 1

2 (κ1 + κ2) can be also defined for the
even tensor. Both features are rotational invariant. Motivated by differential
geometry it will be shown how to compute the apex angle as an important
rotational invariant feature of i2D signals by means of the Gaussian and the
main curvature of the even tensor.
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Fig. 5. Classification of local image models by Gaussian and mean curvatures.

3.2 The Apex Angle in Terms of Surface Theory in R3

The apex angle can be calculated indirectly by means of the two orthogonal
main curvatures κ1, κ2 of a surface. Actually a surface at a certain point can
have an infinite number of different 1D curvatures or only one unique curvature.
This will be explained in detail. Differential geometry considers a certain point
with certain differentiable properties. In the following this will be fulfilled only
at the infinite small region of that point in the assumed saddle point curvature
model (see figure 5). But the region around a point of interest in the image
data can not assumed to be infinite small. This difference of curvature model
and the true image data is very important for the following argument. At the
point of interest the normal vector of the tangential plane and another arbitrary
point which is not part of the normal vector span a plane which can be rotated
around the normal vector by any angle. That plane is used to intersect the two
dimensional image surface If to deliver a one dimensional function which has a
well defined curvature at that point for every angle. This generated set is called
normal section (see figure 6). To analyze two superimposed i1D structures their
intersection point will be approximated by a local i2D saddle point model (see
figure 1). This local model describes the pattern up to the sign of the maximum
curvature which will not affect the results of the global image model. So when
adjusting the global i2D structure the minimum curvature κ1 and the maximum
curvature κ2 of the local curvature model now lie on the x-axis and on the y-
axis. Because of that the normal cut curvature in directions of the two principal
axes delivers the minimum and the maximum curvature of the local i2D saddle
point model (see figure 7). Remember that in direction of the i1D structures the
normal cut curvature is zero. So if it is possible to determine the angle where
the curvature is zero the apex angle could be calculated. This can be done by



Normal section with zero curvature

Image pattern in spatial domain
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Fig. 6. The curvature of the normal section is zero iff the present structure is of in-
trinsically one dimension in direction of the section plane.

applying the results of Euler’s and Meusnier’s theorems (see [Baer2001], p.104).

κ
(α

2

)
= lim

fxy(0,0)→0
κ1 cos2

α

2
+ 2fxy(0, 0) sin

α

2
cos

α

2
+ κ2 sin2 α

2
(20)

Here α
2 is the angle between the normal section direction with minimum curva-

ture κ1 and the normal section direction with curvature κ
(

α
2

)
. In general two

different solutions exist. Because of that two superimposed i1D signals can be
described by this local saddle point model. Since the i1D information has zero
curvature and the local saddle point model assumption with κ1 < 0 and κ2 > 0
the apex angle can be calculated by minimal information given by κ1 and κ2.

κ
(α

2

)
= 0 ⇒ α = 2arctan

√
|κ1|
|κ2|

(21)

With the abbreviations a := cos θ1, b := cos θ2, c := sin θ1, d := sin θ2 the
apex angle of two i1D signals can now be derived by the Gaussian curvature
K := det(Te) = [f(0, 0)]2 (a2d2 + b2c2 − 2abcd) and the main curvature H :=
1
2 trace(Te) = 1

2 (a2 + b2 + c2 + d2)f(0, 0) = f(0, 0) in a rotational invariant way.
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Fig. 7. The normal sections of the bisectors along the principal x-axis (left figure) and
the principal y-axis (right figure) are analyzed to determine the apex angle α.

This yields the apex angle:

∣∣∣∣θ1 − θ2

2

∣∣∣∣ = arctan

√√√√∣∣∣∣∣H −
√

H2 −K

H +
√

H2 −K

∣∣∣∣∣ (22)

4 Experiments and Results

For the synthetic i2D signal consisting of two crossing lines (see figure 8) the
following model is used

fθ1,θ2(x, y) := max
{

e−(x cos θ1+y sin θ1)
2
, e−(x cos θ2+y sin−θ2)

2
}

(23)

which will be analyzed at the origin (0, 0). To analyze the apex angle by the
even part of the monogenic curvature tensor the following synthetic checkerboard
signal (see figure 8) will be used:

fθ1,θ2(x, y) :=
1
2

[cos [(x cos θ1 + y sin θ1)π] + cos [(x cos θ2 + y sin θ2)π]] (24)
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Fig. 8. Discrete synthetic i2D signals with different apex angles. From left to right:
Two crossing i1D lines and the i2D checkerboard.

The average angular error will be defined by:

AAE :=
45◦∑

θ1=0◦

45◦∑
θ2=0◦

∣∣∣∣∣∣|θ1 − θ2| − 2 arctan

√√√√∣∣∣∣∣H −
√

H2 −K

H +
√

H2 −K

∣∣∣∣∣
∣∣∣∣∣∣
2

(25)

with H := 1
2 trace(Te(fθ1,θ2)) and K := det(Te(fθ1,θ2)). The experimental AAE

of the checkerboard signal is 0.067◦ and 0.08◦ for the two crossing lines with total
convolution mask size (2 ∗ 8 + 1)2. The AAE converges to 0◦ with increasing
convolution mask sizes. Also the main orientation of an arbitrary number of
superimposed i1D signals can be computed on discrete signals without any error
with increasing convolution mask sizes.

5 Conclusion and Future Work

The odd-order Riesz transform of any i1D or i2D signal can be analyzed in Radon
space in which a one dimensional partial Hilbert transform will be applied in
direction of each i1D signal with its individual orientation θi, i ∈ I. Assuming
that two superimposing i1D signals have arbitrary but same phase ϕ, the orien-
tations θ1, θ2 and the phase can be calculated. The advantage of analyzing the
Riesz transform in Radon space is that the signal properties consisting of ori-
entation and phase are explicitly given after applying the general operator (e.g.
the monogenic curvature operator) to the specific i1D or i2D signal function.
Future work will include analyzing the superposition of i1D signals with indi-
vidual phases ϕi. Note that arbitrary but same phase of both signals has been
assumed in this paper for deriving the main orientation and the apex angle, so
that only one common phase can be calculated by this assumption. The analysis
of i2D signals in Radon space presented in this work realizes to interpret the
monogenic curvature tensor for the first time in an exact way.
Future work will contain investigation of the promising isomorphism M(2, R3) ∼=



R4,1 [Sobczyk2005] from the set of the monogenic curvature tensors to the set
of the multivectors of the conformal space in Radon space.
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