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Abstract. In 1D signal processing local energy and phase can be determined by the analytic signal. Local energy, phase
and orientation of 2D signals can be analyzed by the monogenic signal for all i(ntrinsic)1D signals in an rotational invariant
way by the generalized Hilbert transform. In order to analyze both i1D and i2D signals in one framework the main idea
of this contribution is to lift up 2D signals to the higher dimensional conformal space in which the original signal can be
analyzed with more degrees of freedom by the generalized Hilbert transform on the unit sphere. An appropriate embedding
of 2D signals on the unit sphere results in an extended feature space spanned by local energy, phase, orientation/direction
and curvature. In contrast to classical differential geometry, local curvature can now be determined by the generalized Hilbert
transform in monogenic scale space without any derivatives.

Keywords: Signal analysis, image processing, Clifford analysis, geometric algebra, generalized Hilbert transform, conformal space, stereo-
graphic projection, scale space
PACS: 02.10.Xm,02.40.Dr

INTRODUCTION

In 1D signal processing the local energy and phase can be determined by the analytic signal [1] and the Hilbert
transform [2]. The local energy, 1D phase and orientation of 2D signals f ∈ L2(R2;R) can be analyzed by the
monogenic signal [3] for all i(ntrinsic)1D signals in an rotational invariant way by the generalized Hilbert transform
(first order 2D Riesz transform in Euclidean space) known from Clifford analysis [4].
In order to analyze both i1D and i2D signals in one framework the main idea of this paper is to lift up 2D signals to
higher dimensional conformal spaces (see [5] and [6]) in which the original signal can be analyzed with more degrees
of freedom by the generalized Hilbert transform on the unit sphere [7]. An appropriate embedding of 2D signals on the
unit sphere results in an extended feature space spanned by local energy, phase, orientation/direction and curvature. In
contrast to classical differential geometry, local curvature can now be determined by the generalized Hilbert transform
in monogenic scale space [8] without any derivatives. This novel approach contains the monogenic signal as a special
case for i1D signals with zero curvature. Further advantages are the low computational time complexity of a 2D
convolution, the easy implementation without Fourier transformation in spatial domain and the advantages of phase
based signal processing now with respect to curvature, i.e. the local curvature is independent of the local energy which
is very important for local signal analysis.

GENERALIZED HILBERT TRANSFORMS ON Sn

The generalized Hilbert transform on the unit sphere Sn :=
{

v ∈ Rn+1 : ‖v‖= 1
}

can be defined according to [4] by

H{c}(ξ ) =
2

An+1
P.V.

∫
ω∈Sn

(ξ −ω)◦ω

‖ξ −ω‖n+1 c(ω) dS(ω) (1)

with ◦ as the geometric product and ξ ∈ Sn, An+1 as the surface area and dS as the surface element of the unit sphere
Sn. In order to evaluate the Hilbert transform of the original signal f on S2 the original signal f will be embedded on
S2 by projecting R2 to S2. The conformal mapping is given by

C (x,y) :=
1

x2 + y2 +1

 2x
2y

x2 + y2−1

 (2)



and its inversion [9] is given by

C−1(ω) :=
1

1−ω3

[
ω1
ω2

]
(3)

with ω := (ω1,ω2,ω3). This results in the conformal embedding of the original 2D planar signal

c(ω) :=
{

f (C−1(ω)T ) ,ω ∈ S2−{(0,0,1)}
0 ,else . (4)

With ξ ∈ S2 and ξ := (0,0,−1) (south pole of the sphere) as the origin of the local coordinate system relatively to
the test point of local interest, the components of the singular integral (1) can be analyzed by the evaluation of the
geometric product of the two vectors ω = ω1e1 +ω2e2 +ω3e3 and ξ = ξ1e1 +ξ2e2 +ξ3e3 =−e3

(ξ −ω)◦ω = 1+ω1e13 +ω2e23 +ω3 (5)

and evaluating

‖ξ −ω‖3 =
√

2+2ω3
3

(6)

with the norm of a vector ‖x‖ :=
√

∑
n
i=1 x2

i and ω =
3
∑

i=1
ωiei in vector notation of the Clifford algebra. Plugging these

results into equation (1) and evaluating it at the origin ξ = (0,0,−1) results in

H{c}(ξ ) =
2

A3
P.V.

∫
ω∈S2

1
√

2+2ω3
3 c(ω) dS(ω)

︸ ︷︷ ︸
=:H0{c}(ξ )

+
2

A3
P.V.

∫
ω∈S2

ω1
√

2+2ω3
3 c(ω) dS(ω)e13

︸ ︷︷ ︸
=:H1{c}(ξ )e13

(7)

+
2

A3
P.V.

∫
ω∈S2

ω2
√

2+2ω3
3 c(ω) dS(ω)e23

︸ ︷︷ ︸
=:H2{c}(ξ )e23

+
2

A3
P.V.

∫
ω∈S2

ω3
√

2+2ω3
3 c(ω) dS(ω)

︸ ︷︷ ︸
=:H3{c}(ξ )

. (8)

The signal model in conformal space will be a great circle with azimuthal orientation angle θ . The Hilbert transform
on S2 can be used to determine all features that can be determined by the Riesz transform in real analysis. But the
Hilbert transform on S2 provides a new way of interpretation in contrast to the real Radon domain [10]. This will be
shown by comparison of the Riesz transform R j{·} and the Hilbert transform H j{·} on the sphere. Recalling that the
transforms evaluated at ξ = (0,0,−1) with x = (x1,x2,x3) := rω ∈ R3 and r ∈ R read

R j{c}(ξ ) =
2

A4
P.V.

∫
x∈R3

x j

‖x−ξ‖4 c(x) dx =
2

A4
P.V.

∫
ω∈S2

ω j
√

2+2ω3
4 c(ω) dS(ω) (9)

H j{c}(ξ ) =
2

A3
P.V.

∫
ω∈S2

ω j
√

2+2ω3
3 c(ω) dS(ω) . (10)

Using the fact that c(x) has only non-zero values for x ∈ S2 it is possible to restrict c(x) to the set {x : 0 6 ‖x‖6 1}
and rewrite the integral of the Riesz transform as (see [11])

R j{c}(ξ ) =
2

A4
P.V.

∫
06‖x‖61

x j

‖x−ξ‖4 c(x) dx (11)

=
2

A4
P.V.

∫
r∈[0,1]

r2

[∫
ω∈S2

ω j
√

2+2ω3
4 c(rω) dS(ω)

]
dr (12)

=
2

A4
P.V.

∫
ω∈S2

ω j

(2+2ω3)
2 c(ω) dS(ω) . (13)



FIGURE 1. From left to right: Visualization of the convolution kernels in x1, x2 and x3 direction in spatial domain.

Since both transforms are equal up to the factor
√

2+2ω3
−1, the R j kernels are characterized by a faster decay and

rise towards the south pole. In order to obtain the same results as the 3D Riesz transform restricted to S2, the Hilbert
transform on S3 will be considered now. Since S2 ⊂ S3 the embedding ω̃ := (ω̃1, ω̃2, ω̃3, ω̃4) := (ω1,ω2,ω3,0) ∈ S3

with ω ∈ S2 will be used. The signal c is now embedded as

c̃(ω̃) :=
{

c(ω̃1, ω̃2, ω̃3) , ω̃4 = 0
0 ,else . (14)

Using definition (1) with n = 3 and equations (5) and (6) extended to n = 3 yields the Hilbert transform on S3 evaluated
at the origin ξ̃ := (0,0,−1,0) as

H{c̃}(ξ̃ ) =
2

A4
P.V.

∫
ω∈S3

1

(2+2ω3)
2 c̃(ω) dS(ω)

︸ ︷︷ ︸
H0{c̃}(ξ̃ )

+
2

A4
P.V.

∫
ω∈S3

ω1

(2+2ω3)
2 c̃(ω) dS(ω)

︸ ︷︷ ︸
H1{c̃}(ξ̃ )

e14 (15)

+
2

A4
P.V.

∫
ω∈S3

ω2

(2+2ω3)
2 c̃(ω) dS(ω)

︸ ︷︷ ︸
H2{c̃}(ξ̃ )

e24 +
2

A4
P.V.

∫
ω∈S3

ω3

(2+2ω3)
2 c̃(ω) dS(ω)

︸ ︷︷ ︸
H3{c̃}(ξ̃ )

(16)

+
2

A4
P.V.

∫
ω∈S3

ω4

(2+2ω3)
2 c̃(ω) dS(ω)

︸ ︷︷ ︸
H4{c̃}(ξ̃ )

e34 . (17)

Since ω4 = 0 ∀ω ∈ S3 with c̃(ω) 6= 0 due to the nature of the embedding it follows that H4{c̃}(ξ̃ ) = 0. Furthermore,
considering spherical coordinates

ω = sinϕ cosθe1 + sinϕ sinθ cosγe2 + cosθe3 + sinϕ sinθ sinγe4 (18)

in S3 and using the fact that ω4 = 0 where c̃(ω) 6= 0, it follows that γ = 0. Therefore, the result is the following
equivalence of the generalized Hilbert transform on the unit sphere and the Riesz transform in conformal space

H j{c̃}(ξ̃ ) = R j{c}(ξ ), j ∈ {1,2,3} (19)

at the origin ξ = (0,0,−1) and ξ̃ = (0,0,−1,0) (south pole of the sphere) of the local coordinate system for each test
point.

CONCLUSION

It has been shown that the Riesz transform in R3 for the restriction to the sphere S2 and the Hilbert transform on S3

are equivalent. This results in a generalized isotropic analytic signal for 2D signals called the conformal monogenic



signal

fCMS(ξ̃ ) =


c̃(ξ̃ )

H1{c̃}(ξ̃ )
H2{c̃}(ξ̃ )
H3{c̃}(ξ̃ )

 (20)

which can be evaluated at the south pole ξ̃ = (0,0,−1,0) relatively to each local test point. In [6] and [5] it is shown
how to extract features such as phase, orientation, energy and curvature from the conformal monogenic signal. This
approach can be extended to any dimension. Analysis of data defined on the unit sphere Sn is important in various
signal processing fields like geoscience and processing of images captured by catadioptric cameras. Therefore, it is
worth investigating the Hilbert transform on Sn in order to obtain features which are naturally arising on the sphere.
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