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Abstract. The conformal monogenic signal is a novel rotational invari-
ant approach for analyzing i(ntrinsic)1D and i2D local features of two-
dimensional signals (e.g. images) without the use of any heuristics. It
contains the monogenic signal as a special case for i1D signals and com-
bines scale-space, phase, orientation, energy and isophote curvature in
one unified algebraic framework. The conformal monogenic signal will
be theoretically illustrated and motivated in detail by the relation of
the Radon and the Riesz transform. One of the main ideas is to lift up
two-dimensional signals to a higher dimensional conformal space where
the signal can be analyzed with more degrees of freedom. The most in-
teresting result is that isophote curvature can be calculated in a purely
algebraic framework without the need of any derivatives.

1 Introduction

In this paper 2D signals (e.g. gray value images) f ∈ L2(Ω; R) with Ω ⊂ R2

will be locally analyzed. Features such as phase φ, orientation θ and curvature
κ will be determined at every test point (x, y) ∈ Ω of the original 2D signal
f . For each test point a local coordinate system will be applied before analysis.
One important local structural feature is the phase φ of a DC free 1D signal
model g(x) := a(x) cos(φ(x)) which can be calculated by means of the Hilbert
transform. Furthermore all signals will be analyzed in scale space (e.g. in Poisson
scale space [1]) because the Hilbert transform can only be interpreted for narrow
banded signals. One possible generalization of the Hilbert transform to higher
dimensions which will be used in this work is the Riesz transform. 2D signals
f are classified into local regions N ⊆ Ω of different intrinsic dimensions (also
known as codimension):

f ∈

 i0DN , f(xi) = f(xj) ∀xi,xj ∈ N
i1DN , f(x, y) = g(x cos θ + y sin θ) ∀(x, y) ∈ N, f /∈ i0DN

i2DN , else
. (1)
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2 The Monogenic Signal

Phase and amplitude of 1D signals can be analyzed by the analytic signal. The
generalization of the analytic signal to multidimensional signal domains has been
done by the monogenic signal [2]. In case of 2D signals the monogenic signal de-
livers local phase, orientation and energy information. The monogenic signal can
be interpreted for the application to i1D signals. This work presents the gener-
alization of the monogenic signal for 2D signals to analyze both i1D and i2D
signals in one single framework. The conformal monogenic signal delivers local
phase, orientation, energy and curvature for i1D and i2D signals with the mono-
genic signal as a special case. To illustrate the motivation and the interpretation
of this work, first of all the monogenic signal will be recalled in detail.

2.1 Riesz Transform

The monogenic signal replaces the Hilbert transform of the analytic signal by
the Riesz transform which is known from Clifford analysis [3]. The Riesz trans-
form R{·} extends the signal f to a monogenic (holomorphic) function. It is
one possible, but not the only generalization of the Hilbert transform to multi-
dimensional signal domains. In spatial domain the Riesz transform is given by
the following convolution [4]:

R{f}(0) :=
Γ (m+1

2 )

π
m+1

2

∫
x∈Rm

f(x)
‖x‖m+1

x dx . (2)

In this work the Cauchy principal value (P.v.) of all integrals will be omitted. To
enable interpretation of the Riesz transform, its relation to the Radon transform
will be shown in detail. This relation can be proved by means of the Fourier slice
theorem [5].

2.2 Relation of the Riesz and Radon Transform

The Riesz transform can be expressed using the Radon and the Hilbert trans-
form. Note that the relation to the Radon transform is required solely for inter-
pretation and theoretical results. Neither the Radon transform nor its inverse
are ever applied to the signal in practice. Instead the Riesz transformed signal
will be determined by convolution in spatial domain. The 2D Radon transform
[6] is defined as:

r(t, θ) := R{f}(t, θ) :=
∫

(x,y)∈R2

f(x, y)δ0(x cos θ + y sin θ − t)d(x, y) (3)

with θ ∈ [0, π) as the orientation, t ∈ R as the minimal distance of the line to
the origin (0, 0) and δ0 as the Dirac delta distribution (see figure 1). The inverse
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Fig. 1. Left figure: i1D signal f in spatial domain with orientation θm and local phase
φ = 0 at the origin (0, 0). Right figure: i1D signal f in Radon space. Each point in
Radon space represents the integral in spatial domain on a line which is uniquely
defined by the minimal distance t ∈ R to the origin and the orientation θ ∈ [0, π).

2D Radon transform exists and is defined by:

R−1{r}(x, y) :=
1

2π2

π∫
θ=0

∫
t∈R

∂
∂tr(t, θ)

x cos θ + y sin θ − t
dtdθ . (4)

Now the Riesz transform will be expressed by the Hilbert transform, the Radon
transform and its inverse:

R{f}(x, y) = R−1

{[
cos θ
sin θ

]
h1(t) ∗ r(t, θ)

}
(x, y) (5)

with h1(t) = 1
πt as the one-dimensional Hilbert kernel and ∗ as the convolution

operator. In other words the Riesz transform applies a one-dimensional Hilbert
transform to the Radon space representation r(t, θ) of the signal along t ∈ R for
each orientation θ ∈ [0, π) separately. For the following implications the signal is
defined by a superposition of i1D signals f :=

∑
i∈I fi where each i1D signal fi

is orientated along θi. To be able to extract orientation and phase information
from the Riesz transformed signal, the inverse Radon transform must be sim-
plified. This can be achieved by two assumptions. Firstly, the point of interest
where local feature information should be obtained will be translated to the ori-
gin (0, 0) for each point (x, y) ∈ Ω ⊂ R2 so that the inverse 2D Radon transform
has to be evaluated only at (x, y) := (0, 0).
Let be M := [0, π) −

⋃
i∈I{θi} the set of all orientations where no i1D signal

information exists. Secondly, the θ-integral of the inverse Radon transform van-
ishes because r(t1, θ) = r(t2, θ) ∀t1, t2 ∈ R ∀θ ∈ M implies ∂

∂tr(t, θ) = 0 ∀t ∈
R ∀θ ∈ M for a finite number ‖I‖ ∈ N of superimposed i1D signals. Because of
this fact (and the linearity property of the Radon transform), the θ-integral of
the inverse Radon transform can be replaced by a finite sum of discrete angles
θi to enable modeling the superposition of an arbitrary number of i1D signals.
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Therefore the inverse Radon transform can be written as:

R−1{r}(0, 0) = − 1
2π2

∑
i∈I

∫
t∈R

∂
∂tr(t, θi)

t
dt . (6)

Now the 2D Riesz transform and therefore the monogenic signal can be inter-
preted in an explicit way.

2.3 Interpretation of the 2D Riesz Transform

Because of the property ∂
∂t (h1(t) ∗ r(t, θ)) = h1(t)∗ ∂

∂tr(t, θ) the 2D Riesz trans-
form of any i1D signal with orientation θm results in:[

Rx{f}(0, 0)
Ry{f}(0, 0)

]
= − 1

2π2

∫
t∈R

1
t
h1(t) ∗

∂

∂t
r(t, θm)dt

︸ ︷︷ ︸
=:s(θm)

[
cos θm

sin θm

]
. (7)

The orientation of the signal can therefore be derived by:

θm = arctan
s(θm) sin θm

s(θm) cos θm
= arctan

Ry{f}(0, 0)
Rx{f}(0, 0)

. (8)

The partial Hilbert transform [7] of fθm
(τ) := f(τ cos θm, τ sin θm) and therefore

also its phase can be calculated by:

φ = atan2 ((h1 ∗ fθm)(0), f(0, 0)) (9)

= atan2
(√

R2
x{f}(0, 0) + R2

y{f}(0, 0), f(0, 0)
)

. (10)

This reveals that - although the Riesz transform is a generalization of the Hilbert
transform to multi-dimensional signal domains - it still applies a one-dimensional
Hilbert transform along the main orientation θm to the signal. In short, the
monogenic signal enables interpretation of i1D signals and the mean value of
their superposition [8].

3 The Conformal Monogenic Signal

The feature space of the 2D monogenic signal is spanned by phase, orientation
and energy information. This restriction correlates to the dimension of the as-
sociated Radon space. Therefore, the feature space of the 2D signal can only
be extended by lifting up the original signal to higher dimensions. This is one
of the main ideas of the conformal monogenic signal. In the following the 2D
monogenic signal will be generalized to analyze also i2D signals by embedding
the 2D signal into the conformal space. The previous section shows that the 2D
Riesz transform can be expressed by the 2D Radon transform which integrates
all function values on lines. This restriction to lines is one of the reasons why
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Fig. 2. Circles on the original 2D plane are mapped to circles on the sphere passing
not the north pole (0, 0, 1). Lines on the plane are mapped to circles passing through
the north pole, i.e. lines are a special case of circles with infinite radius.

the 2D monogenic signal is limited to i1D signals (such as lines and edges) with
zero isophote curvature. To analyze also i2D signals and to measure curvature
κ = 1

ρ , a 2D Radon transform which integrates on curved lines (i.e. circles with
radius ρ) is preferable. Unfortunately, the inverse Radon transform directly on
circles is not unique [9]. Now it will be proposed to solve this problem in con-
formal space. In 3D signal domains the Radon transform integrates on planes,
although at first sight 3D planes are not related to 2D signals. The idea is that
circles form the intersection of a sphere (with center at

(
0, 0, 1

2

)
and radius 1

2 )
and planes passing through the origin (0, 0, 0). Since the Riesz transform can
be extended to any dimension and the 3D Riesz transform can be expressed by
the 3D Radon transform, the 2D signal coordinates must be mapped appropri-
ately to the sphere. This mapping must be conformal (i.e. angle preserving), so
that interpretation of the 3D Riesz transform in conformal space is still reason-
able. Analogous to the (t, θ) line parametrization of the 2D Radon transform,
the planes of the 3D Radon transform are uniquely defined by the parameters
(t, θ, ϕ). This new parametrization (see figure 4) truly extends the interpreta-
tion space of the monogenic signal by one dimension. Now the 2D signal will be
embedded into a two-dimensional subspace of the conformal space.

3.1 The Conformal Space

The main idea is that the concept of lines in 2D Radon space becomes the
more abstract concept of planes in 3D Radon space. These planes determine
circles on the sphere in conformal space. Since lines and circles of the two-
dimensional signal domain are mapped to circles [10] on the sphere (see figure
2), the integration on these circles determines points in the 3D Radon space.
The stereographic projection C known from complex analysis [11] maps the 2D
signal domain to the sphere (see figure 3). This projection is conformal and can
be inverted by C−1 for all elements of S ⊂ R3:

S :=

{
(x, y, z) ∈

[
−1

2
,
1
2

]2

× [0, 1) : x2 + y2 + (z − 1
2
)2 =

1
4

}
(11)
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SR2
3 C(x, y) :=

1
x2 + y2 + 1

 x
y

x2 + y2

 , C−1(x, y, z) :=
1

1− z

[
x
y

]
. (12)

This mapping has the property that the origin (0, 0) of the 2D signal domain will
be mapped to the south pole 0 := (0, 0, 0) of the sphere and both−∞,+∞ will be
mapped to the north pole (0, 0, 1) of the sphere. Lines and circles of the 2D signal
domain will be mapped to circles on the sphere and can be determined uniquely
by planes in 3D Radon space. The integration on these planes corresponds to
points (t, θ, ϕ) in the 3D Radon space.

Fig. 3. Left and right figure show the conformal space from two different point of views.
The 2D signal f will be mapped by the stereographic projection on the sphere.

3.2 The Riesz Transform in Conformal Space

Since the signal domain Ω ⊂ R2 is bounded, not the whole sphere is covered by
the original signal (see left part of figure 4). Anyway, all planes corresponding
to circles remain unchanged. That is the reason why the conformal monogenic
signal models i1D lines and all kinds of curved i2D signals which can be locally
approximated by circles. To give the Riesz transform more degrees of freedom,
the original two-dimensional signal will be embedded in a applicable subspace
of the conformal space by:

RR3
3 c(x, y, z) :=

{
f(C−1(x, y, z)T ) , x2 + y2 +

(
z − 1

2

)2 = 1
4

0 , else
. (13)

Thus, the 3D Riesz transform can be applied to all points on the sphere. The
center of convolution in spatial domain is the south pole (0, 0, 0) where the origin
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Fig. 4. Left figure: The stereographic projection ray passes through each 2D point
(x, y) and the north pole (0, 0, 1) of the sphere. The conformal mapping of the point
(x, y) is defined by the intersection of its projection ray and the sphere. Right figure:
Each intersection of the sphere and a plane passing through the origin (0, 0, 0) delivers
a circle. Those planes and thus all circles on the sphere are uniquely defined by the
angles (θ, ϕ) of the normal vector.

of the 2D signal domain meets the sphere. At this point the 3D Riesz transform
will be performed. Now the conformal monogenic signal can be introduced by
the 3D Radon transform and its inverse analogous to the monogenic signal in
2D:

c(0)
Rx {c} (0)
Ry {c} (0)
Rz {c} (0)

 :=


c(0, 0, 0)

R−1


 sinϕ cos θ

sinϕ sin θ
cos ϕ

h1(t) ∗ R{c} (t, θ, ϕ)

 (0, 0, 0)

 (14)

and without loss of generality the signal will be analyzed at the origin 0 =
(0, 0, 0). Compared to the 2D monogenic signal the conformal monogenic signal
performs a 3D Riesz transformation in conformal space.

3.3 The Radon Transform in Conformal Space

To interpret the conformal monogenic signal, the relation to the 3D Radon
transform in conformal space must be taken into account. The 3D Radon trans-
form is defined as the integral of all function values on the plane defined by
(t, θ, ϕ) ∈ R× [0, 2π)× [0, π):

R{c} (t, θ, ϕ) =
∫

x∈R3

c(x)δ0(x

 sinϕ cos θ
sinϕ sin θ

cos ϕ

− t)dx . (15)
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Since the signal is mapped on the sphere and all other points of the conformal
space are set to zero, the 3D Radon transform actually sums up all points lying
on the intersection of the plane and the sphere. For all planes this intersection
can be either empty or a circle. The concept of circles in the conformal 3D
Radon transform can be compared with the concept of lines known from the
2D Radon transform. Since lines in the 2D domain are also mapped to circles,
the conformal monogenic signal can analyze i1D as well as curved i2D signals in
one single framework. The inverse 3D Radon transform exists and differs from
the 2D case such that it is a local transformation [12]. That means the Riesz
transform at (0, 0, 0) is completely determined by all planes passing the origin
(i.e. t = 0). In contrast, the 2D monogenic signal requires all integrals on all
lines (t, θ) to reconstruct the original signal at a certain point and is therefore
called a global transform. This interesting fact turns out from the following 3D
inverse Radon transform:

R−1{r}(0) := − 1
8π2

2π∫
θ=0

π∫
ϕ=0

∂2

∂t2
r(t, θ, ϕ)|t=0 dϕdθ . (16)

Therefore, the local features of i1D and i2D signals can be determined by the
conformal monogenic signal at the origin of the 2D signal without knowledge of
the whole Radon space. Hence, the relation of the Radon and the Riesz transform
is essential to interpret the Riesz transform in conformal space.

3.4 Interpretation and Experimental Results

Analogous to the interpretation of the monogenic signal, the parameters of the
plane within the 3D Radon space determine the local features of the curved i2D
signal. The conformal monogenic signal can be called the generalized monogenic
signal for i1D and i2D signals, because lines and edges can be considered as circles
with zero curvature. These lines are mapped to circles passing through the north
pole in conformal space. The curvature can be measured by the parameter ϕ of
the 3D Radon space:

ϕ = arctan
Rz {c} (0)√

R2
x {c} (0) + R2

y {c} (0)
. (17)

It can be shown that ϕ corresponds to the isophote curvature κ known from
differential geometry [13, 14]:

κ =
−fxxf2

y + 2fxfyfxy − fyyf2
x(

f2
x + f2

y

) 3
2

. (18)

Besides, the curvature of the conformal monogenic signal naturally indicates
the intrinsic dimension of the signal. The parameter θ will be interpreted as the
orientation in i1D case and deploys to direction θ ∈ [0, 2π) for the i2D case:

θ = atan2 (Ry {c} (0), Rx {c} (0)) . (19)
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The phase is defined by φ for all intrinsic dimensions by

φ = atan2
(√

R2
x {c} (0) + R2

y {c} (0) + R2
z {c} (0), c(0)

)
. (20)

All proofs are analogous to those shown for the 2D monogenic signal. The con-
formal monogenic signal can be efficiently implemented by convolution in spatial
domain without the need of any Fourier transform. Since the 3D convolution in
conformal space can be simplified to a faster 2D convolution on the sphere, the
time complexity of the conformal monogenic signal computation is in O(n2) with
n as the convolution mask size in one dimension. On synthetic signals the error of
the feature extraction converges to zero with increasing refinement of the convo-
lution mask. The advantages of the monogenic isophote curvature compared to
the curvature delivered by the classical differential geometry [15] approach can
be seen clearly in figure 5. Under the presence of noise the monogenic isophote
curvature performs in general more robust than the classical isophote curvature.
Detailed application and performance behavior of the conformal monogenic sig-
nal will be part of future work.

Fig. 5. Experimental results and comparison. Top row from left to right: Synthetic
signal, monogenic isophote curvature and classical isophote curvature determined by
derivatives. Bottom row from left to right: Energy, phase and direction. Convolution
mask size: 5× 5 pixels.
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4 Conclusion

In this paper a novel generalization of the monogenic signal for two-dimensional
signals has been presented to analyze i(ntrinsic)1D and i2D signals in one unified
algebraic framework. The idea of the conformal monogenic signal is to lift up
two-dimensional signals to an appropriate conformal space in which the signal
can be Riesz transformed with more degrees of freedom compared to the 2D
monogenic signal. Without steering i1D and i2D local features such as phase,
orientation/direction, energy and isophote curvature can be determined in spa-
tial domain. The conformal monogenic signal can be computed efficiently with
same time complexity as the 2D monogenic signal. Furthermore, the exact local
isophote curvature (which is of practical importance in low level image analysis)
can be calculated without the need of derivatives. Hence, all problems of partial
derivatives on discrete grids can be avoided by the application of the conformal
monogenic signal.
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