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Abstract This work covers a fundamental problem of local
phase based image analysis: the isotropic generalization of
the classical 1D analytic signal to two dimensions. The ana-
lytic signal enables the analysis of local phase and amplitude
information of 1D signals. Local phase, amplitude and ad-
ditional orientation information can be extracted by the 2D
monogenic signal with the restriction to intrinsically 1D sig-
nals. In case of 2D image signals the monogenic signal en-
ables the rotationally invariant analysis of lines and edges.
In this work we present the 2D analytic signal as a novel
generalization of both the analytic signal and the 2D mono-
genic signal. In case of 2D image signals the 2D analytic
signal enables the isotropic analysis of lines, edges, corners
and junctions in one unified framework. Furthermore, we
show that 2D signals are defined on a 3D projective sub-
space of the homogeneous conformal space which delivers
a descriptive geometric interpretation of signals providing
new insights on the relation of geometry and 2D image sig-
nals. Finally, we will introduce a novel algebraic signal rep-
resentation, which can be regarded as an alternative and fully
isomorphic representation to classical matrices and tensors.
We will show the solution of isotropic intrinsically 2D im-
age analysis without the need of steering techniques.
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1 Introduction

Low level two-dimensional image analysis is often the first
step of many computer vision tasks. Therefore, local signal
features with geometrical and structural information deter-
mine the quality of subsequent higher level processing steps.
It is important not to lose or to merge any of the original
signal information within the local neighborhood of the test
point. The constraints of local signal analysis are: to span an
orthogonal feature space (split of identity) and to be robust
against stochastic and deterministic deviations between the
actual signal and the assumed signal model. One of the fun-
damental problems in image analysis is a good signal repre-
sentation. Such a structural signal feature is the local phase
information which is robust with respect to noise, contrast
and illumination changes [9, 10, 18]. In case of image sig-
nals it is shown in [23] that the original signal can be recov-
ered to a fairly large extend by using only its phase infor-
mation while setting its amplitude information to unity. In
contrast to that, if only the amplitudes are obtained and the
phases are set to zero, the recovered image signal is com-
pletely indiscernible. Therefore, phase based signal process-
ing has found success in many applications, such as dispar-
ity estimation of stereo [10], matching [2], face recognition
[35], optical flow estimation [36], demodulation of fringe
patterns [21], and in medical image analysis [14, 15].

Many low-level approaches such as the SIFT features are
based on derivatives. In this work we will substitute those
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Fig. 1 Interference of two waves. From top to bottom: increasing fre-
quency. From left to right: increasing wave center distance. Signal
analysis task: at each location the two waves have to be separated from
each other

derivatives by their analog components of the generalized
Hilbert transforms. In Fourier space F {f }(u) = f̂ (u) [20] it
can be seen clearly that the derivative operator of order m,
Dm,

F {Dm{f }}(u) = (2π u i)mf̂ (u) (1)

with u ∈ R
2 is closely related to the generalized Hilbert

transform operator

F {Hm{f }}(u) = (2π ū i)mf̂ (u) (2)

with ū = u
‖u‖ . This work is organized as follows: we will

generalize the analytic signal step by step. First we will
give an introduction to one-dimensional signal analysis with
the classical analytic signal which is a complex-valued sig-
nal extension. The analytic signal is based on the Hilbert
transform which will be generalized to multiple dimensions.
We will proceed with the 2D monogenic signal which is a
vector-valued signal representation, and defined on 2D do-
mains but restricted to intrinsically one-dimensional signals.
This drawback will be solved in this work. The 2D mono-
genic signal will be generalized to a certain subclass of 2D
signals by the so called isotropic 2D analytic signal, which
is a signal representation embedded in projective space. The
most generalized form will be given at the end of this work
by the so called signal multi-vector, which is a signal ex-
tension embedded in a subspace of the 32-dimensional con-
formal space. All signal analysis solutions presented in this
work are truly isotropic, i.e. no steering technique or explicit
Radon transform must be used. This advantage offers most
accuracy in less computational time since only a small filter
set must be applied to the original signal.

Applications of the results presented in this work are the
isotropic separation of superimposed structures as shown in
Fig. 1.

2 The Classical 1D Analytic Signal

To solve phase based 2D signal analysis problems, first
phase based 1D signal analysis has to be considered. From
Fourier analysis it is well known that each 1D signal f ∈
L2(R) ∩ L1(R) can be approximated globally with infinite
small error by its Fourier series

f (x) =
∑

ν

aν cos(ν(x + φν)) (3)

with ν as the frequency. Each frequency component with
its appropriated individual phase φν and amplitude aν can
be analyzed separately. This selected frequency of interest
carries the structural information of the signal and has to be
extracted from the original signal by applying a filter kernel
ps : R

2 �→ R before analysis. Therefore, the local 1D signal
model at the origin x = 0 in the applied local coordinate
system reads

f e(x, s) = a(x, s) cosφ(x, s) = (ps ∗ f )(x) (4)

with ∗ as the 1D convolution operator, and s > 0 as the scale
space parameter of a filter kernel ps , which will be specified
later. Since the local signal model is assumed to be an even
function, i.e.

cos(x) = cos(−x) ∀x ∈ R, (5)

it is called the even part f e of the analytic signal. By means
of convolution of the filtered original signal with the classi-
cal first order 1D Hilbert transform kernel

h(τ) = 1

πτ
(6)

the corresponding odd part f o can be calculated by

f o(x, s) = a(x, s) sinφ(x, s) = (h ∗ ps ∗ f )(x) (7)

and

(h ∗ ps ∗ f )(x) = P.V.
∫

R

(ps ∗ f )(x − τ)

πτ
dτ (8)

as the classical 1D Hilbert transform of the signal f in
scale space and P.V. as the Cauchy principal value. Since
the Hilbert transform of the original signal is locally an odd
function, i.e.

sin(x) = − sin(−x) ∀x ∈ R, (9)

it is called the odd part f o of the analytic signal. One impor-
tant local structural feature of the filtered signal is the local
phase φ(x, s) ∈ [0,2π) [19] because it is independent of the
local signal amplitude a(x, s) [13]. The local phase can be
determined by

φ(x, s) = arctan
f o(x, s)

f e(x, s)
(10)
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Fig. 2 Illustration of the
original (thin plot) 1D signal
and its even f e (thick plot) and
odd f o (dashed plot) signal
parts in scale space (for the
frequency component ν = 1 Hz)
with local structural amplitude
a(2, s) = 1 and phase
φ(2, s) = 2 at the test point
x = 2. It can be seen clearly that
the even signal part carries the
main structural information of
the original signal

and the local signal amplitude can be determined by

a(x, s) =
√

(f e(x, s))2 + (f o(x, s))2. (11)

The local phase information is called structural signal infor-
mation. The vector valued signal extension

[f e(x, s), f o(x, s)]T (12)

of a scalar valued one-dimensional signal f is called ana-
lytic signal, see Fig. 2. Note that originally the analytic sig-
nal has been defined as a complex valued signal with f e as
the real part and f o as the imaginary part [11], i.e.

f a(x, s) = f e(x, s) + if o(x, s). (13)

The 1D analytic signal has been used also in 2D signal
processing. This makes it necessary to extend the classi-
cal 1D Hilbert transform to multiple dimensions. There are
several approaches in the literature which lack the required
rotational invariance of the multidimensional Hilbert trans-
form, see [1, 16]. The partial Hilbert transform is such a
naive ansatz of applying the one-dimensional Hilbert trans-
form to two-dimensional signals f ∈ L2(R2) ∩ L1(R2)

(h ∗ fθ )(t)

= P.V.
∫

R

f ((τ + t) cos θ, (τ + t) sin θ)

πτ
dτ (14)

with the partial two-dimensional function in direction θ at
the origin of the applied local coordinate system reads

fθ (τ ) = f (τ cos θ, τ sin θ). (15)

In case the main orientation of the 2D signal is unknown, the
partial Hilbert transform has to be executed in all possible
directions. Of course, exact approaches must not try all of
these directions. One possible rotationally invariant gener-
alization of the one-dimensional Hilbert transform to higher
dimensions is the Riesz transform which will be called gen-
eralized Hilbert transform in the following.

3 The Isotropic 2D Analytic Signal

Based on the results of Fourier theory and functional analy-
sis we assume that each 2D signal f ∈ L2(R2)∩L1(R2) can
be locally modeled1 by a superposition of arbitrarily orien-
tated one-dimensional cosine waves [34]

(ps ∗ f )(z) = a(z, s)

n∑

ν=1

cos(〈z, ōν(z, s)〉 + φ(z, s)) (16)

with z = (x, y), ∗ as the convolution operator and the
orientation ōν(z, s) = [cos θν(z, s), sin θν(z, s)]T . Note that
each cosine wave is determined with the same amplitude
and phase information. This restriction will be generalized
within this work. The Poisson convolution kernel [8] reads

ps(z) = s

2π(s2 + ‖z‖2)3/2
, (17)

see Fig. 4. For a certain scale space parameter s ∈ R+ the
Poisson kernel acts as a low pass filter on the original sig-
nal f . The Poisson scale space is naturally related to the
generalized Hilbert transform by the Cauchy kernel [5].

To filter a frequency interval of interest, the difference of
Poisson (DoP) kernel will be used in practice

psf ,sc (z) = psf (z) − psc (z) (18)

with sc > sf > 0 and sc as the coarse scale parameter and sf

as the fine scale parameter. The filtered signal is defined by
convolution with the difference of Poisson kernel which will
be used to analyze the original signal with the DoP opera-
tor to consider only a small passband of the original signal
spectrum.

1There is no method of signal analysis which is universal in respect
of any arbitrary local 2D structure. Hence, it is necessary to formulate
a model of local signal structure as basis of the analysis. The great
challenge is the search for a most general model which can cope with
as many as possible local signal structures.
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Fig. 3 From left to right: i0D signal, i1D signal with n = 1 in (16)
to model straight lines and edges in scale space and two i2D signals
which consist of two superimposed i1D signals with n = 2 in n (16) to
locally model junctions and corners in scale space

Without loss of generality the signal model in (16) de-
grades locally at the origin z = 0 of a local coordinate sys-
tem to

fp(z, s) =
n∑

ν=1

a(z, s) cosφ(z, s) (19)

In case of image analysis lines, edges, junctions and corners
can be modeled in this way. The signal processing task is
now to determine the local amplitude a(z, s), the local orien-
tation θν(z, s) and the local phase φ(z, s) for a certain scale
space parameter s and a certain location z. This problem has
been already solved for one-dimensional signals by the clas-
sical analytic signal [11] by means of the Hilbert transform
[16] and for intrinsically one-dimensional [37] signals (i.e.
n = 1 in (16)) by the 2D monogenic signal [7] by means of
the generalized first order Hilbert transform.

This work shows that 2D signal processing can be re-
garded as an inverse problem [33] where higher order gen-
eralized 2D Hilbert transforms are applied to the original
signal f , here with the signal model in (16) restricted to
n < 3. 2D signals in scale space are classified into local re-
gions N ⊆ Ω of different intrinsic dimensions [37] (which
correspond to their codimension). The intrinsic dimension
expresses the number of degrees of freedom necessary to
describe local structure. Constant signals without any struc-
ture are of intrinsic dimension zero (i0D), arbitrary orien-
tated straight lines and edges are of intrinsic dimension one
(i1D), and all other possible patterns such as corners and
junctions are of intrinsic dimension two (i2D), see Fig. 3. In
general i2D signals can only be modeled by an infinite num-
ber of superimposed i1D signals. Therefore, it is essential to
assume a certain signal model or a set of certain models for
exact i2D signal analysis. Furthermore, the intrinsic dimen-
sion depends also on the scale space parameter s at which
the signal will be considered locally.

3.1 Related Work: The Monogenic Signal

Related work is the recently introduced monogenic signal
[7] which can be regarded as the Hilbert transform based
analogue to the derivative based gradient. The first order
generalized Hilbert transform kernel

h(1)(z) =
[

h
(1)
x

h
(1)
y

]
(z) = 1

2π‖z‖3

[
x

y

]
(20)

Fig. 4 From left to right: Poisson convolution kernel p(z, s) and con-
jugate Poisson convolution kernels q

(1)
x (z, s) and q

(1)
y (z, s) in the spa-

tial domain for a certain scale space parameter s > 0

can be expressed in Poisson scale space by

q(1)(z, s) =
[

q
(1)
x

q
(1)
y

]
(z, s) =

[
ps ∗ h

(1)
x

ps ∗ h
(1)
y

]
(z)

= 1

2π(s2 + ‖z‖2)3/2

[
x

y

]
. (21)

The 2D monogenic signal can be defined as a vector valued
signal representation [fp(z, s), fx(z, s), fy(z, s)]T where
the first order Hilbert transformed signal can be expressed
in Radon space [31] by the relation

[
fx

fy

]
(z, s)

=
[

q
(1)
x (·, s) ∗ f

q
(1)
y (·, s) ∗ f

]
(z)

= R−1
{
(t, θ) �→

[
cos θ

sin θ

]
(h ∗ fr(·, θ, s)) (t)

}
(z) (22)

with the 2D Radon transform R{·}, its inverse R−1{·} and
the Hilbert transform kernel2 h. The Radon transformed sig-
nal (see Fig. 5) equals the line-integral

fr(t, θ; s)
= R{ps ∗ f }(t, θ)

=
∫

R

(ps ∗ f )(τ (sin θ,− cos θ) + t (cos θ, sin θ))dτ (23)

with θ ∈ [0,π) as the orientation, and t ∈ R as the mini-
mal distance of the line to the origin of the local coordinate

2Both the classical 1D Hilbert transform as well as all generalized
Hilbert transforms intrinsically always remain in one-dimension, i.e.
in this work the function f (t) = a cos(t) will be considered and its
Hilbert transform (f ∗ h)(t) = a sin(t) with the property (f ∗ h ∗
h)(t) = −f (t).
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Fig. 5 Top row from left to right: illustration of an intrinsically
1D signal in the spatial domain, in its corresponding Radon do-
main, and its geometric feature interpretation by spherical coordinates
(θ(z, s),φ(z, s), a(z, s)). Bottom row from left to right: two superim-
posed intrinsically 1D signals in the spatial domain modeling locally a

junction. In their corresponding Radon space the two signals are sep-
arated from each other into two individual i1D signal slices. The cor-
responding geometric feature interpretation corresponds to the sum of
two vectors with spherical coordinates (θν(z, s),φν(z, s), aν(z, s)) for
ν ∈ {1,2}

system. The main advantage of this expression in 2D Radon
space is the resulting system of equations [31]

[
fx

fy

]
(z, s)

=
n∑

ν=1

[
cos θν(z, s)

sin θν(z, s)

]
a(z, s) sinφ(z, s) (24)

with the explicit formulation of the signal features. This sys-
tem of equations, together with (19), has to be solved for the
unknown signal model features. In case of i1D signals (i.e.
n = 1 in (16)) this system of equations degrades to

⎡

⎣
fp

fx

fy

⎤

⎦ (z, s) = a(z, s)

⎡

⎣
cosφ(z, s)

sinφ(z, s) cos θ(z, s)

sinφ(z, s) sin θ(z, s)

⎤

⎦ (25)

which can now be solved for the 3D spherical coordinates,
see Fig. 5.

θ(z, s) = arctan
fy(z, s)

fx(z, s)
, (26)

φ(z, s) = arctan

√
f 2

x (z, s) + f 2
y (z, s)

fp(z, s)
, (27)

a(z, s) =
√

f 2
p (z, s) + f 2

x (z, s) + f 2
y (z, s). (28)

The phase vector Φ2D(z, s) ∈ R
2 of the monogenic signal is

defined by

Φ2D(z, s) =
[
Φx

Φy

]
(z) = φ(z, s)

[
cos θ(z, s)

sin θ(z, s)

]
(29)

consisting of the local main orientation θ(z, s) and the local
i1D phase φ(z, s). The original filtered signal can be recon-
structed from the amplitude and phase information by using
the definition of the signal model

f0(z, s) = a(z, s) cosφ(z, s) + c(z) (30)

up to the unknown signals offset c(z) ∈ R for all points with
intrinsic dimension one. Since the 2D monogenic signal is
strictly limited to the class of i1D signals, the aim of this
work is to find and solve an appropriate geometrical inter-
pretation for i1D and i2D signals in one single framework.

3.2 Second Order Hilbert Transforms

In case of i2D signals (i.e. n > 1 in (16)) the resulting sys-
tem of equations constructed solely by the first order gener-
alized Hilbert transform in 2D Radon space is not sufficient
for the solution of all signal features. Therefore, we have to
make use of the higher order generalized Hilbert transforms,
such as the second order Hilbert transform kernels [31] (see
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Fig. 6)

q(2)(z, s) = 3s‖z‖2 + 2s3 − 2(‖z‖2 + s2)3/2

2π‖z‖4(‖z‖2 + s2)3/2

⎡

⎣
x2

xy

y2

⎤

⎦ (31)

(proof: Appendix A) with z = (x, y) and

q(2)(z, s) =
⎡

⎢⎣
q

(2)
xx

q
(2)
xy

q
(2)
yy

⎤

⎥⎦ (z, s) =
⎡

⎢⎣
h

(1)
x ∗ h

(1)
x ∗ ps

h
(1)
x ∗ h

(1)
y ∗ ps

h
(1)
y ∗ h

(1)
y ∗ ps

⎤

⎥⎦ (z) (32)

to determine the second order generalized Hilbert trans-
formed signal which can be also expressed in Radon space
by

⎡

⎣
fxx

fxy

fyy

⎤

⎦ (z, s)

=
⎡

⎢⎣
q

(2)
xx (·, s) ∗ f

q
(2)
xy (·, s) ∗ f

q
(2)
yy (·, s) ∗ f

⎤

⎥⎦ (z)

= −R−1

⎧
⎨

⎩(t, θ) �→
⎡

⎣
cos2 θ

sin θ cos θ

sin2 θ

⎤

⎦fr(t, θ; s)
⎫
⎬

⎭ (z). (33)

Analogously to the first order Hilbert transform the follow-
ing additional system of equations results from the second
order Hilbert transformed signal

⎡

⎣
fxx

fxy

fyy

⎤

⎦ (z, s)

=
n∑

ν=1

⎡

⎣
cos2 θν(z, s)

1
2 sin(2θν(z, s))

sin2 θν(z, s)

⎤

⎦a(z, s) cosφ(z, s). (34)

Now a suitable signal structure is required which embeds
the original signal extended by the first order and the second
order generalized Hilbert transforms in one unified signal
representation. This signal representation must be superior
for the feature interpretation. Since the signal features are
of geometric nature, we are now introducing a geometric
algebra signal representation.

3.3 From Tensors to Multi-Vectors

For complete signal analysis problems the original signal
has to be extended by the generalized Hilbert transforms.
The resulting signal representation can be complex valued,
quaternionic valued or tensor valued. When using gener-
alized Hilbert transforms of order two and three or even
higher, the extended signal is tensor-valued or matrix-valued

Fig. 6 From left to right: second order Hilbert transform convolution
kernels in the spatial domain q

(2)
xx (z, s), q

(2)
xy (z, s) and q

(2)
yy (z, s) for a

certain scale space parameter s > 0

with multi-vector-valued entries. To analyze such signals
geometrically, the matrix or tensor forms have to be mapped
to a multi-vector. Such multi-vectors can be interpreted in a
geometric way. The objective of the section is to introduce
an isomorphic mapping from tensor and matrices to multi-
vectors.

The structures of matrix algebra and geometric algebra
[17] are completely compatible and in many ways compli-
mentary, each having their own advantages and disadvan-
tages. In this section we present a detailed study of the hy-
brid 2 × 2 matrix geometric algebra (HMGA) [27]

M(2,GA3) =
{
M =

[
M11 M12

M21 M22

]
: Mνμ ∈ GA3

}
(35)

with elements in the 8-dimensional geometric algebra GA3

of Euclidean space. The resulting hybrid structure, which
is isomorphic to the geometric algebra GA4,1 of de Sitter
space, combines the simplicity of 2 × 2 matrices and the
clear geometric interpretation of the elements of GA, which
will be used in this work for signal analysis.

M(2,GA3) ∼= GA4,1. (36)

It is well known that the geometric algebra GA4,1 con-
tains the 3-dimensional projective, and the conformal space,
together with the horosphere of 3-dimensional Euclidean
space which has attracted the attention of computer scien-
tists and engineers as well as mathematicians and physi-
cists [25].

In this section we present a novel, fully isomorphic
and alternative algebraic representation to tensor and ma-
trix structures, called multi-vector representation, which is
very suitable for signal interpretation. It has been shown
that the monogenic signal can be analyzed as a vector in
Euclidean space. Now a generalized concept of the mono-
genic signal representation will be presented by analyz-
ing not a vector but a so called multi-vector in confor-
mal space. According to [27] each Clifford number valued
matrix T (z, s) ∈ M(2,GA3) with GA3 = GA(R3) can be
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mapped to a multi-vector m(z, s) ∈ GA4,1 of the Clifford
algebra [4] GA4,1 = GA(R4,1) with the set of generating
basis vectors

B = {e1, e2, e3, e+} ∪ {e−} (37)

which results in the total number of ‖2B‖ = 32 basis multi-
vectors with 2B as the powerset of the set B . The basis vec-
tors have the properties

e2
1 = e2

2 = e2
3 = e2+ = 1, e2− = −1 (38)

and

eiej = −ej ei , i, j ∈ {1,2,3,+,−}, i �= j. (39)

We will use the abbreviation

eij = eiej (40)

and in general for the totally ordered set I

eI = ei1i2...in for I = {i1, i2, . . . , in} ∈ 2B. (41)

The scalar numbers R will be represented by the empty set
I = ∅ with the basis multi-vector e∅ = 1. Note that the ba-
sis vector e+ extends the three dimensional Euclidean space
spanned by {e1, e2, e3} to the conformal space and e− ex-
tends the conformal space to the homogeneous conformal
space. In literature the homogeneous conformal space will
be often abbreviated by conformal space. Since we use the
Clifford algebra for geometric interpretation, Clifford alge-
bra can be called geometric algebra [17]. As a direct result
of [27] each Clifford valued 2 × 2-matrix of the form

T (z, s) =
[
T11 T12

T21 T22

]
(z, s) ∈ M(2,GA3) (42)

can be mapped to its corresponding multi-vector m =
ϕ(T (z, s)) ∈ GA4,1 in (homogeneous) conformal space
[25, 30, 32] by the following isomorphism

ϕ(T ) = T11u+ + T12u+e+ + T ∗
21u−e+ + T ∗

22u− (43)

with

T ∗
ij = 〈Tij 〉0 − 〈Tij 〉1 + 〈Tij 〉2 − 〈Tij 〉3 (44)

as the inversion of the multi-vector

Tij =
3∑

ν=0

〈Tij 〉ν ∈ GA3 (45)

for i, j ∈ {1,2} with the grade n projector 〈·〉n [25]

〈m〉n =
∑

I∈2B

‖I‖=n

mI eI (46)

of the multi-vector

m =
∑

I∈2B

mI eI ∈ GA4,1, mI ∈ R (47)

and

u+ = 1

2
+ 1

2
e+−, (48)

u− = 1

2
− 1

2
e+−, (49)

u+e+ = 1

2
[e+ − e−] = −e0, (50)

u−e+ = 1

2
[e+ + e−] = 1

2
e. (51)

This results in the general isomorphism

ϕ(T (z, s)) = 1

2
[T11(z, s) + T ∗

22(z, s)]

+ 1

2
[T ∗

21(z, s) + T12(z, s)]e+

+ 1

2
[T ∗

21(z, s) − T12(z, s)]e−

+ 1

2
[T11(z, s) − T ∗

22(z, s)]e+−. (52)

Since the matrix T (z, s) is isomorphic to the multi-vector
m(z, s), the algebra is called a hybrid matrix geometric al-
gebra (HMGA).

The second order partial derivatives of the Hesse matrix
of the signal f will be substituted by the second order gen-
eralized Hilbert transforms, see (33), in their corresponding
directions

T e(z, s) =
[
fxx fxy

fxy fyy

]
(z, s) ∈ M(2,R) (53)

which will be called the even tensor T e(z, s), see Fig. 7. The
resulting isomorphic multi-vector signal representation3 in
conformal space reads

ϕ(T e(z, s)) = f0(z, s) + f+(z, s)e+ + f+−(z, s)e+− (54)

with

f0(z, s) = 1

2
[fxx(z, s) + fyy(z, s)] = 1

2
fp(z, s), (55)

f+(z, s) = fxy(z, s), (56)

f+−(z, s) = 1

2
[fxx(z, s) − fyy(z, s)] (57)

3One of the reviewers notes the relation to the 2-tensor decom-

position in irreducible components by
[ fxx fxy

fxy fyy

] = fxx+fyy

2

[ 1 0
0 1

] +
fxx−fyy−2ifxy

4

[−1 −i
−i 1

]+ fxx−fyy−2ifxy

2

[−1 i
i 1

]
.
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with f0(z, s) as the scalar part, f+(z, s) as the vector part
and f+−(z, s) as the so called bivector part of the multi-
vector. This multi-vector valued signal representation is con-
structed by a set of three convolution kernels, see Fig. 8.
With the first and second order generalized Hilbert trans-
forms the monogenic signal can now be generalized to the
novel 2D analytic signal. Motivated by the important equa-
tions (1) and (2), analogous to the Hesse matrix4 the second
order partial derivatives will be substituted by the second
order Hilbert transformed signals in the corresponding di-
rections. This matrix valued signal representation T e can be
mapped to a multi-vector valued signal representation by the
isomorphism ϕ [31], see Fig. 8.

3.4 Signal Interpretation in Projective Space

The local features which determine the signal (16) for the
restriction to n = 2 and equal amplitude and equal phase in
scale space will be separated into geometrical features and
structural features. The geometrical features are the main
orientation and the rotationally invariant apex angle. The
main orientation can be determined by

θm(z, s) = θ1(z, s) + θ2(z, s)

2

= 1

2
arctan

f+(z, s)

f+−(z, s)
. (58)

In contrast to the monogenic signal the main orientation [26]
can be evaluated also at phase positions φ(z, s) = kπ for all
k ∈ Z where the orientation of the monogenic signal

1

2
[θ1(z, s) + θ2(z, s)] = arctan

fy(z, s)

fx(z, s)
(59)

is not defined. The apex angle α(z, s) (also known as open-
ing angle or angle of intersection) can be determined by

α(z, s)

= |θ1(z, s) − θ2(z, s)|

= arccos

√
f 2+(z, s) + f 2+−(z, s)

|f0(z, s)|

= arcsin

√
f 2

0 (z, s) − [f 2+(z, s) + f 2+−(z, s)]
|f0(z, s)|

= arctan

√
f 2

0 (z, s) − [f 2+(z, s) + f 2+−(z, s)]
√

f 2+(z, s) + f 2+−(z, s)

(60)

4The first and second order partial derivatives of the Weingarten ma-

trix
[

∂
∂x

, ∂
∂y

, ∂2

∂x2 , ∂2

∂xy
, ∂2

∂y2

]T will be substituted by their corresponding
generalized Hilbert transforms.

Fig. 7 Illustration of the even tensor T e which consists of the second
order generalized Hilbert transformed signal

Fig. 8 Illustration of the isomorphism from the even tensor T e struc-
ture to the multi-vector expression

which delivers in combination with θm(z, s) the individual
orientations θ1(z, s) and θ2(z, s). The apex angle5 is a very
important rotationally invariant local feature for example it
is zero iff the underlying structure is of intrinsic dimension
one. The geometric interpretation of the main orientation
and the apex angle results from the signal f0(z, s) which
is embedded in 3D space spanned by the representations de-
fined by (55)–(57) as a vector

[0,0, f0(z, s)]T ∈ R
3. (61)

This 3D vector will be rotated by the Euler angles

(α(z, s),2θm(z, s)) ∈
[

0,
π

2

]
× [0,2π], (62)

see Fig. 9. By means of the apex angle α(z, s), a so called
homogeneous signal component fh of the signal fp in 3D
projective space [25] spanned by the vectors fx , fy and fh

can now be introduced by

fh(z, s) =
√

1 + cosα(z, s)

2
∈ [0,1]. (63)

In the following a natural relation of the vector valued 2D
analytic signal representation and the projective space will
be shown. By means of the homogeneous signal component
the model based signal features can now be determined. Let
be

f̃x(z, s) = f −1
h (z, s)fx(z, s) (64)

5Note that the apex angle of phase based image analysis corresponds to
the shape feature of the orthogonal version of the second order deriva-
tives [3] although they are not equal.
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Fig. 9 Left figure: the underlying 2D space is spanned by the conju-
gate signal components fx and fy and the additional coordinate of the
3D projective space is given by the homogeneous signal component fh.

Right figure: illustration of all intrinsic dimensions in one continuous
space. The i0D signals are on a point of singularity, the i1D signals can
be represented by a 2D plane and the i2D signals exist in a 3D volume

and

f̃y(z, s) = f −1
h (z, s)fy(z, s) (65)

the normalized signal components of the Hilbert trans-
formed signal. The local main orientation of the signal can
be determined by

θm(z, s) = arctan
f̃y(z, s)

f̃x(z, s)
(66)

which corresponds to (26). The structural signal features are
the local phase and the local amplitude. The phase of i1D
and i2D signals can be evaluated by

φ(z, s) = arctan

√
(f̃x(z, s)2 + (f̃y(z, s))2

fp(z, s)

= arctan

√
f 2

x (z, s) + f 2
y (z, s)

fp(z, s) fh(z, s)
(67)

w hich is the generalization of (27) for i1D and i2D signals
in one unified framework. The local amplitude for i1D and
i2D signals can be determined by

a(z, s) = 1

2

√
f 2

p (z, s) +
(
f̃x(z, s)

)2 +
(
f̃y(z, s)

)2
(68)

and the local attenuation is given by loga, which is the gen-
eralization of (28) for i1D and i2D signals in one unified
framework. The phase and the amplitude can be determined
by the first order generalized Hilbert transform and the geo-
metric information given by the apex angle and the main
orientation can be determined by the second order gener-
alized Hilbert transform. In the case of pure i1D signals the
apex angle is zero, i.e. fh(z, s) ≡ 1. In this case the formulas
of the phase and amplitude reduce to those known from the

monogenic signal. The advantage of this approach is that it
can automatically distinguish between i1D and i2D signals
and it can be applied to all kinds of local intrinsic dimension
without any previous knowledge about the original signal.
In the case of 2D image signals, this approach is designed
for an isotropic analysis of lines, edges, corners and junc-
tions in one framework. Note that this analysis is restricted
by the assumed signal model. We will overcome these re-
strictions in the next section. The important generalization
from i1D signal analysis to true 2D signal analysis is, that in
contrast to the 2D monogenic signal, here the 2D conjugate
Poisson components [fx,fy]T are in a natural way located
in the higher dimensional 3D projective space [fx,fy, fh]T
with fh as the additional homogeneous signal component,
see Fig. 9. Signal analysis with respect to the local spec-
tral representations amplitude and phase naturally reduces
now to the normalization of the homogeneous component
to fh(z, s) ≡ 1. This can be easily done by multiplying the
conjugate Poisson signal components fx and fy by f −1

h . In
other words: the 2D space spanned by the signal components
fx and fy is extended by the homogeneous signal compo-
nent fh.

Analogously, the 2D phase vector Φ2D(z, s) of the 2D
monogenic signal can now be generalized to the 3D phase
vector Φ3D(z, s) ∈ R

3 of the 2D analytic signal, which is
defined as

Φ3D(z, s) =
⎡

⎣
Φx

Φy

Φz

⎤

⎦ (z, s)

= φ(z, s)

⎡

⎣
cos θ(z, s)

sin θ(z, s) cosα(z, s)

sin θ(z, s) sinα(z, s)

⎤

⎦ (69)

consisting of the rotationally invariant local apex angle α,
the local main orientation θ and the local i1D/i2D phase φ.



J Math Imaging Vis (2010) 37: 132–150 141

In the case of an i1D signal where the apex angle is zero, the
3D phase vector naturally reduces to the phase vector of the
2D monogenic signal.

3.4.1 Proof Outline

Due to the previous results of the first and second order
generalized Hilbert transform expressed in Radon space the
proofs can now be done by trigonometric calculations using
the known local signal components

⎡

⎢⎢⎢⎢⎣

fx

fy

f0

f+
f+−

⎤

⎥⎥⎥⎥⎦
(z, s)

= a(z, s)

×

⎡

⎢⎢⎢⎢⎣

[cos θ1(z, s) + cos θ2(z, s)] sinφ(z, s)

[sin θ1(z, s) + sin θ2(z, s)] sinφ(z, s)

cosφ(z, s)
1
2 [sin(2θ1(z, s)) + sin(2θ2(z, s))] cosφ(z, s)
1
2 [cos(2θ1(z, s)) + cos(2θ2(z, s))] cosφ(z, s)

⎤

⎥⎥⎥⎥⎦

(70)

consisting of five linear independent components which re-
sult from the signal intelligence in Radon space. From which
follows that

f+(z, s) = a(z, s) cosφ(z, s)

× cos(θ1(z, s) − θ2(z, s))

× sin(θ1(z, s) + θ2(z, s)), (71)

f+−(z, s) = a(z, s) cosφ(z, s)

× cos(θ1(z, s) − θ2(z, s))

× cos(θ1(z, s) + θ2(z, s)), (72)

fx(z, s) = 2a(z, s) sinφ(z, s)

× cos
θ1(z, s) − θ2(z, s)

2

× cos
θ1(z, s) + θ2(z, s)

2
, (73)

fy(z, s) = 2a(z, s) sinφ(z, s)

× cos
θ1(z, s) − θ2(z, s)

2

× sin
θ1(z, s) + θ2(z, s)

2
(74)

and

q(z, s) =
√

f 2
x (z, s) + f 2

y (z, s)

= 2a(z, s) sinφ(z, s) cos
θ1(z, s) − θ2(z, s)

2
(75)

from which follows for the main orientation

θ(z, s) = θ1(z, s) + θ2(z, s)

2
(76)

that

cos θ(z, s) = fx(z, s)√
f 2

x (z, s) + f 2
y (z, s)

, (77)

sin θ(z, s) = fy(z, s)√
f 2

x (z, s) + f 2
y (z, s)

. (78)

Furthermore
√

f 2+(z, s) + f 2+−(z, s)

= a(z, s) cosφ(z, s) cos(θ1(z, s) − θ2(z, s)) (79)

from which follows for the apex angle α(z, s) that

cosα(z, s) =
√[

f+(z, s)

f0(z, s)

]2

+
[
f+−(z, s)

f0(z, s)

]2

(80)

and

sinα(z, s) =
√

1 −
[
f+(z, s)

f0(z, s)

]2

−
[
f+−(z, s)

f0(z, s)

]2

. (81)

Note that the relation to the Radon transform is required
solely for interpretation and theoretical results. Neither the
Radon transform nor its inverse are ever applied to the sig-
nal in practice. Instead, the generalized Hilbert transformed
signal components will be determined by 2D convolutions
with the generalized Hilbert transform kernels in the spatial
domain.

4 The Signal Multi-Vector

We will now present the general solution for isotropic sig-
nal analysis in two dimensions. The first step of low level
signal analysis is the designation of a reasonable signal
model. Based on the fact that signals f ∈ L2(Ω) ∩ L1(Ω)

with Ω ⊆ R
2 can be decomposed into their correspond-

ing Fourier series, we assume that each frequency compo-
nent of the original image signal consists locally of a su-
perposition of intrinsically 1D (i1D) [37] signals fν(z, s)

with z = (x, y) ∈ R
2 and s > 0, see (82). Each of them is

determined by its individual amplitude aν(z, s) ∈ R, phase
φν(z, s) ∈ [0,π), and orientation θν(z, s) ∈ [0,π).
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Fig. 10 Left figure: geometric interpretation of the main orientation
θm(z, s) and the apex angle α(z, s). The 2D analytic signal strictly
separates the structural and the geometrical information given by the
first and the second order Hilbert transform respectively. Right figure:

geometric interpretation of phase φ(z, s), amplitude a(z, s) and main
orientation θm(z, s) in projective space of i1D and i2D signals in one
unified framework

4.1 Local Signal Modeling in Scale Space

Applying the Poisson filter kernel ps to the original signal
f results in the smoothed local signal model

(ps ∗ f )(z) =
n∑

ν=1

aν(z, s) cos(〈z, ōν(z, s)〉 + φν(z, s)) (82)

with ōν(z, s) = [cos θν(z, s), sin θν(z, s)]T as the oriented
normal, and 〈·, ·〉 as the inner product. This powerful local
signal model allows modeling any texture or structure such
as lines, edges, corners, and junctions in scale space as will
be explicitly shows in Sect. 4.3. After having specified the
signal model, the mathematical task is the exact retrieval of
the signal parameters (θν(z, s),φν(z, s), aν(z, s)) for every
position z ∈ Ω and for every scale space parameter s > 0. In
the following

f e
ν (z, s) = aν(z, s) cosφν(z, s) (83)

will be called the even signal part. Furthermore and without
loss of generality, at the origin z = 0 in the applied local
coordinate system, the assumed signal model (82) results in

fp(z, s) = (ps ∗ f )(z) =
n∑

ν=1

aν(z, s) cosφν(z, s). (84)

Since the geometrical information θν(z, s) is not coded in
the signal value fp(z, s), an appropriate signal extension is
necessary. Normally, this will be done by calculating higher
order derivatives of the signal, e.g. the SIFT features [22].
Instead, in this work the components of the higher order gen-
eralized Hilbert transforms will be used.

4.2 Signal Extension

The problem, which has to be solved now, is the search
for all unknown structural parameters aν(z, s) ∈ R and

φν(z, s) ∈ [0,π) and the unknown geometric parameters
θν(z, s) ∈ [0,π). Although the most general formulas will
be provided in this work, we will restrict the signal model
(82) to n < 3, since by this restriction most signal struc-
tures can be modeled [6]. As the signal parameters are un-
known, we have to solve a nontrivial inverse problem. This
can only be done by extending the original signal represen-
tation to result in a system of equations, which includes all
unknown signal parameters. This will be done by the gener-
alized Hilbert transforms of higher orders. Our restriction of
the signal model to two superimposed arbitrary i1D signals
results in six degrees of freedom, which require generalized
Hilbert transforms up to order three. The first order gener-
alized Hilbert transform convolution kernels for any dimen-
sion read [4]

h(1)(z) = 2

Am+1‖z‖m+1

⎡

⎢⎣
z1
...

zm

⎤

⎥⎦ , z ∈ R
m (85)

with the area of the unit sphere S
m in R

m+1

Am+1 = 2 π
m+1

2

Γ (m+1
2 )

. (86)

For two-dimensional signals (m = 2) the generalized Hilbert
transform kernels read
[
h

(1)
x

h
(1)
y

]
(z) = 1

2π‖z‖3

[
x

y

]
(87)

which are the analogues to the first order partial derivatives.
Since we have to analyze the original signal in scale space,
it will be of advantage to provide one unified convolution
kernel, which consists of the Poisson kernel and the gener-
alized Hilbert transform kernel of order n. The generalized
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Fig. 11 Illustration from left to right of the convolution kernels in the
spatial domain for a certain scale space parameter s > 0. Top row: Pois-
son kernel ps . Second row: first order kernels q

(1)
x and q

(1)
y . Third row:

second order kernels q
(2)
xx , q

(2)
xy and q

(2)
yy . Bottom row: third order ker-

nels q
(3)
xxx , q

(3)
xxy , q

(3)
xyy and q

(3)
yyy

Hilbert transform kernels of order (i + j) in Poisson scale
space reads

q
(i+j)

xiyj (z, s) = (h(1)
x ∗ · · · ∗ h(1)

x︸ ︷︷ ︸
i

∗h(1)
y ∗ · · · ∗ h(1)

y︸ ︷︷ ︸
j

∗ ps)(z)

(88)

which are shown in Fig. 11. The first order and second order
generalized Hilbert transform kernels have been already de-
rived for the 2D analytic signal. The third order generalized
Hilbert transform kernels read
⎡

⎢⎢⎢⎣

q
(3)
xxx

q
(3)
xxy

q
(3)
xyy

q
(3)
yyy

⎤

⎥⎥⎥⎦ (z, s)

= 4s2(2s2 + 3‖z‖2) + 3‖z‖4 − 8s(s2 + ‖z‖2)3/2

2π‖z‖6(s2 + ‖z‖2)3/2

×

⎡

⎢⎢⎣

x3

x2y

xy2

y3

⎤

⎥⎥⎦

(proof: Appendix B). The value of the (i+j)th order Hilbert
transformed signal in Poisson scale space will be derived by
convolution in the spatial domain

fxiyj (z, s) =
(
q

(i+j)

xiyj (·, s) ∗ f
)

(z) (89)

Note that for all equations and without loss of generality z

always denotes the position relatively to the test point.

4.3 Signal Intelligence in Radon Space

After extending the original signal by the generalized
Hilbert transform the resulting signal representation must
be interpreted. This can be done in Radon space [31]. The
original signal f transformed into Radon space reads

fr(t, θ, s) = R{ps ∗ f }(t, θ)

=
∫

R2
(ps ∗ f )(z)δ(〈z, ōθ 〉 − t) dz (90)

with θ ∈ [0,π) as the orientation, ōθ = [cos θ, sin θ ]T the
oriented normal vector, t ∈ R as the minimal distance of the
parameterized line to the origin of the local coordinate sys-
tem of the test point, and δ as the Dirac distribution, see
Figs. 5 and 12. The corresponding inverse Radon transform
R−1{·} exists, and can be simplified to the following relation
for a finite number n ∈ N of superimposed i1D signals

R−1{fr}(z) = 1

2π2

∫

θ∈[0,π)

P.V.
∫

t∈R

∂
∂t

fr (t, θ; s)
〈z, ōθ 〉 − t

dt dθ

= − 1

2π2

n∑

ν=1

P.V.
∫

t∈R

∂
∂t

fr (t, θν; s)
t

dt

= − 1

2π

n∑

ν=1

P.V.
∫

t∈R

1

πt

∂

∂t
fr(t, θν; s)dt

= − 1

2π

n∑

ν=1

∂

∂t
(h ∗ fr(·, θν, s))(t) (91)

with h as the first order one-dimensional Hilbert transform
kernel at position z = 0 for the origin of the applied local co-
ordinate system, see Fig. 13. The (i+j)th order generalized
Hilbert transformed signal can be expressed in Radon space,
which delivers a system of equations including all unknown
signal parameters. This system of equations can be solved,
which was up to now only possible for n = 1 in (82) [6]. The
Hilbert transformed signal can be expressed by

fxiyj (z, s)

= R−1
{
(t, θ) �→ cosi θ sinj θ(h(i+j) ∗ fr(·; θ, s))(t)

}
(z).

(92)

The proof can be done by means of the Fourier slice theorem
[31]

F1{fr(·, θ; s)}(ρ) = F2{ps ∗ f }(ρ cos θ,ρ sin θ) (93)
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Fig. 12 Top row: illustration of all elements of the powerset of three
superimposed intrinsically 1D signals in the spatial domain. From left
to right: one constant signal (i0D), three i1D signals with orientation
45◦,90◦ and 135◦ followed by four i2D signals which consist of super-

imposed i1D signals. In case of i2D signals the single orientations can
hardly be separated in the spatial domain. This can be done much eas-
ier in their corresponding Radon domain which is shown in the bottom
row

Fig. 13 For each distance
parameter t and for all
orientations θ—except for the
main orientation θm—the
line-integral on all function
values in the signal domain is
the same, i.e. fr (t1, θ; s) =
fr (t2, θ; s) ∀t1, t2 ∈ R

∀θ ∈ [0,2π) \ {θm}

with Fm as the m-dimensional Fourier transform. The clas-
sical one dimensional Hilbert transform kernel h [16] of or-
der m reads

h(m)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

δ(t), m mod 4 = 0
1
πt

, m mod 4 = 1
−δ(t), m mod 4 = 2
− 1

πt
, m mod 4 = 3

, t ∈ R (94)

with δ as the Dirac distribution, which is the algebraically
neutral element of the convolution. Finally, the (i + j)th
Hilbert transformed signal results in

fxiyj (z, s) =
n∑

ν=1

cosi θν(z, s) sinj θν(z, s)f
(i+j)
ν (z, s) (95)

because of the property

∂

∂t
[(h ∗ fr(·, θ, s))(t)] =

(
h ∗ ∂

∂t
fr(·, θ, s)

)
(t) (96)

and the linearity of the inverse Radon transform [31]. The
odd signal part

f o
ν (z, s) = (h(1) ∗ f e

ν (·, s))(φν(z, s))

= aν(z, s) sinφν(z, s) (97)

results from the even signal part

f e
ν (z, s) = aν(z, s) cosφν(z, s) (98)

by the classical 1D Hilbert transform and

f (m)
ν (z, s) =

⎧
⎪⎪⎨

⎪⎪⎩

f e
ν (z, s), m mod 4 = 0

f o
ν (z, s), m mod 4 = 1

−f e
ν (z, s), m mod 4 = 2

−f o
ν (z, s), m mod 4 = 3

. (99)

In case of the zeroth order Hilbert transform (i.e. i + j = 0),
this results in the local signal value fp(z, s). According to
(95), the first and second order generalized Hilbert trans-
formed signal determines the following system of linear
equations

[
fx

fy

]
(z, s) =

n∑

ν=1

[
cos θν(z, s)

sin θν(z, s)

]
f o

ν (z, s) (100)

and

⎡

⎣
fxx

fxy

fyy

⎤

⎦ (z, s) =
n∑

ν=1

⎡

⎣
cos2 θν(z, s)

cos θν(z, s) sin θν(z, s)

sin2 θν(z, s)

⎤

⎦f e
ν (z, s)

(101)

from which the signal value can be reconstructed by

fp(z, s) =
n∑

ν=1

f e
ν (z, s) = fxx(z, s) + fyy(z, s). (102)
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With (95), the third order Hilbert transformed signal deter-
mines the following system of linear equations

⎡

⎢⎢⎣

fxxx

fxxy

fxyy

fyyy

⎤

⎥⎥⎦ (z, s) =
n∑

ν=1

⎡

⎢⎢⎣

cos3 θν(z, s)

cos2 θν(z, s) sin θν(z, s)

cos θν(z, s) sin2 θν(z, s)

sin3 θν(z, s)

⎤

⎥⎥⎦f o
ν (z, s)

(103)

from which the first order generalized Hilbert transform can
be reconstructed by

[
fx

fy

]
(z, s) =

[
fxxx(z, s) + fxyy(z, s)

fxxy(z, s) + fyyy(z, s)

]
. (104)

Due to the important relation of the Radon transform to the
generalized Hilbert transform of any order, it is possible to
result in a system of equations which can now be solved for
the unknown signal parameters. Please note that neither the
Radon transform nor its inverse are ever applied to the sig-
nal in practise. This is a very important advantage compared
to the wavelet transforms, e.g. Ridgelet wavelet transforms
[24]. Those approaches try out only a finite number of di-
rections by the discrete Radon transform [24], which suf-
fers from numerical problems. The resulting disadvantages
are inaccuracy, problems resulting from aliasing effects, and
higher computational time complexities.

4.4 Algebraic Signal Representation

We will now take full advantage of the results of Sect. 3.3.
For the sake of simplicity, we will restrict this work to the
algebra of quaternions H, which are sufficient for construct-
ing the signal tensor. Loosely spoken, simply consider the
tensor-valued signal extension as a real-valued 2 × 2 × 3 ar-
ray. According to [27], an isomorphic mapping

ϕ : M(2,GA3) �→ GA4,1 (105)

from the quaternion-valued tensor

T = T e + T o
x i + T o

y j (106)

to the quaternion-valued vector

ϕ(T ) = ϕ(T e) + ϕ(T o
x ) i + ϕ(T o

y ) j (107)

is possible. With the set of basis elements

{1, i, j,k} (108)

of the quaternions (H,+,◦) with

H = {
qs + qi i + qj j + qkk : qs, qi, qj , qk ∈ R

}
(109)

and the isomorphisms

i ∼= e13, j ∼= e23, k ∼= e21 (110)

with i ◦ j = k, the signal tensor for n < 3 in (82) can be de-
fined by the generalized Hilbert transforms of second order
(T e) and third order (T o

x and T o
y )

T =
[
fxx fxy

fxy fyy

]

︸ ︷︷ ︸
T e

+
[
fxxx fxxy

fxxy fxyy

]

︸ ︷︷ ︸
T o

x

i

+
[
fxxy fxyy

fxyy fyyy

]

︸ ︷︷ ︸
T o

y

j, (111)

see Fig. 14. By introducing the abbreviations

f −(z, s) = fxx(z, s) − fyy(z, s)

=
n∑

ν=1

cos(2θν(z, s))f
e
ν (z, s), (112)

f −
x (z, s) = fxxx(z, s) − fxyy(z, s), (113)

f −
y (z, s) = fxxy(z, s) − fyyy(z, s) (114)

the quaternion-valued matrix T can be mapped by the iso-
morphism ϕ, with the same treatment like in (52), to a
quaternion-valued multi-vector representation [31] in con-
formal space GA4,1 [25]

ϕ(T (z, s))

= ϕ(T e(z, s)) + ϕ(T o
x (z, s))i + ϕ(T o

y (z, s))j

=
[
fp(z, s)

2
+ fxy(z, s)e+ + f −(z, s)

2
e+−

]

+
[
fx(z, s)

2
+ fxxy(z, s)e+ + f −

x (z, s)

2
e+−

]
i

+
[
fy(z, s)

2
+ fxyy(z, s)e+ + f −

y (z, s)

2
e+−

]
j (115)

which will be called signal multi-vector, see Fig. 15. Com-
pare the signal multi-vector with the structure multi-vector
[6], and the more common Weyl-projection operator [29] in-
duced by
(

H(1){(ps ∗ f )}, H(2){(ps ∗ f )}, H(3){(ps ∗ f )}
)

. (116)

Compared to the structure multi-vector the signal multi-
vector has less restrictions concerning the signal model. And
compared to the Weyl-projection6 the signal multi-vector is

6We thank one of the reviewers for the hint that the proposed multi-
vector structure has some similarities, but delivers a different result,
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Fig. 14 Illustration of the convolution kernels in the spatial domain of the quaternion-valued matrix signal representation T

Fig. 15 Illustration of the convolution kernels in the spatial domain of
the signal multi-vector ϕ(T ) which is defined in (115)

an alternative signal representation. The signal multi-vector
delivers the complete geometrical and structural information
of the assumed signal model (82). In [3] the geometrical sig-
nal features have been retrieved by higher order derivatives
in the traditional matrix expression. This is generalized by
ϕ(T ) in a more natural embedding.

4.5 Geometry from the Signal Multi-Vector

The hardest challenge in signal analysis is to obtain exact
geometrical signal features such as the orientations θν(z, s).
The most important relations are

sin(2θ2/1(z, s)) =
det

[ fxxy(z,s) cos θ1/2(z,s)

fxyy(z,s) sin θ1/2(z,s)

]

detD1/2
(117)

and

cos(2θ2/1(z, s)) =
det

[ f
−
x (z,s)

2 cos θ1/2(z,s)

f
−
y (z,s)

2 sin θ1/2(z,s)

]

detD1/2
(118)

with the application of the Weyl-projection operator on tensor-field
representations of an image for detecting orientational symmetries.

with the matrix

D1/2 =
[

fx(z,s)
2 cos θ1/2(z, s)

fy(z,s)

2 sin θ1/2(z, s)

]
(119)

which follow from (103) of the third order generalized
Hilbert transform and (100) of the first order generalized
Hilbert transform for n = 2 (note that the derivation is not
trivial). From the fact that

sin2(2θ2/1(z, s)) + cos2(2θ2/1(z, s)) = 1, (120)

the nonlinear part of the inverse problem follows in form of
a quadratic equation

γ −(z, s) sin2 θν(z, s) + α(z, s) sin(2θν(z, s)) = β(z, s),

(121)

since two unknown orientations have to satisfy the equation.
With the known values given by the geometric product ◦ of
the two odd parts

ϕ(T o
x (z, s)) ◦ ϕ(T o

x (z, s)) ∈ GA4,1, (122)

ϕ(T o
x (z, s)) ◦ ϕ(T o

y (z, s)) ∈ GA4,1, (123)

ϕ(T o
y (z, s)) ◦ ϕ(T o

y (z, s)) ∈ GA4,1 (124)

the following elements are being constructed by the geomet-
ric product of the corresponding Clifford algebra

δ(z, s) =
[
fx(z, s)

2

]2

− f 2
xxy(z, s) −

[
f −

x (z, s)

2

]2

, (125)

β(z, s) =
[
fy(z, s)

2

]2

− f 2
xyy(z, s) −

[
f −

y (z, s)

2

]2

, (126)

α(z, s) = fx(z, s)

2

fy(z, s)

2
− fxxy(z, s)fxyy(z, s)

− f −
x (z, s)

2

f −
y (z, s)

2
. (127)

Let be

γ +(z, s) = β(z, s) + δ(z, s), (128)
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Table 1 Evolution of the classical analytic signal with z = (x, y) and ōν = [cos θν, sin θν ]T

Signal Model Domain Algebra Geometry

1D Analytic Signal f (x, s) = a(x, s) cos(x + φ(x, s)) 1D C Euclidean space

2D Monogenic Signal f (z, s) = a(z, s) cos(〈z, ō〉 + φ(z, s)) i1D R
3 Euclidean space

2D Analytic Signal f (z, s) = a(z, s)
∑2

ν=1 cos(〈z, ōν(z, s)〉 + φ(z, s)) i1D ∪ i2D GA4,1 Projective space

Signal Multi-Vector f (z, s) = ∑n
ν=1 aν(z, s) cos(〈z, ōν〉 + φν(z, s)) 2D HMGA Conformal space

γ −(z, s) = β(z, s) − δ(z, s). (129)

Due to the elements being constructed by the geometric
product the main orientation can be derived by

θ1(z, s) + θ2(z, s) = arctan
2α(z, s)

γ −(z, s)
(130)

as well as the apex angle

|θ1(z, s) − θ2(z, s)|

= arctan
2
√

α2(z, s) − β(z, s)δ(z, s)

γ +(z, s)
(131)

from which the single orientations θν(z) can be obtained.
Although Clifford algebra is not necessary for the solu-

tion presented in this work, the application of the geometric
product delivers easily a compact access to the geometric
features hidden in the chosen signal representation.

4.6 Structure from the Signal Multi-Vector

The phase and the amplitude represent the structural signal
features, which can be calculated by solving a linear system
of equations by Cramer’s rule for 2 × 2 matrices. The even
and odd signal parts can be written as

[
f e

1 (z, s)

f e
2 (z, s)

]
= 1

ce(z, s)

[
fp(z,s)

2 sin(2θ2(z, s)) − fxy(z, s)

fxy(z, s) − fp(z,s)

2 sin(2θ1(z, s))

]

(132)

which has been derived by the second order generalized
Hilbert transform in (101) with

ce(z, s) = sin(θ1(z, s) − θ2(z, s))

× cos(θ1(z, s) + θ2(z, s)) (133)

and
[
f o

1 (z, s)

f o
2 (z, s)

]

= 1

co(z, s)

×
[
fy(z, s) cos θ2(z, s) − fx(z, s) sin θ2(z, s)

fx(z, s) sin θ1(z, s) − fy(z, s) cos θ1(z, s)

]
(134)

which has been derived by the first order generalized Hilbert
transform in (100) respectively with

co(z, s) = sin(θ1(z, s) − θ2(z, s)). (135)

By means of the even and odd signal parts, finally structural
signal features such as the phases and the amplitudes can be
derived as

φν(z, s) = arctan
f o

ν (z, s)

f e
ν (z, s)

(136)

and

aν(z, s) =
√

(f e
ν (z, s))2 + (f o

ν (z, s))2 (137)

for ν ∈ {1,2}. Interestingly, this solution corresponds for
each signal component to the classical 1D analytic signal
[11], please refer to (10) and (11).

5 Conclusion

We have solved a fundamental problem of isotropic 2D sig-
nal analysis by introducing a novel algebraic image sig-
nal representation, which can be used for interpretation and
powerful feature extraction without steering. All results can
be proved by real-valued trigonometric calculations which
can be avoided by basic calculations in geometric algebra
using the geometric product. Our novel approach can be de-
scribed for arbitrary signal models by the following general
steps

1. Signal modeling in scale space and signal extension by
the generalized Hilbert transform. The order of the re-
quired generalized Hilbert transforms correlates to the
complexity n of the signal model in (82).

2. Retrieving the explicit system of equations including all
unknown signal parameters (θν,φν, aν) by the relation of
the generalized Hilbert transform to the Radon transform.

3. Algebraic signal representation in tensor form and subse-
quent mapping by the isomorphism ϕ to its correspond-
ing signal multi-vector.
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4. Geometric interpretation of the signal multi-vector by
solving the nonlinear part of the inverse problem.

5. Structural multi-vector-valued signal interpretation by
solving the linear part of the inverse problem.

The message of this contribution is that truly isotropic sig-
nal analysis is possible which offers best accuracy in less
computational time complexity. Future work will contain
the generalization of the signal multi-vector to multidimen-
sional signal domains to enable also isotropic motion track-
ing in computer vision applications, as well as providing the
basic theory for truly isotropic wavelet analysis [28]. The
evolution of the generalization of the analytic signal can be
seen in Table 1.

Acknowledgements We acknowledge funding by the German Re-
search Foundation (DFG) under the project SO 320/4-2 and a special
thank to both of the reviewers for the interesting hints and detailed ad-
vice.

Appendix A: Spatial Second Order Generalized Hilbert
Transform Kernels in Poisson Scale Space

Proof To calculate the convolution in frequency space,
the Fourier transforms F {·}(u) of the convolution kernels
h(2)(z) and p(z, s) are considered. According to the convo-
lution theorem, the convolution in the spatial domain cor-
responds to a multiplication in Fourier space. The Fourier
transform of h(2)(z) results in the multiplier

F {h(2)}(u) = −u

u
(138)

with

u = u1 + iu2 ∈ C (139)

and the conjugate

u = u1 − iu2. (140)

The Fourier transform of the Poisson convolution kernel
p(z, s) is obtained as

F {p}(u; s) = e−2π‖u‖s . (141)

By representing the frequency domain in polar coordinates,
with

u = r[cos θ + i sin θ ] (142)

and

z = x + iy = k[cosϕ + i sinϕ], (143)

the frequency transfer functions of these kernels read

F {h(2)}(u) = −e−iθ

eiθ = −e−i2θ (144)

and

F {ps}(u) = e−2πrs . (145)

Using the polar coordinate representation of the inverse two-
dimensional Fourier transform to obtain the spatial domain
representation of the kernels yields

(ps ∗ h(2))(z)

= F −1{−e−2πrse−i2θ }(z)

= 2π

∫ ∞

r=0

∫ 2π

θ=0
−e−2πrse−i2θ ei2πkr cos(θ−ϕ)r dθ dr

= 2π

∫ ∞

r=0

∫ 2π

θ=0
−e−2πrs

× e−i2(θ+ϕ)ei2πkr cos(θ−ϕ+ϕ)r dθ dr

= −2πe−i2ϕ

∫ ∞

r=0
e−2πrs

×
[∫ 2π

θ=0
e−i2θ e−i2πkr cos θ dθ

]

︸ ︷︷ ︸
=J2(2πkr)

r dr

= −2πe−i2ϕ

∫ ∞

r=0
e−2πrsJ2(2πkr)r dr (146)

where J2 is a Bessel function of the first kind and sec-
ond order. In the following the abbreviations α = 2πs and
β = 2πk will be used. J2 can be written according to the
recurrence relation for Bessel functions as

J2(2πkr) = J2(βr) = 2

βr
J1(βr) − J0(βr) (147)

since the recurrence relation reads

Jν(x) = 2(ν − 1)

x
Jν−1(x) − Jν−2(x). (148)

These results lead to

(h(2) ∗ ps)(z)

= −2πe−i2ϕ

∫ ∞

r=0
e−αrJ2(2πkr)r dr

= −2πe−i2ϕ

∫ ∞

r=0
e−αr 2

βr
J1(βr)r dr

+ 2πe−i2ϕ

∫ ∞

r=0
e−αrJ0(βr)r dr

= −2πe−i2ϕ

[
2

β

∫ ∞

r=0
e−αrJ1(βr)dr
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−
∫ ∞

r=0
e−αrJ0(βr)r dr

]
. (149)

According to common integral tables [12] one obtains the
evaluation of the two Bessel integrals as

2

β

∫ ∞

r=0
e−αrJ1(βr) dr = 2[√α2 + β2 − α]

β2
√

α2 + β2
(150)

since

∫ ∞

r=0
e−αrJν(βr) dr = [√α2 + β2 − α]ν

βν
√

α2 + β2
(151)

and

∫ ∞

r=0
e−αrJ0(βr)r dr = 2αΓ ( 3

2 )
√

π(α2 + β2)
3
2

= α

(α2 + β2)
3
2

(152)

since Γ ( 3
2 ) =

√
π

2 and

∫ ∞

r=0
e−αrJν(βr)rν+1 dr = 2α(2β)νΓ (ν + 3

2 )
√

π(α2 + β2)ν+ 3
2

. (153)

Plugging these results in the equations above results in

(h(2) ∗ ps)(z)

= −2πe−i2ϕ

∫ ∞

r=0
e−αrJ2(2πkr)r dr

= s(2s2 + 3‖z‖2) − 2(s2 + ‖z‖2)
3
2

2π‖z‖4(s2 + ‖z‖2)
3
2

(x2 − 2ixy − y2)

(154)

with

e−i2ϕ = [e−iϕ]2 =
[

z

‖z‖
]2

= (x − iy)2

‖z‖2
= (x2 − 2ixy − y2)

1

‖z‖2
. (155)

These results lead to the three different 2D convolution ker-
nels in the spatial domain of the second order generalized
Hilbert transform in Poisson scale space

q(2)(z, s) = 3s‖z‖2 + 2s3 − 2(‖z‖2 + s2)
3
2

2π‖z‖4(‖z‖2 + s2)
3
2

⎡

⎣
x2

xy

y2

⎤

⎦ . (156)

�

Appendix B: Appendix: Spatial Third Order
Generalized Hilbert Transform Kernels in
Poisson Scale Space

Proof The Fourier transform of the convolution kernel
h(3)(x, y) results in the multiplier

F {h(3)}(u) = −e−i3θ . (157)

In the same way as for the second order Hilbert transform
we now compute the representation of the third order Hilbert
transform in monogenic scale space.

(h(3) ∗ ps)(z)

= F −1{−e−2πrse−i3θ }(z)

= 2π

∫ ∞

r=0

∫ 2π

θ=0
−e−2πrse−i3θ ei2πkr cos(θ−ϕ)r dθ dr

= 2π

∫ ∞

r=0

∫ 2π

θ=0
−e−2πrs

× e−i3(θ+ϕ)ei2πkr cos(θ−ϕ+ϕ)r dθ dr

= −2πe−i3ϕ

∫ ∞

r=0
e−2πrs

×
[∫ 2π

θ=0
e−i3θ e−i2πkr cos θ dθ

]

︸ ︷︷ ︸
=J3(2πkr)

r dr

= −2πe−i3ϕ

∫ ∞

r=0
e−2πrsJ3(2πkr)r dr (158)

with

J3(2πkr) = J3(βr) = 4

βr
J2(βr) − J1(βr) (159)

and with

∫ ∞

r=0
e−αrJν(βr)rν dr = (2β)νΓ (ν + 1

2 )
√

π(α2 + β2)ν+ 1
2

. (160)

The 2D convolution kernels in the spatial domain of the third
order Hilbert transform in monogenic scale space read

q(3)(z, s)

= 4s2(2s2 + 3‖z‖2) + 3‖z‖4 − 8s(s2 + ‖z‖2)3/2

2π‖z‖6(s2 + ‖z‖2)3/2

×

⎡

⎢⎢⎣

x3

x2y

xy2

y3

⎤

⎥⎥⎦ . (161)

�
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