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Abstract. This work presents a novel rotational invariant quadrature
filter approach - called the conformal monogenic signal - for analyz-
ing i(ntrinsic)1D and i2D local features of any curved 2D signal such
as lines, edges, corners and junctions without the use of steering. The
conformal monogenic signal contains the monogenic signal as a special
case for i1D signals and combines monogenic scale space, phase, direc-
tion/orientation, energy and curvature in one unified algebraic frame-
work. The conformal monogenic signal will be theoretically illustrated
and motivated in detail by the relation of the 3D Radon transform and
the generalized Hilbert transform on the sphere. The main idea is to
lift up 2D signals to the higher dimensional conformal space where the
signal features can be analyzed with more degrees of freedom. Results
of this work are the low computational time complexity, the easy imple-
mentation into existing Computer Vision applications and the numerical
robustness of determining curvature without the need of any derivatives.

1 Introduction

Low level 2D image analysis is often the first step of many Computer Vision
tasks. Therefore local signal features such as color information, gradient, cur-
vature, orientation and phase determine the quality of subsequent higher level
processing steps. It is important not to lose or to merge any of the original infor-
mation within the local neighborhood, i.e. to span a orthogonal feature space.
In this paper 2D images f ∈ L2(Ω; R) with Ω ⊂ R2 will be locally analyzed on a
low level. 2D signals are classified into local regions N ⊆ Ω of different intrinsic
dimension (see figure 1)

i0D := {f ∈ L2(Ω; R) : f (xi) = f (xj) ∀xi,xj ∈ N}
i1D := {f ∈ L2(Ω; R) : f(x, y) = g (x cos θ + y sin θ) ∀(x, y) ∈ N} − i0D
i2D := L2(Ω; R)− (i0D ∪ i1D) .

The assumed local signal model which will be analyzed in this work is defined as
a curve which can be locally approximated by a circle with arbitrary orientation
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and curvature

f(x, y) := a cos
(∥∥∥∥[

x
y

]
− 1

κ

[
cos θ
sin θ

]∥∥∥∥ + φ

)
∈ i1D ∪ i2D (1)

with a ∈ R as the local amplitude, φ ∈ [0, 2π) as the local phase, κ ∈ R as the
local curvature and θ ∈ [0, 2π) as the local direction/orientation of the signal
for κ 6= 0. For the special case of κ = 0 the curved 2D signal degrades to an
i1D function. Therefore the task is to solve an inverse problem, i.e. to determine
local features such as amplitude a, phase φ, orientation θ and curvature κ of any
curved signal such as lines, edges, corners and junctions. One important local
structural feature is the phase φ which can be calculated by means of the Hilbert
transform [1]. Furthermore all signals will be analyzed in monogenic scale space
[2] since the Hilbert transform can only be interpreted for narrow banded signals
consisting of only one frequency f(x, y; ss) := P(x, y; ss) ∗ f(x, y) with ∗ as the
convolution operator and ss as the scale space parameter. The Poisson kernel of
the applied low pass filter reads

P(x) := P(x; ss) :=
ss

2π (s2
s + ‖x‖2)

n+1
2

n ∈ N, x ∈ Rn . (2)

Fig. 1. From left to right: a constant signal (i0D), an arbitrary rotated 1D signal (i1D)
and an i2D checkerboard signal consisting of two simple superimposed i1D signals.
A curved i2D signal and two superimposed curved i2D signals. Note that all signals
displayed here preserve their intrinsic dimension globally.

1.1 Related Work

Phase and energy of 1D signals can be analyzed by the analytic signal [1]. The
generalization of the analytic signal to multidimensional signal domains has been
done by the monogenic signal [3]. In case of 2D signals the monogenic signal
delivers local phase, orientation and energy information restricted to the set
of i1D signals. This work presents the generalization of the monogenic signal
for 2D signals to analyze both i1D and i2D signals in one unified framework.
The conformal monogenic signal delivers local phase, orientation, energy and
curvature for i1D and i2D signals with the monogenic signal as a special case.
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The monogenic signal replaces the classical 1D Hilbert transform of the analytic
signal by the generalized Hilbert transform [4]

R{f}(x) := (Q ∗ f)(x) := (hn ∗ P ∗ f)(x) x ∈ Rn, n ∈ N− {1} (3)

with Q as the conjugated Poisson kernel and hn as the generalized Hilbert trans-
form kernel

hn(x) :=
2

An+1

x
‖x‖n+1

x ∈ Rn, n ∈ N− {1} (4)

with An+1 as the surface area of the unit sphere Sn in Euclidian space Rn+1.
To enable interpretation of the generalized Hilbert transform, its relation to the
Radon transform is the key [5]. The generalized Hilbert transform can be ex-
pressed by a concatenation of the Radon transform, the inverse Radon transform
and the well known classical 1D Hilbert transform. Note that the relation to the
Radon transform is required solely for interpretation and theoretical results.
Neither the Radon transform nor its inverse are ever applied to the signal in
practice. Instead the generalized Hilbert transformed signal will be determined
by convolution in spatial domain and the signal features can be extracted in a
rotational invariant way.

2 Generalized Hilbert Transforms in Conformal Space

The feature space of the 2D monogenic signal is spanned by phase, orientation
and energy information. This restriction correlates to the dimension of the as-
sociated 2D Radon space [5]. Therefore, the idea of this work is that the feature
space of the 2D signal can only be extended by lifting up the original signal to
higher dimensions. This is one of the main ideas of the conformal monogenic
signal. In the following the 2D monogenic signal will be generalized to analyze
also i2D signals by embedding the 2D signal into the 3D conformal space [6].
The 2D generalized Hilbert transform can be expressed by the 2D Radon trans-
form which integrates all function values on lines [7]. This restriction to lines is
one of the reasons why the 2D monogenic signal is limited to i1D signals (such
as lines and edges) and can not be applied to corners and general curves. To
analyze also i2D signals and to measure curvature κ = 1

ρ , a 2D Radon transform
which integrates on curved lines (i.e. local circles with radius ρ) is preferable.
In 3D domain the Radon transform integrates on planes, although at first sight
3D planes are not related to 2D signals. But the idea is that circles form the
intersection of a sphere (with center at

[
0, 0, 1

2

]
and radius ρ = 1

2 ) and planes
passing through the origin (0, 0, 0) of 3D space. Since the generalized Hilbert
transform can be extended to any dimension [8] and the 3D generalized Hilbert
transform can be expressed by the 3D Radon transform, the 2D signal coor-
dinates must be mapped appropriately to the sphere. This mapping must be
conformal (i.e. angle preserving), so that angular feature interpretation of the
3D generalized Hilbert transform in conformal space is still reasonable. Analo-
gous to the line parametrization by (t, θ) ∈ R× [0, π) of the 2D Radon transform
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[5], the planes of the 3D Radon transform are uniquely defined by the parame-
ters (t, θ, ϕ) ∈ R × [0, 2π) × [0, π). This new parametrization truly extends the
interpretation space of the monogenic signal by one dimension. In contrast to
the well known Monge patch embedding known from differential geometry [9],
the original 2D signal will now be embedded into the conformal space.

Fig. 2. Lines and circles of the 2D image domain are both mapped to circles on the
sphere. Each circle on the sphere is uniquely defined by its parameterized intersection
plane in conformal space. The third figure illustrates the monogenic signal as a special
case.

2.1 The Conformal Space

The main idea is that the concept of lines in 2D Radon space becomes the con-
cept of planes in 3D Radon space and the more abstract concept of hyperplanes
in multidimensional space. These planes determine circles on the sphere in con-
formal space. Since lines and circles of the 2D signal domain are mapped to
circles [6] on the sphere (see figure 2), the integration on these circles determines
points in the 3D Radon space. The projection C known from complex analysis
[6] maps the original 2D signal domain to the sphere and can be inverted by C−1

C(x, y) :=
1

x2 + y2 + 1

 x
y

x2 + y2

 , C−1(x, y, z) :=
1

1− z

[
x
y

]
. (5)

This mapping has the property that the 2D origin (0, 0) of a local coordinate
system will be mapped to the south pole (0, 0, 0) of the sphere in conformal space
and both −∞,+∞ will be mapped to the north pole (0, 0, 1) of the sphere. Lines
and circles of the 2D signal domain will be mapped to circles on the sphere and
can be determined uniquely by planes in 3D conformal space. The integration
on these planes corresponds to points (t, θ, ϕ) in the 3D Radon space.

2.2 3D Radon Transform in Conformal Space

To interpret the conformal monogenic signal, the relation to the 3D Radon trans-
form in conformal space must be taken into account. The 3D Radon transform
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Fig. 3. Left figure: Each (t = 0, θ, ϕ) parameterized plane can be determined exactly by
the generalized Hilbert transforms on the sphere. The interpretation of this parameter
set delivers the features such as direction, phase and curvature of the original signal
without any steering. Middle figure: Curved i2D signal with orientation θ and curvature
κ = 1

ρ
. Right figure: Corresponding 3D Radon space representation of the i2D signal

spanned by the parameters t, θ and ϕ. Since the Radon transform on circles directly
on the plane of the original 2D signal is not possible, the Radon transform has to be
done in higher dimensional 3D conformal space where circles correspond to planes.

is defined as the integral of all function values on the plane (see figure 2) defined
by

R{c} (t, θ, ϕ) =
∫

x∈R3

c(x)δ0(x

 sinϕ cos θ
sinϕ sin θ

cos ϕ

− t)dx . (6)

Since the signal is mapped on the sphere and all other points of the conformal
space are set to zero, the 3D Radon transform actually sums up all points lying
on the intersection of the plane and the sphere. For all planes this intersection
can either be empty or a circle. The concept of circles in the conformal 3D Radon
transform can be compared with the concept of lines known from the 2D Radon
transform. Since lines in the 2D signal domain are also mapped to circles, the
conformal monogenic signal can analyze i1D as well as curved i2D signals in one
single framework. Recall the very important fact that every corner or curve can
be locally approximated by a circle. The inverse 3D Radon transform exists and
differs from the 2D case such that it is a local transformation [10].

R−1{r}(0, 0, 0) = − 1
8π2

2π∫
θ=0

π∫
ϕ=0

∂2

∂t2
r(t, θ, ϕ)|t=0 dϕ dθ . (7)

That means the generalized Hilbert transform at (0, 0, 0) is completely deter-
mined by all planes passing the origin (i.e. t = 0). In contrast, the 2D monogenic
signal requires all integrals on all lines (t, θ) to reconstruct the original signal
at a certain point and is therefore called a global transform. This interesting
fact turns out from the definition of the inverse 3D Radon transform R−1 {·}.
Therefore, the local features of i1D and i2D signals can be determined by the
conformal monogenic signal at each test point of the original 2D signal without
knowledge of the whole 3D Radon space.
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2.3 The Conformal Monogenic Signal

To give the generalized Hilbert transform more degrees of freedom for signal
analysis, the original 2D signal will be embedded in a applicable subspace of the
3D conformal space by the mapping

c(x, y, z) :=
{

f(C−1(x, y, z)T ; ss) , x2 + y2 +
(
z − 1

2

)2 = 1
4

0 , else
. (8)

Thus, the 3D generalized Hilbert transform can be applied to all points on the
sphere. The center of convolution in spatial domain is the south pole (0, 0, 0)
where the test point of the 2D signal domain meets the sphere. At this point
the 3D generalized Hilbert transform will be performed at the origin (0) of the
applied local coordinate system for each test point separately. The conformal
monogenic signal [11] is defined as

fCMS(0) := [c(0), Rx {c} (0), Ry {c} (0), Rz {c} (0)]T (9)

and can be expressed by the classical 1D Hilbert transform kernel h1(τ) := − 1
πτ

[1], the 3D Radon transform and its inverse analogous to the monogenic signal
in 2D [5]Rx {c} (0)

Ry {c} (0)
Rz {c} (0)

 =

R−1


 sinϕ cos θ

sinϕ sin θ
cos ϕ

h1(t) ∗ R{c} (t, θ, ϕ)

 (0, 0, 0)

 (10)

with ∗ as the 1D convolution operator. Compared to the 2D monogenic signal the
conformal monogenic signal performs a 3D generalized Hilbert transformation
in conformal space.

Fig. 4. From left to right: 2D convolution kernels in spatial domain of the conformal
monogenic signal in x, y and z direction.

3 Interpretation

Analogous to the interpretation of the monogenic signal in [5], the parameters
of the plane within the 3D Radon space determine the local features of the
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curved i2D signal (see figure 2). The conformal monogenic signal can be called
the generalized monogenic signal for i1D and i2D signals, because the special
case of lines and edges can be considered as circles with zero curvature. These
lines are mapped to circles passing through the north pole in conformal space.
The parameter θ will be interpreted as the orientation in i1D case and naturally

Fig. 5. From left to right: Original synthetic i2D signal f(x, y) = a cos(
√

x2 + y2 +φ),
conformal monogenic signal curvature and classical isophote curvature [12], conformal
monogenic signal energy, phase and direction. Convolution mask size: 11 × 11 pixels.
Rotational invariance and isotropic properties can be clearly seen.

deploys to direction θ ∈ [0, 2π) for the i2D case

θ = atan2 (Ry {c} (0), Rx {c} (0)) . (11)

The energy of the signal is defined by

E = a2 = c2(0) + R2
x {c} (0) + R2

y {c} (0) + R2
z {c} (0) . (12)

The i1D and i2D curvature phase is defined by

φ = atan2
(√

R2
x {c} (0) + R2

y {c} (0) + R2
z {c} (0), c(0)

)
. (13)

Note that all proofs are analogous to those for the 2D monogenic signal shown
in [5].

3.1 Local Isophote Curvature

The parameter ϕ of the 3D Radon space corresponds to the isophote curvature
κ [12] known from differential geometry

ϕ = arctan

√
R2

x {c} (0) + R2
y {c} (0)

Rz {c} (0)
, κ =

−fxxf2
y + 2fxfyfxy − fyyf2

x(
f2

x + f2
y

) 3
2

(14)

Proof:
Let be γ(t) := [ρ(cos θ + cos t), ρ(sin θ + sin t)]T with t ∈ [0, 2π) a parametriza-
tion of a circle in the 2D plane touching the origin (0, 0) with radius ρ and tangen-
tial orientation θ. This circle will be the model for the osculating circle touching
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m
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Fig. 6. Left figure: Visualization of the circle described by γ projected to S2(mS , ρS).
This figure illustrates that 1

κ
= ρ = tan ϕm.

the isophote curve of the 2D signal f at the origin (0, 0) of the local coordi-
nate system for each test point. Therefore, f(γ(t1)) = f(γ(t2)) ∀t1, t2 ∈ [0, 2π).
Define γS(t) := C(γ(t)) as the projection of γ to the sphere S2(mS , ρS) :={
v ∈ R3 : ‖v −mS‖ = ρS

}
with the center mS =

[
0, 0, 1

2

]T and the radius ρS =
1
2 . Furthermore define fS(γS(t)) := f(C−1(γS(t))). The conjugate Poisson kernel
in Rn+1

+ reads Q(x) := [Qx(x),Qy(x),Qz(x)]T = (h3 ∗ P)(x) with R{fS}(x) =
(Q∗fS)(x). The radius ρ of the osculating circle described by the parameterized
curve γ reads

ρ =
2Rz{fS}(0)√

R2
x{fS}(0) + R2

y{fS}(0)
. (15)

Since the values of fS(x) will only be nonzero for x ∈ S2(mS , ρS), the inte-
gration can be restricted to the ball B2(mS , ρS) :=

{
v ∈ R3 : ‖v −mS‖ 6 ρS

}
.

Furthermore fS(x) is only nonzero for the circle projected on the sphere M :=
{γS(t) : t ∈ [0, 2π)}. Now let S2(m, ρ) be the sphere whose intersection with
S2(mS , ρS) results in M . Then the set M is a circle on the surface of S2(mS , ρS)
and S2(m, ρ). The integration over the volumes of B2(m, ρ) and B2(mS , ρS) will
be the same.∫

x∈R3
+

Q(x)fS(x) dx =
∫

x∈B2(mS ,ρS)

Q(x)fS(x) dx =
∫

x∈B2(m,ρ)

Q(x)fS(x) dx

According to the results from harmonic analysis [13] the convolution of a function
in Rn with the Poisson kernel P in upper the half space Rn+1

+ results in a
harmonic function in Rn+1

+ . Therefore, Q is harmonic in R3+1
+ . Using the mean

value theorem for harmonic functions it follows that∫
x∈B2(m,ρ)

Q(x) dx = k Q(m) (16)

with the components of Q written in spherical coordinates

Q(m) =

Qx(m)
Qy(m)
Qz(m)

 =
1

[‖m‖2 + s2
s]

2

 sinϕm cos θm

sinϕm sin θm

cos ϕm

 (17)



2D Image Analysis by Generalized Hilbert Transforms in Conformal Space 9

with ss as the scale space parameter. Since fS is the signal model for the isophote
curve of a signal in the plane, it is a curve consisting of constant values. Therefore,
fS(x) will be constant for all x ∈ M which results in∫

x∈B2(m,ρ)

Q(x)fS(x) dx = fc

∫
x∈B2(m,ρ)

Q(x) dx = fc k Q(m) . (18)

With equation (15) it is now possible to determine sin ϕm

cos ϕm
. Figure 6 illustrates

that this is exactly ρ
2 ρS

. Since ρS = 1
2 it follows that the radius of the local

curvature can be determined by ρ = sin ϕm

2 cos ϕm
=
√
Q2

x(m)+Q2
y(m)

2Qz(m) .

4 Implementation

Although in theory the conformal monogenic signal performs a 3D generalized
Hilbert transform in conformal space this can be accelerated by simplifying to
a faster 2D convolution directly on the sphere. Therefore the following imple-
mentation can be done in O(n2) with n as the convolution mask size in one
dimension. Any 2D image can now be analyzed locally at every test point by the
following algorithm

//Input: double Image(double x,double y)
//Input: double x,y (Local pixel test point for analysis)
//Input: double Coarse > Fine > 0 (Bandpass filter parameters)
//Input: double Size > 0 (Convolution mask size)
//Output: Direction, Phase, Curvature, Energy
double Coarse=0.2,Fine=0.1,Size=5;//e.g.
double rp=0,rx=0,ry=0,rz=0;
for(double cx = -Size;cx <= Size;cx++)
for(double cy = -Size;cy <= Size;cy++) {

//Map points (cx,cy) to conformal space (u,v,w)
double d = pow(cx,2) + pow(cy,2) + 1;
double u = cx / d, v = cy / d, w = (d - 1) / d;
//Generalized Hilbert transform in conformal space
double uvw = pow(u,2) + pow(v,2) + pow(w,2);
double pf = pow(pow(Fine ,2) + uvw,-2);
double pc = pow(pow(Coarse,2) + uvw,-2);
double f = Image(x + cx,y + cy);
double c = f * (pf - pc);
rp += f * (Fine * pf - Coarse * pc);
rx += u * c, ry += v * c, rz += w * c;

}
Curvature = sqrt(pow(rx,2) + pow(ry,2)) / rz;
Direction = atan2(ry,rx);
Phase = atan2(sqrt(pow(rx,2) + pow(ry,2) + pow(rz,2)),rp);
Energy = pow(rp,2) + pow(rx,2) + pow(ry,2) + pow(rz,2);
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Fig. 7. Top row from left to right: Original signal, classical isophote curvature [12]
and local direction information. Bottom row from left to right: conformal monogenic
signal energy, curvature and phase. Note the observable illumination invariance of the
conformal curvature and phase. Convolution mask size: 7× 7 pixels.

5 Experimental Results

On synthetic signals with known ground truth the average error of the feature
extraction converges to zero with increasing refinement of the convolution mask
size. The advanced rotational invariance and isotropic behavior of the conformal
monogenic signal curvature compared to the curvature delivered by the classical
differential geometry approach can be seen clearly in figure 5. Under the pres-
ence of noise the conformal monogenic signal curvature performs more robust
than e.g. the gradient based Sobel detector (see figure 8). Substituting the gra-
dient and even the in [14] proposed phase constraints, the conformal monogenic
signal curvature feature performs better in optical flow applications with an av-
erage angular error (AAE) of 1.99◦ compared to the best result AAE = 2.67◦

achieved in [14] on the Yosemite sequence (see figure 8). Since the conformal
monogenic signal combines all intrinsic dimensions in one framework it could be
an interesting alternative for the gradient or the Laplace operator.

6 Conclusion

In this paper a new fundamental idea for locally analyzing 2D curved signals
such as lines, edges, corners and junctions in one unified framework has been
presented. It has been shown that the feature space can be extended by embed-
ding 2D signals in higher dimensional conformal spaces in which the original 2D
signal can be analyzed by generalized Hilbert transforms with more degrees of
freedom. Without steering and in an rotational invariant way, local signal fea-
tures such as phase, direction, energy and curvature can be determined in spatial
domain by 2D convolution. The conformal monogenic signal can be computed
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Fig. 8. Top row from left to right: Original Yosemite image, Sobel detector output and
conformal monogenic signal curvature which delivers much more structural information
(see cloudy sky). Bottom row from left to right: Noise degraded image (SNR=10dB),
blurred Sobel output and conformal monogenic signal curvature. Convolution mask
size: 7× 7 pixels.
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Fig. 9. Comparison of classical isophote curvature [12] (thin blue curve) and conformal
curvature (thick red curve) errors. Left figure: Illumination change relatively to original
signal. Right figure: Additive Gaussian noise. Convolution mask size: 5× 5 pixels.
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efficiently and easily implemented into existing low level image processing steps
of Computer Vision applications. Furthermore exact curvature can be calculated
with all the advantages of rotational invariant local phase based approaches (ro-
bustness against noise and illumination changes) and without the need of any
derivatives. Hence, lots of numerical problems of partial derivatives on discrete
grids can be avoided. All results can be proofed mathematically and by ex-
periments. More applications of the conformal monogenic signal such as object
tracking [12] by the conformal isophote curvature and the extension to image
sequences will be part of future work.
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