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Abstract. So far the recently introduced monogenic curvature tensor has only been known in Fourier domain. In this paper
the monogenic curvature tensor will be formulated in spatial domain as a concatenation of two and three Riesz transforms
respectively. Furthermore it will be shown that the Riesz transform of any order can be defined by a concatenation of one
dimensional Hilbert transforms in Radon space, the Radon transform of the signal and its inverse. The Riesz, Hilbert and
Radon transforms provide a connection between differential geometry and signal processing so that already known results
from differential geometry can be used to solve problems from phase based local image analysis of intrinsic dimension two
and to interpret the monogenic curvature tensor exactly.
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INTRODUCTION

In the following 2D signals f ∈RΩ will be analyzed in the Monge patch embedding I f = {xe1 +ye2 + f (x,y)e3|(x,y)∈
Ω⊂R2}which is well known from differential geometry with {1,e1,e2,e3,e12,e13,e23,e123} as the set of basis vectors
of the Clifford algebra R3. A 2D signal f will be classified into local regions N ⊆ Ω of different intrinsic dimension:

f ∈

 i0DN , f (xi) = f (x j) ∀xi,x j ∈ N
i1DN , f (x,y) = g(xcosθ + ysinθ) ∀(x,y) ∈ N with g ∈ RR and f /∈ i0DN
i2DN , f (x,y) = ∑i∈I fi(x,y) with fi ∈ i1DN and the finite index set I with |I|> 1

(1)

The set of signals being analyzed in this work can be written as: L2(Ω,R)∩
⋃

N⊆Ω(i0DN ∪ i1DN ∪ i2DN). The set of
i1D signals can be completely analyzed by the monogenic signal [Felsberg] which splits the signal locally into phase,
orientation and amplitude information. In this paper the monogenic signal and the monogenic curvature tensor [Zang]
will be interpreted in Radon space which gives beautiful access to analyzing Riesz transforms of any order. All odd
order Riesz transforms apply a one dimensional Hilbert transform to multidimensional signals in a certain orientation
which is determined by the Radon transform [Beyerer]. The Radon transform is defined as:

r := r(t,θ) := R{ f}(t,θ) :=
∫

(x,y)∈Ω

f (x,y)δ0(xcosθ + ysinθ − t)d(x,y) (2)

with θ ∈ [0..π) as the orientation, t ∈ R as the minimal distance of the line from the origin and δ0 as the delta
distribution. The inverse Radon transform exists and is defined by:

R−1{r(t,θ)}(x,y) :=
1

2π2

∫
π

θ=0

∫
t∈R

1
xcosθ + ysinθ − t

∂

∂ t
r(t,θ)dtdθ (3)

The point of origin where the local phase and orientation information should be obtained within the signal will be
translated to position (0,0) for each point (x,y) ∈ Ω so that the inverse Radon transform can be simplified to:

R−1{r}(0,0) =− 1
2π2 ∑

i∈I

∫
t∈R

1
t

∂

∂ t
r(t,θi)dt (4)



because r(t1,θ) = r(t2,θ) ∀t1, t2 ∈ R ∀θ ∈ [0..π)−
⋃

i∈I{θi} implies ∂

∂ t r(t,θ) = 0 ∀t ∈ R ∀θ ∈ [0..π)−
⋃

i∈I{θi} for
a finite number |I| ∈ N of superimposed i1D signals which construct the i2D signal f = ∑i∈I fi where each single i1D
signal fi has its own orientation θi.

INTERPRETATION OF THE FIRST ORDER RIESZ TRANSFORM

The Riesz transform of a signal f can be written in terms of the Radon transform:[
Rx{ f}(x,y)
Ry{ f}(x,y)

]
= R{ f}(x,y) = R−1{h1(t)∗ r(t,θ)nθ}(x,y) (5)

with nθ = [cosθ ,sinθ ]T and h1 as the one dimensional Hilbert kernel in spatial domain. Proof: Central slice theorem
[Felsberg]. Applying the Riesz transform to an i1D signal with orientation θm results in:[

Rx{ f}(0,0)
Ry{ f}(0,0)

]
=

[
− 1

2π2

∫
t∈R

1
t

h1(t)∗
∂

∂ t
r(t,θm)dt

]
︸ ︷︷ ︸

=:s(θm)

nθm (6)

Note that ∂

∂ t (h1(t)∗ r(t,θ)) = h1(t) ∗ ∂

∂ t r(t,θ). The orientation of the signal can therefore be derived by

arctan Ry{ f}(0,0)
Rx{ f}(0,0) = arctan s(θm)sinθm

s(θm)cosθm
= θm (see also figure 1). The Hilbert transform of f and with it also the one

dimensional phase can be calculated by:
√

[Rx{ f}(0,0)]2 +[Ry{ f}(0,0)]2 = h1 ∗ fθm with the partial Hilbert trans-

form (h1 ∗ fθ )(0) =− 1
π

∫
τ∈R

f (τ cosθ ,τ sinθ)
τ

dτ . The first order Riesz transform of any i2D signal consisting of a number

x

y

mθ

θ

t

mθ

FIGURE 1. From left to right: i1D signal in spatial domain with x- and y-axis and with main orientation θm and in Radon space
with θ - and t-axis. Even though in the right figure some artifacts can be seen in the Radon space, those artifacts do not exist in case
of an infinite support of the image patterns and therefore the artifacts will be neglected in this work: ∂

∂ t r(t,θ) = 0 ∀t ∀θ 6= θm and
in the left figure r(t1,θ) = r(t2,θ) ∀t1, t2 ∀θ 6= θm

|I| of i1D signals reads:[
Rx{ f}(0,0)
Ry{ f}(0,0)

]
= ∑

i∈I

[
− 1

2π2

∫
t∈R

1
t

h1(t)∗
∂

∂ t
r(t,θi)dt

]
nθi = ∑

i∈I
s(θi)nθi (7)

THE MONOGENIC CURVATURE TENSOR

So far the monogenic curvature tensor [Zang] has only been known in Fourier domain. This drawback makes
interpretation impossible when applying the monogenic curvature tensor to a certain signal model. This problem



can be solved in spatial domain of the Riesz transform. Now any i2D signal will be regarded as the superposition of
a finite number of i1D signals f = ∑i∈I fi. With the properties R{R−1{r}} = r and R{∑i∈I fi} = ∑i∈I R{ fi} [Toft]
and because of h1 ∗h1 ∗ f =− f the monogenic curvature tensor T = Te +To ∈ M (2,R3) can be also written in terms
of the concatenation of two and three Riesz transforms respectively and therefore also in terms of the Radon transform
and its inverse [Stein]:

Te( f ) = F−1
{

F{ f}(α,ρ)
[

cos2 α −sinα cosαe12
sinα cosαe12 sin2

α

]}
=

[
Rx{Rx{ f}} −Rx{Ry{ f}}e12

Rx{Ry{ f}}e12 Ry{Ry{ f}}

]
(8)

With F{ f}(α,ρ) as the Fourier transformed of the signal f in polar coordinates with α as the angular component
and ρ as the radial component and F−1 as the inverse Fourier transform. Now the even tensor in Radon space reads:

Te( f ) =−
[

R−1{cos2 θR{ f}} −R−1{sinθ cosθR{ f}}e12
R−1{sinθ cosθR{ f}}e12 R−1{sin2

θR{ f}}

]
(9)

The odd tensor is defined as the Riesz transform of the even part: To( f ) = Te(Rx{ f}+Ry{ f}e12). Please note that the
monogenic curvature tensor and even the monogenic signal are not restricted to any intrinsic dimension.

Interpretation of the Monogenic Curvature Tensor for Two Superimposed i1D Signals

In the following two superimposed i1D signals with orientations θ1,θ2 and arbitrary but same phase ϕ for both
i1D signals will be analyzed in Radon space (see figure 2). With the abbreviations: a := cosθ1, b := cosθ2, c :=
sinθ1, d := sinθ2 the even tensor for two i1D signals reads:

Te = f (0,0)
[

a2 +b2 −(ca+db)e12
(ca+db)e12 c2 +d2

]
(10)

and the odd tensor for two i1D signals reads:

To =−s
[

(a3 +b3)+(ca2 +db2)e12 −(ca2 +db2)e12 +(c2a+d2b)
(ca2 +db2)e12− (c2a+d2b) (c2a+d2b)+(c3 +d3)e12

]
(11)

with assumption s := s(θ1) = s(θ2). The determinant of the odd tensor reads:

e1 detTo = e1 s2(a3d2b+b3c2a− ca2d3−db2c3−2ca2db2 +2c2ad2b)︸ ︷︷ ︸
=:B

+e2 s2(a3d3 +b3c3−db2c2a− ca2d2b)︸ ︷︷ ︸
=:C

(12)

Using that notation, the main orientation can be derived by: θm = θ1+θ2
2 = 1

2 arctan C
B . The apex angle of the two

i1D signals can be derived by the Gaussian and main curvature known from differential geometry and with the
basic ideas of Euler’s and Meusnier’s theorems [Baer]: H := 1

2 trace(Te) = 1
2 (a2 + b2 + c2 + d2) f (0,0) = f (0,0) and

K := detTe = [ f (0,0)]2 (a2d2 +b2c2−2abcd). This yields the apex angle:

∣∣∣∣θ1−θ2

2

∣∣∣∣ = arctan

√√√√∣∣∣∣∣H−
√

H2−K

H +
√

H2−K

∣∣∣∣∣ = arctan

√√√√∣∣∣∣∣1−
√

1−a2d2−b2c2 +2abcd

1+
√

1−a2d2−b2c2 +2abcd

∣∣∣∣∣ (13)

The phase ϕ of both signals can be derived in many different ways. One possibility would be by the determinants of
the even and odd tensors: ϕ = arctan B2+C2

det2 Te
.

CONCLUSION AND FUTURE WORK

The odd-order Riesz transform of any i1D or i2D signal can be analyzed in Radon space in which a one dimensional
partial Hilbert transform will be applied in direction of each i1D signal with its individual orientation θi, i ∈ I.
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FIGURE 2. From left to right: Two superimposed i1D signals with orientation θ1 and θ2 in spatial domain and in Radon space.
Assuming that both signals have same phase ϕ the signal information can be separated by the Riesz transform.

Assuming that two superimposing i1D signals have arbitrary but same phase ϕ , the orientations θ1,θ2 and the phase
can be calculated. The advantage of analyzing the Riesz transform in Radon space is that the signal properties
consisting of orientation and phase are explicitly given after applying the general operator (e.g. the monogenic
curvature operator) to the specific i1D or i2D signal function. Future work will include analyzing the superposition of
i1D signals with individual phases ϕi. Assume the orientations θ1,θ2 of the two signals to be known. Then the Hilbert
transforms of each signal can be derived by the following linear system of equations:[

h1 ∗ fθ1
h1 ∗ fθ2

]
=

1
ad− cb

[
Rx{ f}d−Ry{ f}b
Ry{ f}a−Rx{ f}c

]
(14)

Note that arbitrary but same phase of both signals has been assumed in this paper for deriving the orientations, so that
only one common phase can be calculated by this assumption. The analysis of i2D signals in Radon space presented
in this work realizes to interpret the monogenic curvature tensor for the first time in an exact way.
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