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Abstract. This paper shows the fundamental relation of exact rotation-
ally invariant local phase based 2D signal analysis in scale space and the
task of the solution of the corresponding inverse problem. The general-
ized 2D Hilbert transform in spatial domain will be derived from order
one to three to result in the appropriate system of equations to solve for
an assumed local signal model.

1 Introduction

We assume that a 2D signal f ∈ L2(R2, R) can be locally modeled by a super-
position of arbitrarily orientated one-dimensional cosine waves [6]

P{f}(x, y; s) = (p ∗ f)(x, y; s) =
n∑

ν=1

aν cos(x cos θν + y sin θν + φν)

in scale space for each scale space parameter s > 0 and p(x, y; s) (see figure
1) as the Poisson filter [3] which acts as a low pass filter to the original 2D
signal. Without loss of generality this signal model degrades locally at the origin
(x, y; ·) := (0, 0; ·) of a local coordinate system to

fp =
n∑

ν=1

aν cos φν .

In case of image analysis lines, edges and junctions can be modeled exactly in this
way. The task is now to determine the local amplitude aν , the local orientation θν

and the local phase φν . This problem has been already solved for one-dimensional
signals by the analytic signal [4] by means of the Hilbert transform [5] and for
intrinsically one-dimensional [7] signals (n = 1) by the 2D monogenic signal [2]
by means of the generalized first order Hilbert transform. This paper shows that
2D signal processing can be regarded as an inverse problem [1] where generalized
2D Hilbert transforms up to order three are applied to the original signal f whose
model will be restricted to n = 2.
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2 Generalized Hilbert Transform Kernels

The resulting convolution kernels in Poisson scale space and in spatial domain
of the first order generalized 2D Hilbert transform read

q(1)(x, y; s) =
1

2π (s2 + x2 + y2)
3
2

[
x
y

]
,

the second order generalized 2D Hilbert transform kernels read

q(2)(x, y; s) =
s(2s2 + 3(x2 + y2))− 2(s2 + x2 + y2)

3
2

2π(x2 + y2)2(s2 + x2 + y2)
3
2

 x2

xy
y2


and the third order generalized 2D Hilbert transform kernels read

q(3)(x, y; s) =
4s2(2s2 + 3(x2 + y2)) + 3(x2 + y2)2 − 8s(s2 + x2 + y2)

3
2

(x2 + y2)3(s2 + x2 + y2)
3
2


x3

x2y
xy2

y3


(see figure 1). These generalized Hilbert transform kernels can be now used
for convolution in spatial domain with the original 2D signal which results in
[fx, fy]T = f ∗ q(1), [fxx, fxy, fyy]T = f ∗ q(2) and [fxxx, fxxy, fxyy, fyyy]T =
f ∗ q(3).

3 Relation of the Radon Transform and the Generalized
Hilbert Transform

By the relation of the 2D Radon transform and the generalized 2D Hilbert
transform [6] the appropriate system of equations can be determined as[

fx

fy

]
= R−1

{[
cos θ
sin θ

]
(h(t) ∗ fr(t; θ; s))

}
(x, y; s)

for the first order generalized Hilbert transform with fr(t, θ; s) := R{P{f}} (t, θ; s)
as the 2D Radon transformed signal, its inverse R−1{·}(x, y; s) and the one-
dimensional Hilbert transform kernel h(t) = 1

πt . The second order generalized
Hilbert transformed signal readsfxx

fxy

fyy

 = −R−1


 cos2 θ

sin θ cos θ
sin2 θ

 fr(t, θ; s)

 (x, y; s)

and the third order generalized Hilbert transform results in
fxxx

fxxy

fxyy

fyyy

 = −R−1




cos3 θ
cos2 θ sin θ
cos θ sin2 θ

sin3 θ

 (h(t) ∗ fr(t; θ; s))

 (x, y; s)



The Relation of Inverse Problems and Isotropic 2D Signal Analysis 3

Fig. 1. Illustration from left to right of the 2D convolution kernels in spatial domain
for a certain scale space parameter s > 0. Top row: Poisson kernel p. Second row: q

(1)
x

and q
(1)
y . Third row: q

(2)
xx , q

(2)
xy and q

(2)
yy . Bottom row: q

(3)
xxx, q

(3)
xxy, q

(3)
xyy and q

(3)
yyy.

4 Corresponding Inverse Problem

By means of the results of the Radon space interpretation of the generalized
Hilbert transformed signal the system of equations can be identified at the origin
(x, y; ·) := (0, 0; ·) of the local coordinate system as

[
fx

fy

]
=

n∑
ν=1

aν sinφν

[
cos θν

sin θν

]

for the first order, fxx

fxy

fyy

 =
n∑

ν=1

aν cos φν

 cos2 θν
1
2 sin(2θν)
sin2 θν
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for the second order and
fxxx

fxxy

fxyy

fyyy

 =
n∑

ν=1

aν sinφν


cos3 θν

cos2 θν sin θν

cos θν sin2 θν

sin3 θν


for the third order [6]. Signal analysis in general now corresponds to the in-
verse problem to solve those system of equations for the unknown parameters
aν , φν and θν for a certain n and using the results of the generalized Hilbert
transformed signal. For n = 2 the results of the generalized Hilbert transformed
signal [fxx, fxy, fyy, fxxx, fxxy, fxyy, fyyy]T can be used.

5 Conclusion

It has been shown that isotropic phase based signal analysis is fixed to a cer-
tain signal model. By means of the generalized 2D Hilbert transform and the
relation to the 2D Radon transform the appropriate system of equations can be
determined which corresponds to the known results of the convolution in spatial
domain and the local structural and geometrical features of the assumed signal
model. Therefore, the problem of signal analysis can be written as an inverse
problem. The solution and the geometrical interpretation of this problem for
certain signal models will be part of our future work.
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