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Abstract. In this paper, we address the topic of estimating two-frame
dense optical flow from the monogenic curvature tensor. The monogenic
curvature tensor is a novel image model, from which local phases of image
structures can be obtained in a multi-scale way. We adapt the combined
local and global (CLG) optical flow estimation approach to our frame-
work. In this way, the intensity constraint equation is replaced by the
local phase vector information. Optical flow estimation under the illumi-
nation change is investigated in detail. Experimental results demonstrate
that our approach gives accurate estimation and is robust against noise
contamination. Compared with the intensity based approach, the pro-
posed method shows much better performance in estimating flow fields
under brightness variations.
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1 Introduction

Optical flow estimation is one of the key problems gathering the interest of re-
searchers for decades in the computer vision community. It has a wide application
in motion estimation, object recognition, tracking, surveillance and so on.

Various approaches have been proposed to estimate the optical flow. Signif-
icant improvements [1] have been obtained since the pioneering work of Horn
and Schunck [2] and Lucas and Kanade [3]. In [4], Barron et al. made the per-
formance evaluation of optical flow techniques. The local phase-based method
[5] was proven to be the best performed due to its subpixel accuracy and its
robustness with respect to smooth contrast changes and affine deformations.
Differential methods, on the other hand, have become the most frequently used
techniques for optical flow estimation because of the simplicity and good perfor-
mance. Among the differential methods, there exist two classes. They are local
methods such as that of the Lucas and Kanada and global methods such as that
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of the Horn and Schunk. Local methods are known to be more robust under
noise, while global approaches yield 100% dense flow fields. Hence, Bruhn et al.
[6] proposed the combined local-global (CLG) approach to yield dense optical
flow fields which is robust against noise.

In order to have accurate and robust estimation of dense optical flow fields
against noise and brightness variation, we propose a novel approach based on
the monogenic curvature tensor, a new image model. In contrast to the classical
phase computation in [5], the monogenic curvature tensor can generate multi-
scale local phases of image structures in a rotation invariant way. Thus, the
proposed approach combines the advantages of the phase-based method and the
CLG method. Experiments with synthetic and real image sequences demonstrate
the favorable performance of the proposed method when compared with the
related work.

2 Monogenic Curvature Tensor

The monogenic curvature tensor is a novel 2D image model, from which multi-
scale local phases of image structures can be obtained in a rotation invariant
way. It is well known that the local phase has the advantage of being invariant
to the illumination change [7]. In this paper, we will adapt the CLG method to
this framework for the dense optical flow estimation. Hence, a brief overview of
the novel image model is given in this section.

2.1 Basis Functions

The monogenic curvature tensor consists of a curvature tensor and its conju-
gate part. By employing damped 2D spherical harmonics as basis functions, the
monogenic curvature tensor is unified with a scale-space framework. An nth or-
der damped 2D spherical harmonicHn in the spectral domain takes the following
form

Hn(ρ, α; s) = exp(inα)exp(−2πρs) = [cos(nα) + i sin(nα)]exp(−2πρs) , (1)

where ρ and α denote the polar coordinates in the Fourier domain, s refers to
the scale parameter. The damped 2D spherical harmonic is actually 2D spherical
harmonic exp(inα) combined with the Poisson kernel exp(−2πρs) [8]. The first
order damped 2D spherical harmonic is basically identical to the conjugate Pois-
son kernel [8]. When the scale parameter is zero, it is exactly the Riesz transform
[9].

2.2 Curvature Tensor and Its Conjugate Part

In order to evaluate the local phase information, the curvature tensor and its
harmonic conjugate part are designed to capture the even and odd information
of 2D image structures.
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Designing the curvature tensor is motivated by the second fundamental the-
orem of the differential geometry, that is the second order derivatives or Hessian
matrix which contains curvature information of the original signal. Let f be a
2D signal, its Hessian matrix is correspondingly given by

H =

[

fxx fxy

fxy fyy

]

, (2)

where x and y are the Cartesian coordinates. According to the derivative theorem
of the Fourier theory, the Hessian matrix in the spectral domain reads

F{H} =

[

−4π2ρ2 1+cos(2α)
2 F −4π2ρ2 sin(2α)

2 F

−4π2ρ2 sin(2α)
2 F −4π2ρ2 1−cos(2α)

2 F

]

, (3)

where F is the Fourier transform of the original signal f . It is obvious that
angular parts of the second order derivatives in the Fourier domain are related to
2D spherical harmonics of even order 0 and 2. Hence, these harmonics represent
the even information of 2D structures. Therefore, we are motivated to construct a
tensor Te, which is related to the Hessian matrix. This tensor is called a curvature
tensor, because it is similar to the curvature tensor of the second fundamental
form of the differential geometry. This curvature tensor Te indicates the even
information of 2D image structures and can be obtained from a tensor-valued
filter He in the frequency domain, i.e. Te = F−1 {FHe}, where F−1 means the
inverse Fourier transform. Hence, the tensor-valued filter He, called the even
Hessian operator reads

He =

[

H0+real(H2)
2

imag(H2)
2

imag(H2)
2

H0−real(H2)
2

]

=
1

2

[

1 + cos(2α) sin(2α)
sin(2α) 1 − cos(2α)

]

exp(−2πρs)

=

[

cos2(α) 1
2 sin(2α)

1
2 sin(2α) sin2(α)

]

exp(−2πρs) , (4)

where real(·) and imag(·) indicate the real and imaginary parts of the expressions.
In this filter, two components cos2(α) and sin2(α) can be considered as two

angular windowing functions. These angular windowing functions provide a mea-
sure of the angular distance. From them, two perpendicular i1D components of
the 2D image, oriented along the x and y coordinates, can be obtained. The
other component of the filter is also the combination of two angular windowing
functions, i.e. 1

2 sin(2α) = 1
2 (cos2(α− π

4 )− sin2(α− π
4 )). These two angular win-

dowing functions yield again two i1D components of the 2D image, which are
oriented along the diagonals. These four angular windowing functions can also be
considered as four differently oriented filters, which are basis functions to steer
a filter. They make sure that i1D components along different orientations are
extracted. Consequently, the even Hessian operator He enables the extraction of
differently oriented i1D components of the 2D image.

The conjugate Poisson kernel, which evaluates the corresponding odd infor-
mation of the i1D signal, is in quadrature phase relation with the i1D signal.
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Therefore, the odd representation of the curvature tensor, called the conjugate
curvature tensor To, is obtained by employing the conjugate Poisson kernel to
elements of Te. Besides, the conjugate curvature tensor To results also from a
tensor-valued odd filter Ho, i.e. To = h1 ∗ Te = F−1 {H1HeF} = F−1 {HoF},
where h1 denotes the conjugate Poisson kernel in the spatial domain. Hence, the
odd Hessian operator Ho in the spectral domain is given by

Ho =
1

2

[

H1(H0 + real(H2)) H1(imag(H2))
H1(imag(H2)) H1(H0 − real(H2))

]

. (5)

2.3 Local Amplitudes and Phases

Similar as the Hessian matrix, we are able to compute the trace and determinant
of Te and To for detecting the intrinsically one dimensional (i1D) and intrinsi-
cally two dimensional (i2D) structures. Note that 2D images can be classified
into three categories according to the intrinsic dimensionality [10], a local prop-
erty of a multidimensional signal. Thus, constant signals are intrinsically zero
dimensional (i0D) structures, i1D signals represent straight lines or edges and
i2D signals are composed of curved edges and lines, junctions, etc.

Consequently, a novel model for the i1D structures is obtained by combing
the traces of Te and To, this is exactly the monogenic scale-space, as proposed
in [8]

fi1D(x; s) = trace(Te(x; s)) + trace(To(x; s)) = te + to (6)

with to = [real(trace(To(x; s))), imag(trace(To(x; s)))]T .
Hence, the multi-scale local amplitude and local phase vector for i1D struc-

tures are given by
a(x; s) =

√

t2e + t2
o (7)

ϕ(x; s) =
to

|to|
atan

(

|to|

te

)

, (8)

where to

|to|
denotes the local orientation of the i1D structure. Correspondingly,

combing the determinants of Te and To results in a novel model for the i2D struc-
ture, which is called the generalized monogenic curvature scale-space fi2D(x; s),

fi2D(x; s) = det(Te(x; s)) + det(To(x; s)) = de + do (9)

with do = [real(det(To(x; s))), imag(det(To(x; s)))]T .
From it, the local amplitude for the i2D structure is obtained as

A(x; s) =
√

d2
e + d2

o , (10)

and the local phase vector takes the following form

Φ(x; s) =
do

|do|
atan

(

|do|

de

)

, (11)

where do

|do|
decides the local main orientation of the i2D structure.

Since the local phase information of the i1D and i2D structures contains not
only phase information but also the local orientation, the evaluation can be done
in a rotation-invariant way.
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3 Dense Optical Flow Estimation

Differential methods have become the most widely used techniques for optical
flow computation. By combining the advantages of local methods and global
methods, Bruhn et al. [6] proposed a new method (CLG), which could yield
flow fields with 100% density and have the robustness against noise. Since the
phase-based approach was shown to perform very good with the advantage of
being robust against brightness change [5, 4], it is very natural to combine the
advantages of the phase-based approach and the CLG method. In this section,
we will adapt the CLG method into our model framework to estimate two-frame
optical flow fields.

3.1 2D Combined Local-Global (CLG) Method

Differential methods are based on the assumption that the grey values of image
sequences f(x, y, t) in subsequent frames do not change over time

f(x+ u, y + v, t+ 1) = f(x, y, t) , (12)

where the displacement field [u, v]T denotes the optical flow. Following this, the
spatial CLG method aims to minimize an energy function for estimating the flow
field

E(w) =

∫

Ω

(ψ1(w
TJρ(∇3f)w) + αψ2(|∇w|2))dxdy (13)

with

∇ = [∂x, ∂y]T (14)

∇3 : = [∂x, ∂y, ∂t]
T (15)

w : = [u, v, 1]T (16)

|∇w|2 : = |∇u|2 + |∇v|2 (17)

Jρ(∇3f) : = Kρ ∗ (∇3f∇3f
T ) , (18)

where Ω denotes the image domain, α serves as regularization parameter, Kρ

means a Gaussian kernel with standard deviation ρ, ψ1(·) and ψ2(·) indicate two
nonquadratic penalisers with the following form

ψi(z) = 2β2
i

√

1 +
z

β2
i

i ∈ {1, 2} (19)

with β1 and β2 as scaling parameters to handle outliers.

3.2 New Energy function with Phase Constraints

In order to combine the phase-based approach with the 2D CLG method, the
classical brightness constancy assumption will be replaced by new phase con-
straints. Two local phase vectors of i1D and i2D structures can be derived from
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the monogenic curvature tensor. One can assume that local phases of image se-
quences f(x, y, t) in subsequent frames do not change over time. This results in
the following new constancy assumptions

ϕ(x+ u, y + v, t+ 1) = ϕ(x, y, t) (20)

Φ(x+ u, y + v, t+ 1) = Φ(x, y, t) . (21)

For small displacements, we may perform a first order Taylor expansion yielding
the optical flow constraints:

ϕxu+ ϕyv + ϕt = 0 (22)

Φxu+ Φyv + Φt = 0 . (23)

Let the i1D and i2D local phase vectors be ϕ = [ϕ1, ϕ2]
T and Φ = [Φ1, Φ2]

T ,
respectively, we propose to minimize the following energy function

E(w) =

∫

Ω

(ψ1(w
TJρ(∇3ϕ + γ∇3Φ)w) + αψ2(|∇w|2))dxdy (24)

with

Jρ(∇3ϕ + γ∇3Φ) = Kρ ∗





M11 M12 M13

M21 M22 M23

M31 M32 M33



 (25)

M11 = ϕ2
1x + ϕ2

2x + γ(Φ2
1x + Φ2

2x) (26)

M12 = M21 = ϕ1xϕ1y + ϕ2xϕ2y + γ(Φ1xΦ1y + Φ2xΦ2y) (27)

M13 = M31 = ϕ1xϕ1t + ϕ2xϕ2t + γ(Φ1xΦ1t + Φ2xΦ2t) (28)

M22 = ϕ2
1y + ϕ2

2y + γ(Φ2
1y + Φ2

2y) (29)

M23 = M32 = ϕ1yϕ1t + ϕ2yϕ2t + γ(Φ1yΦ1t + Φ2yΦ2t) (30)

M33 = ϕ2
1t + ϕ2

2t + γ(Φ2
1t + Φ2

2t) . (31)

In this energy function, γ is employed to adjust the trade-off between the i1D
and i2D structures. According to the new energy function, the minimizing flow
field [u, v]T will satisfy the following Euler-Lagrange equations

div(ψ′
2(|∇w|2)∇u) −

1

α
ψ′

1(w
TJρ(∇3ϕ + γ∇3Φ)w)(J11u+ J12v + J13) = 0

div(ψ′
2(|∇w|2)∇v) −

1

α
ψ′

1(w
TJρ(∇3ϕ + γ∇3Φ)w)(J21v + J22u+ J23) = 0

with

ψ′
i(z) =

1
√

1 + z
β2

i

i ∈ {1, 2} . (32)

The estimation of optical flow field can thus be obtained iteratively by using an
SOR [11] scheme. In our application, we take 200 iterations.
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3.3 Computation of Phase Derivatives

In order to avoid phase wrapping, phase derivatives are computed from the filter
responses in the monogenic scale-space and the generalized monogenic curva-
ture scale-space, respectively. The spatial derivatives of i1D and i2D local phase
vectors are given by

∇ϕ =
te∇to − tT

o ∇
T te

t2e + |to|2
(33)

∇Φ =
de∇do − dT

o ∇
T de

d2
e + |do|2

. (34)

The temporal derivatives of these local phase vectors read

ϕt =
ttet

t+1
o − tt+1

e tt
o

|ttet
t+1
o − tt+1

e tt
o|

atan

(

|ttet
t+1
o − tt+1

e tt
o|

ttet
t+1
e + tt

o · t
t+1
o

)

(35)

Φt =
dt

ed
t+1
o − dt+1

e dt
o

|dt
ed

t+1
o − dt+1

e dt
o|

atan

(

|dt
ed

t+1
o − dt+1

e dt
o|

dt
ed

t+1
e + dt

o · d
t+1
o

)

, (36)

where tte, tt
o, d

t
e, dt

o denote the filter responses of the image frame at time t and
tt+1
e , tt+1

o , dt+1
e , dt+1

o are the filter responses of the next image frame.

3.4 Multi-scale Optical Flow Estimation

The linearized optical flow constraint, stated in section 3.2, is based on the phase
constancy assumption. As a consequence, it requires that u and v are relatively
small so that the linearization holds. However, this is not always the case for an
arbitrary sequence. Hence, multi-scale optical flow estimation technique should
be employed to deal with large displacements.

In this paper, we use an incremental coarse to fine strategy. In contrast to the
classical multi-scale approach, the estimated flow field at a coarse level is used
to warp the image sequence instead of serving as initialization for the next finer
scale. This compensation results in a hierarchical modification which requires to
compute only small displacement. Once this is done from coarse to the finest
scale, much more accurate estimation will be obtained.

Let dws denote a displacement increment of ws at scale s, for the coarsest
scale (s = S), the optical flow field has the initial data wS = [0, 0, 0]T . Hence,
dws is given by minimizing the following energy function

E(dws) =

∫

Ω

(ψ1((dw
s)TJρ(∇3ϕ(x + ws) + γ∇3Φ(x + ws))dws)

+ αψ2(|∇(w + dws)|2))dxdy , (37)

where x = [x, y, t]T and ws+1 = ws + dws. Note that local phase vectors will
be warped as ϕ(x + ws) and Φ(x + ws) via bilinear interpolation. Final result
will be obtained when the minimization is done to the finest scale.
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4 Experimental Results

In order to evaluate the performance of the proposed approach, optical flow
estimation on both synthetic and real-world image data is given in this section.
We use the so-called average angular error (AAE) [4] as the quantitative quality
measure. Given the estimated flow field [ue, ve]

T and the ground truth [uc, vc]
T ,

the AAE is defined as

AAE =
1

N

N
∑

i=1

arccos

(

uciuei + vcivei + 1
√

(u2
ci + v2

ci + 1)(u2
ei + v2

ei + 1)

)

, (38)

where N denotes the total number of pixels.
The Yosemite sequence with clouds is employed as the synthetic data for the

experiment. This sequence combines divergent and translational motion under
varying illumination and hence is usually regarded as the benchmark for the
optical flow estimation. Fig. 1 demonstrates the ground truth, the estimated
magnitudes and optical flow fields from our approach and the 2D CLG model. It
is obvious that our approach produces more accurate result than that of the 2D
CLG method. Especially in the clouds region, where the illumination varies, the
proposed approach shows more stable estimation. Even if we compare with 2D
CLG where the intensity is replaced by the gradient, our approach also performs
better.

Detail comparisons with other approaches according to the measurement
AAE are given in Table 1, where STD indicates the standard deviation. Our
approach demonstrates much better performance with lower AAE and STD when
compared with most of the methods. When γ = 0, only i1D phase information is
included for the constraint, the AAE now takes 3.370, which is 1.490 lower than
that of the 2D CLG method. Interestingly, this result is even lower than that
of the 3D CLG method. By adjust the parameter as γ = 0.1, i2D phase is also
contained to strengthen the constraint. Hence, estimation with even lower error
can be obtained. For this experiment, we also extend the two-frame estimation
to multi-frame by adding the temporal information. Results also indicate the
good performance of the proposed approach.

Even much better results have been reported in [1]. However, they do not
perform a first order Taylor expansion of the intensity assumption to yield the
optical flow constraint. Thus, it is very promising that our approach can also
yield comparably good results by using the non-linearized constancy assumption.

For the following experiments, we simply focus on two-frame flow field es-
timation. To investigate the robustness of our approach against noise, the 8th
frame of the Yosemite sequence is degraded with additive Gaussian noise.

The noise contaminated image (signal noise ratio: SNR=10dB) and the es-
timated flow field are shown in Fig. 2. It is obvious that the original image is
seriously degraded, nevertheless, the estimation also shows good performance
with AAE=14.160. More detail information can be found in Fig. 3. When the
SNR decreases from 40dB to 10dB, much more noise is added to the original
image. However, the estimated result is still not very sensitive to noise. This
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Fig. 1. Top row: from left to right are one frame of the Yosemite image sequence, the
magnitude and flow field of the ground truth. Middle row: from left to right are the
magnitude and flow field estimated from our approach. Bottom row: from left to right
are the magnitude and flow field estimated from the 2D CLG method.

Table 1. Optical flow estimation comparisons between different approaches (100%
density). AAE (average angular error), STD (standard deviation).

Approach AAE STD

Horn/Schunck (Barron et al., 1994) [4] 31.690 31.180

Nagel (Barron et al., 1994) [4] 10.220 16.510

Uras et al. (Barron et al., 1994) [4] 8.940 15.610

2D CLG (2005) [6] 4.860 8.480

Mémin and Pérez (1998) [12] 4.690 6.890

3D CLG (2005) [6] 4.170 7.720

Our 2D approach (γ = 0) 3.370 8.270

Our 2D approach (γ = 0.1) 3.250 8.220

Our 3D approach (γ = 0) 2.740 7.170

Our 3D approach (γ = 0.1) 2.670 7.120
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Fig. 2. From left to right are the noise degraded image (SNR=10dB), ground truth
and the estimated flow field (AAE=14.160, STD=12.760).

indicates that employing the local method and multi-scale technique into our
approach does result in a robust estimation against noise. As mentioned in [5],

10 15 20 25 30 35 40
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E

Fig. 3. The estimated results with respect
to additive Gaussian noise change.

−0.5 0 0.5
0

10

20

30

40

50

60
Illumination Change

Relative Grayvalue
A

A
E

 

 

Our approach
2D CLG

Fig. 4. The estimated results with re-
spect to illumination change.

the phase-based approach has the advantage of being not sensitive to the illumi-
nation variation. Additionally, the proposed approach adapts the CLG method
into the framework of the monogenic curvature tensor. As a consequence, this
new method combines the advantages of phase-based approach and the CLG
method. In this way, our approach should also be robust under illumination
change within some limits. To this end, another experiment is conducted to test
the performance of our approach for the brightness variation. Fig. 5 shows the
performance comparison between our approach and the 2D CLG method un-
der the brightness change. The 8th frame of the synthetic sequence is degraded
with brighter and darker illumination changes of 50%, respectively. Experimen-
tal results denote that our approach is much more robust against illumination
variation when compared with that of the 2D CLG method. To evaluate the
performance of the proposed approach under illumination change in detail, the
8th frame is degraded with different brighter and darker brightness variations.
The estimated AAEs with respect to the relative grayvalue changes are shown
in Fig.4. Results indicate that our approach is very robust against illumination
change. However, the 2D CLG method is very sensitive to it.
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Fig. 5. Top row: from left to right are frame 8 degraded with brighter illumination
change of 50%, estimated flow fields from the 2D CLG (AAE=46.940, STD=39.970) and
our approach (AAE=13.500, STD=17.420). Bottom row: from left to right are frame 8
degraded with darker illumination variation of 50%, optical flow estimations from the
2D CLG (AAE=52.140, STD=46.630) and our method (AAE=15.830, STD=19.710).

The last experiment aims to examine the performance of the proposed ap-
proach for real image sequences. In this experiment, two sequences are used.
They are the well-known Hamburg taxi sequence and the Ettlinger Tor traffic
sequence [13]. Estimated flow fields are illustrated in Fig. 6. It is clear that the
proposed approach also yields realistic optical flow for real-world data.

5 Conclusions

We present a novel approach for estimating two-frame dense optical flow field in
this paper. This new approach adapts the CLG approach to the monogenic cur-
vature tensor, a new framework which enables multi-scale local phase evaluation
of i1D and i2D image structures in a rotation invariant way. Hence, our approach
takes both the advantages of phase-based approach and the CLG approach. In
this way, the proposed method produces accurate estimations with 100% density
and is robust against noise. Compared with the intensity based approach, our
method performs much better under the illumination variation.
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