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Abstract. A new point of view for wavelet filters is presented. This
leads to a description of wavelet filters in terms of certain linear inde-
pendent basic filters which can be designed to construct wavelets with
special properties. Furthermore, it is shown, that this approach makes
explicit closed form descriptions for higher order DAUBECHIES wavelet
filters (at least for Ds and Dig) possible, which were unaccessible be-
fore. Additionally, some biorthogonal examples are discussed and finally,
a conceptual generalization to the twodimensional case is given.

1 Introduction

Since its introduction in the early 1980s, the evolution of wavelet analysis caused
a deep impact in nearly all tasks of signal processing as well as computer vision
applications and related questions (e.g. image compression, feature detection,
optic flow estimation, treatment of PDEs). Though, the onedimensional theory
has grown rapidly in the last two decades, there are several open questions con-
cerning the general, multidimensional wavelet theory, for example the lack of
factorization theorems like the FEJER-RIESZ-Lemma, which makes the design of
scaling (and wavelet) filters with desirable properties in more than one dimen-
sion quite tricky. The aim of this paper is the presentation of a framework for
onedimensional scaling filter design, which can be easily generalized to higher
dimensions and may therefore help to overcome some of the existing problems.
The reason for this is the fact, that a direct design method is used, which is
independent of factorization questions. Finally, we shall mention that similar
results were presented in the article [AHC93], which the author was unaware
of during the first writing of this text. However, in [AHC93] the concept of
linear independence was not used and no multidimensional generalization was
intended; additionally, the closed form descriptions for higher order maximally
flat orthogonal wavelet filters are a new contribution (although, they are mostly
of theoretical interest).
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2 Basic Material

All of the following investigations are restricted to wavelets that come from a
dyadic multiresolution analysis (however, the generalization to arbitrary integer
dilations is straightforward). Consider a scaling function ¢ € Lo(R) and suppose,
that the related scaling filter symbol mg(w) is given by

n
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k=0

To yield an orthonormal basis for Lo (R), the symbol has to satisfy the orthogo-

nality criterion
1= |mo(w)* + |mo(w + 7)|?
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From this, we can directly derive the following (n + 1)/2 constraint equations of
order two:

n—2k

g =1  and > gy =0, k=1,...(n-1)/2. (1)
j=0 j=0

For most applications, wavelets with a sufficient high regularity and a number of
vanishing moments (this gives polynomial reproducibility) are desirable. More-
over, it is a well known fact, that both of the mentioned properties are in some
sense connected to the zero order, say m, of the scaling filter symbol mg(w) at the
aliasing frequency w = 7. These zeros can be characterized by the STRANG-F1X
conditions or sum rules of order m — 1, that is

S (-D¥Eh, =0 for 1=0,1,...,m~ L
k=0

From the constraints in (1) one easily shows that an orthogonal scaling filter
symbol of length n + 1 can have at most a zero of order (n + 1)/2 at .

3 The Framework

The main idea of our framework is the following: consider a linear combination
of linear independent (in vectorial sense) basic filters and solve the equation
system (1) for the coefficients of the linear combination; from this point of view
the linear independence means that no redundancy can occur and all solutions
(if they exist) are accessible. In this section we will now successively build such
families of linear independent basic filters. These will additionally be chosen such
that they satisfy the STRANG-FI1X conditions up to a certain order.



Lemma 1. Suppose, the filter [0 v1 ... vn | satisfies the sum rules exactly up
to order n — 1. Then the filter

[ ’?0 ’5/] ’?n+] ] = [ 1 1 ] * [ Yo Yo N Yn ]
satisfies the sum rules exactly up to order n.
Proof. The proof is straightforward. Just evaluate
n+1 p—1 f n
SN = Y () SR
k=0 =0 M/ o

The inner sum on the right side vanishes for p = 0,1...n and is different from
zero for p = n + 1 by the assumptions that were made. O

Corollary 1. For every n € N, the filter
=1 1 1 ™

satisfies the sum rules up to order n — 1, where v*" denotes the n times subse-
quently repeated discrete convolution of .

Lemma 2. Define
g =11 =1 ][ 1 1 .

Then, for all m,l € N, the filter g™ satisfies evactly the sum rules of order
m — 1.

The filters A" and the convolution filters g™ with I + m = n form a linear
independent family of basic filters and will be very useful in the design of several
scaling filters, as we shall see in the following.

Proposition 1. Let A, be the (n + 1) x (n+ 1) matriz
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then
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Especially, det A,, # 0 for all n € N, and from this, we directly deduce that the
n + 1 filters

{hln7g1,n717g2,n727 N 'gn,(]}



form a linear independent family of basic filters and moreover, every subfamily
{hn q],nfl q2,n72 qnkac}

additionally satisfies all sum rules up to order k—1 by Corollary 1 and Lemma 2.
Furthermore, this family of basic filters yields a natural decomposition of every
scaling filter that satisfies the sum rules up to order £ — 1 into an even (symmet-
ric) and an odd (antisymmetric) part since h" is always even and g7~/ is even
for j even and odd for j odd. Note further that the sum rule order decreases by
one with each symmetry switch.

Proof of Proposition 1. We will make use of the induction principle. For n = 1
we obtain Ay = [] _{] and det A; = —2. In the second step, we will evaluate
det A,,4+1 from det A,, by elementary matrix operations. In particular, we acquire

det Apyq = (—2)""" - det A,,.

By induction, we obtain the desired relation. O

4 Examples

Maximally flat filters.We will start with an example, that leads to the classical
Dg filter, i.e. an orthogonal filter with a zero of fourth order at the aliasing
frequency w = 7. Therefore, consider a combination of linear independent basic
filters of length eight, that satisfy the STRANG-F1X conditions up to order three.
By Proposition 1 such a filter is given by

y=XohT + Aght AP+ A gt

Solving (1) for this filter yields the solution
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where we used the abbreviation p = /154 + 424/15. Thus we found a closed

form description for a DAUBECHIES filter of length eight, which was impossible
using other filter design methods. In the same manner we can also find an explicit
analytical form for Dq. For bigger filters, the complexity increases too much and
permits explicit forms. However, if one considers a filter

v = o h™ + N\ _gl,nfl + s _g2,n72 L+ )‘(nfl)/Q .g(nfl)/Q,(n+1)/2



of arbitrary even length and solves the system (1), one can at least verify that

Xo=2""
Ao=2""1 A2 !

Am-1y2=2"""

We additionally remark, that the solutions for A, ..., A(,_1)/2—1 can all be writ-
ten as rational functions in A\, while A; itself is a root of a polynomial of degree
2n=3)/2 for p > 7.

Biorthogonal wavelets. Our framework can also be used to design biorthog-
onal filters, which have some advantages over orthogonal filters in special appli-
cations (e.g. symmetry for image compression). We differ between two cases of
biorthogonal filters: if a primal filter is given, dual filters can always be found
by solving a system of linear equations; this is the easy case and not considered
here (since this solutions can be obtained by several other design methods). On
the other hand, one can take two linear combinations of even basic filters and
solve their coefficients for the biorthogonality constraints

’ﬁ’lg(&)) "ITL()(LL)) + ’ﬁ’lg(w +7T) -mo(w +7T) = 17 mo(O) = mg(O) = 17

which again leads to a quadratic equation system. For example, considering a
symmetric pair of length 9 and 7 and imposing the maximal number of sum rules
on these filters, in particular, we take

= X-h A+ T+ N gt and = po-h" 4+ - g*",

we obtain the classical and till today widely used 9/7 image compression filter,
that was first presented in [ABMD92]. Estimating the joint spectral radius of
the associated linear operators (To)jk = 7Y2j_k—1 and (Tl)jk = 72—k reduced
to a certain invariant subspace FE, we obtain the smoothness values a ~ 1.068
and @ & 1.701 in terms of the HOLDER exponent (these techniques are discussed
in detail in[DL92] and [Gri96]). To obtain better smoothness results, one could
give up one zero order of ¥ (by adding us - g**), and use this degree of freedom
to find better filters. Another wish could be the property, that the coefficients
are rationals (as in the easy case), because this can reduce the computational
amount of the wavelet transform. In order to achieve these requirements, we use
a numerical heuristic that approximates

min {m};\}x {)\ € Spectrum (TO‘E(,@LT] (), Toy 5 (2), T (112 )}}

at dyadic rational values ps. Thereby one finds

_ 9 —3 -3 43 19 43 -3 —3 9
7= 320 160 40 160 32 160 40 160 320



and the dual filter

~ -3 -1 19 9 19 —1 =3

Y= 4 32 64 16 64 32 64

—

This new pair of filters is indeed very promising in applications such as image
compression. Its smoothness values are a ~ 1.48409 and a ~ 1.67807, respec-
tively. Note that & is only minimally worse than in the classical 9/7 case, while
the value for a is significantly better and additionally, all the filter coefficients are
rational. Finally, we shall mention that this heuristic method does not guarantee,
that there exist no better solutions than the given one.

5 The 2D Case

In the same manner one can build twodimensional filters from linear combina-
tions of basic filters. The main ideas of this conceptual generalization will be
described in this section. First, we will state a similar result to Lemma 1. In
that case, repeated convolutions with the sequences [1 1] and [1 —1] were
used to successively build longer filters with a higher sum rule order and it turns
out that a similar thing can be done in higher dimensions.

Lemma 3. Suppose, the twodimensional filter [{’ij}jel...nm,kel...ny ] satisfies
the (twodimensional) sum rules up to order m — 1. Then the filter

67
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(e
satisfies the sum rules at least up to order m, if a, 8 # 0.

The proof is similar to the onedimensional case and omitted. However, these
filters will not be sufficient; we additionally need some antisymmetric filters,
which we will get from the following Lemma.

Lemma 4. Suppose, the symmetric filter [{’ij}jel...nm,kel...ny ] satisfies the
sum rules up to order m — 1. Then for a # 0 both of the antisymmetric filters
. -
[ij]*l‘ia 0 aJ and [ij]*[ao 7O¢J
(o3

fulfill the sum rules at least up to order m.

Taking a little care about some possible redundancies (since specific choices of «
and 8 may lead to linear dependent filters) while using these Lemmata, the linear
independence of the basic filters directly carries over to the twodimensional case.
The thing that makes everything more difficult is the orthogonality constraint,
which now becomes

im0 (way )2+ [mo(ws + 7,0, + ) = L.



Assuming that the filter is rhombic shaped (this is in some sense the most con-
venient and applicable case) and consists of v double diagonals each of length
1, this leads us to 2vpy — v — p + 1 equations of the form

voop

2 2 .
ZZ Viokjtk—1 T Vj—kt1j+hk-1 = 1,
k=1 j=1

N
i

Vimkojtk—1 " Vimktrjtkto—1 T Vj—k+1j+k—1 " Vi—ktr+1,j+kto—1 = 0

k=1j

with (r,0) € {[-v+1,-v+2,...,v —=1] x[0,1,... ,u—1]}\ {(0,0)}.

—

Example. We will now give an example of a twodimensional orthogonal scaling
filter, that satisfies the STRANG-F1X conditions up to order one. Therefore, we
take the simple HAAR scaling filters

[11] and [1 1]

and apply the Lemmata 3 and 4 to them. This gives us a linear combination

11 -1 -1 1 -1 -1 -1
M- |1 5 5 1| +x-]1 1 1 1| +Xx-]1 3=3-1|+2x3-|-1-1 11
11 —1 -1 1 -1 11

of four basic filters. Solving the orthogonality criterion for the coefficients A;, we
obtain

i7 - 1 Ay = i_\/g and A3 = i_\/§7

16 16 8

which reproduces the KOVACEVIC-VETTERLI scaling filter (see [KV92]), the first
known orthogonal 2D-filter that leads to a continouus wavelet for the important
quincunx sampling grid. Note, that we again found a decomposition of the filter
into an even and an odd part, where the even part satisfies the sum rules up
to order two and the odd part up to order one  everything is very similar to
the 1D case. We only need more basic filters because more constraints are to be
considered. We should remark, that since y = v = 2 in the previous example, we
would have to satisfy five constraint equations and thus we should use five basic
filters instead of four, but it turns out that one of the coefficients always gets
zero. For filters that satisfy the sum rules up to a higher order (e.g. for order
two, one has to choose at least ¥ > 3 and u > 4 or vice versa), the orthogonality
constraints seem to be solvable only numerically, because of the rapidly increas-
ing complexity of the related nonlinear equation system.

Ao =

Finally, we shall remark, that the presented framework could also be used to
design twodimensional biorthogonal filters. But due to the symmetry properties
of these, the MCCLELLAN transform can be used to derive 2D-filters directly from
their 1D-prototypes, which is much faster to implement. Thus, the direct usage
of basic filters seems to make less sense if one is interested in twodimensional
biorthogonal filters.



6 Discussion and Conclusion

A framework for the design of wavelet filters was presented, which can be gen-
eralized to higher dimensions. There are very few different approaches to direct
multidimensional orthogonal filter design. The most important among these is
the paraunitary polyphase decomposition due to VAIDYANATHAN ([VHS88]). But
since his building matrices do not commute in general, the a priori ordering
of these matrices is not clear and thus there is no unique representation of all
possible orthogonal filters of a given shape, which can be obtained by the pro-
posed method. However, numerical experiments lead to the conjecture, that both
methods yield the same filter families. It is intended to apply the multidimen-
sional wavelets, that stem from these approaches to optic flow estimations and
to image feature detection within the scope of the authors further research. The
presented variations for 1D biorthogonal wavelets and their 2D counterparts
(built via McCLELLAN transform) seem to have nice properties for image com-
pression and some cooperation with researchers from this area is planned.
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