
Wavelet Filter Design via Linear IndependentBasi FiltersKai Nekels?Institut f�ur Informatik und Praktishe MathematikChristian-Albreht-Universit�at KielPreu�erstra�e 1{924105 Kiel, Germanykn�ks.informatik-uni-kiel.deAbstrat. A new point of view for wavelet �lters is presented. Thisleads to a desription of wavelet �lters in terms of ertain linear inde-pendent basi �lters whih an be designed to onstrut wavelets withspeial properties. Furthermore, it is shown, that this approah makesexpliit losed form desriptions for higher order Daubehies wavelet�lters (at least for D8 and D10) possible, whih were unaessible be-fore. Additionally, some biorthogonal examples are disussed and �nally,a oneptual generalization to the twodimensional ase is given.1 IntrodutionSine its introdution in the early 1980s, the evolution of wavelet analysis auseda deep impat in nearly all tasks of signal proessing as well as omputer visionappliations and related questions (e.g. image ompression, feature detetion,opti ow estimation, treatment of PDEs). Though, the onedimensional theoryhas grown rapidly in the last two deades, there are several open questions on-erning the general, multidimensional wavelet theory, for example the lak offatorization theorems like the Fejer-Riesz-Lemma, whih makes the design ofsaling (and wavelet) �lters with desirable properties in more than one dimen-sion quite triky. The aim of this paper is the presentation of a framework foronedimensional saling �lter design, whih an be easily generalized to higherdimensions and may therefore help to overome some of the existing problems.The reason for this is the fat, that a diret design method is used, whih isindependent of fatorization questions. Finally, we shall mention that similarresults were presented in the artile [AHC93℄, whih the author was unawareof during the �rst writing of this text. However, in [AHC93℄ the onept oflinear independene was not used and no multidimensional generalization wasintended; additionally, the losed form desriptions for higher order maximallyat orthogonal wavelet �lters are a new ontribution (although, they are mostlyof theoretial interest).? The author is supported by the Deutshe Forshungsgemeinshaft (DFG)within the Graduiertenkolleg 357.



2 Basi MaterialAll of the following investigations are restrited to wavelets that ome from adyadi multiresolution analysis (however, the generalization to arbitrary integerdilations is straightforward). Consider a saling funtion ' 2 L2(R) and suppose,that the related saling �lter symbol m0(!) is given bym0(!) = nXk=0 k � ei!k ; ak 2 R:To yield an orthonormal basis for L2(R), the symbol has to satisfy the orthogo-nality riterion1 � jm0(!)j2 + jm0(! + �)j2= 2 � nXk=0 2k + 4 � n�12Xk=1 n�2kXj=0 j � j+2k � os (2k!):From this, we an diretly derive the following (n+1)=2 onstraint equations oforder two:nXj=0 2j = 1 and n�2kXj=0 j � j+2k = 0; k = 1; : : : ; (n� 1)=2: (1)For most appliations, wavelets with a suÆient high regularity and a number ofvanishing moments (this gives polynomial reproduibility) are desirable. More-over, it is a well known fat, that both of the mentioned properties are in somesense onneted to the zero order, saym, of the saling �lter symbolm0(!) at thealiasing frequeny ! = �. These zeros an be haraterized by the Strang-Fixonditions or sum rules of order m� 1, that isnXk=0(�1)k kl hk = 0 for l = 0; 1; : : : ;m� 1:From the onstraints in (1) one easily shows that an orthogonal saling �ltersymbol of length n+ 1 an have at most a zero of order (n+ 1)=2 at �.3 The FrameworkThe main idea of our framework is the following: onsider a linear ombinationof linear independent (in vetorial sense) basi �lters and solve the equationsystem (1) for the oeÆients of the linear ombination; from this point of viewthe linear independene means that no redundany an our and all solutions(if they exist) are aessible. In this setion we will now suessively build suhfamilies of linear independent basi �lters. These will additionally be hosen suhthat they satisfy the Strang-Fix onditions up to a ertain order.



Lemma 1. Suppose, the �lter [ 0 1 : : : n ℄ satis�es the sum rules exatly upto order n� 1. Then the �lter� ~0 ~1 : : : ~n+1 � := � 1 1 � � � 0 0 1 : : : n �satis�es the sum rules exatly up to order n.Proof. The proof is straightforward. Just evaluaten+1Xk=0(�1)k � kp � ~k = � p�1Xj=0�pj� � nXk=0(�1)k � kj � k:The inner sum on the right side vanishes for p = 0; 1 : : : n and is di�erent fromzero for p = n+ 1 by the assumptions that were made. utCorollary 1. For every n 2 N� the �lterhn := [ 1 1 ℄�nsatis�es the sum rules up to order n � 1, where �n denotes the n times subse-quently repeated disrete onvolution of .Lemma 2. De�ne gl;m := [ 1 � 1 ℄�l � [ 1 1 ℄�m :Then, for all m; l 2 N� the �lter gm;l satis�es exatly the sum rules of orderm� 1.The �lters hn and the onvolution �lters gl;m with l + m = n form a linearindependent family of basi �lters and will be very useful in the design of severalsaling �lters, as we shall see in the following.Proposition 1. Let An be the (n+ 1)� (n+ 1) matrixAn = 26664hn0 g1;n�10 g2;n�20 � � � gn;00hn1 g1;n�11 g2;n�21 � � � gn;01... ... ... . . . ...hnn g1;n�1n g2;n�2n � � � gn;0n 37775 ;then detAn = (�2)n(n+1)2 :Espeially, detAn 6= 0 for all n 2 N� and from this, we diretly dedue that then+ 1 �lters �hn; g1;n�1; g2;n�2; : : : gn;0	



form a linear independent family of basi �lters and moreover, every subfamily�hn; g1;n�1; g2;n�2; : : : gn�k;k	additionally satis�es all sum rules up to order k�1 by Corollary 1 and Lemma 2.Furthermore, this family of basi �lters yields a natural deomposition of everysaling �lter that satis�es the sum rules up to order k�1 into an even (symmet-ri) and an odd (antisymmetri) part sine hn is always even and gj;n�j is evenfor j even and odd for j odd. Note further that the sum rule order dereases byone with eah symmetry swith.Proof of Proposition 1. We will make use of the indution priniple. For n = 1we obtain A1 = � 1 11 �1 � and detA1 = �2. In the seond step, we will evaluatedetAn+1 from detAn by elementary matrix operations. In partiular, we aquiredetAn+1 = (�2)n+1 � detAn:By indution, we obtain the desired relation. ut4 ExamplesMaximally at �lters.Wewill start with an example, that leads to the lassialD8 �lter, i.e. an orthogonal �lter with a zero of fourth order at the aliasingfrequeny ! = �. Therefore, onsider a ombination of linear independent basi�lters of length eight, that satisfy the Strang-Fix onditions up to order three.By Proposition 1 suh a �lter is given by = �0 � h7 + �1 � g1;6 + �2 � g2;5 + �3 � g3;4:Solving (1) for this �lter yields the solution�0 = 1128�1 = 1384 ��p21 + 3�� 42��1 +q42� 3�+ 42��1 + 18p105 � (7 + �� 14��1)�1=2��2 = 64 � �21 � 7256�3 = p35128 ;where we used the abbreviation � = 3p154 + 42p15. Thus we found a losedform desription for a Daubehies �lter of length eight, whih was impossibleusing other �lter design methods. In the same manner we an also �nd an expliitanalytial form for D10. For bigger �lters, the omplexity inreases too muh andpermits expliit forms. However, if one onsiders a �lter = �0 � hn + �1 � g1;n�1 + �2 � g2;n�2 : : : + �(n�1)=2 � g(n�1)=2;(n+1)=2



of arbitrary even length and solves the system (1), one an at least verify that�0 = 2�n�2 = 2n�1 � �21 � n � 2�n�1�(n�1)=2 = 2�n �vuut n(n+ 1)=2!:We additionally remark, that the solutions for �3; : : : ; �(n�1)=2�1 an all be writ-ten as rational funtions in �1, while �1 itself is a root of a polynomial of degree2(n�3)=2 for n � 7.Biorthogonal wavelets. Our framework an also be used to design biorthog-onal �lters, whih have some advantages over orthogonal �lters in speial appli-ations (e.g. symmetry for image ompression). We di�er between two ases ofbiorthogonal �lters: if a primal �lter is given, dual �lters an always be foundby solving a system of linear equations; this is the easy ase and not onsideredhere (sine this solutions an be obtained by several other design methods). Onthe other hand, one an take two linear ombinations of even basi �lters andsolve their oeÆients for the biorthogonality onstraints~m0(!) �m0(!) + ~m0(! + �) �m0(! + �) � 1; ~m0(0) = m0(0) = 1;whih again leads to a quadrati equation system. For example, onsidering asymmetri pair of length 9 and 7 and imposing the maximal number of sum ruleson these �lters, in partiular, we take = �0 � h9 + �1 � g2;7 + �2 � g4;5 and ~ = �0 � h7 + �1 � g2;5;we obtain the lassial and till today widely used 9/7 image ompression �lter,that was �rst presented in [ABMD92℄. Estimating the joint spetral radius ofthe assoiated linear operators (T0)jk = 2j�k�1 and (T1)jk = 2j�k reduedto a ertain invariant subspae E, we obtain the smoothness values � � 1:068and ~� � 1:701 in terms of the H�older exponent (these tehniques are disussedin detail in[DL92℄ and [Gri96℄). To obtain better smoothness results, one ouldgive up one zero order of ~ (by adding �2 � g4;3), and use this degree of freedomto �nd better �lters. Another wish ould be the property, that the oeÆientsare rationals (as in the easy ase), beause this an redue the omputationalamount of the wavelet transform. In order to ahieve these requirements, we usea numerial heuristi that approximatesmin�2 �maxj�j n� 2 Spetrum�T0jE(�2);T1jE(�2); ~T0j ~E(�2); ~T1j ~E(�2)�o�at dyadi rational values �2. Thereby one �nds = h 9320 �3160 �340 43160 1932 43160 �340 �3160 9320 i



and the dual �lter~ = h �364 �132 1964 916 1964 �132 �364 i:This new pair of �lters is indeed very promising in appliations suh as imageompression. Its smoothness values are � � 1:48409 and ~� � 1:67807, respe-tively. Note that ~� is only minimally worse than in the lassial 9/7 ase, whilethe value for � is signi�antly better and additionally, all the �lter oeÆients arerational. Finally, we shall mention that this heuristi method does not guarantee,that there exist no better solutions than the given one.5 The 2D CaseIn the same manner one an build twodimensional �lters from linear ombina-tions of basi �lters. The main ideas of this oneptual generalization will bedesribed in this setion. First, we will state a similar result to Lemma 1. Inthat ase, repeated onvolutions with the sequenes [ 1 1 ℄ and [ 1 �1 ℄ wereused to suessively build longer �lters with a higher sum rule order and it turnsout that a similar thing an be done in higher dimensions.Lemma 3. Suppose, the twodimensional �lter � fjkgj21:::nx;k21:::ny � satis�esthe (twodimensional) sum rules up to order m� 1. Then the �lter[ jk ℄ � 24 �� 2�+2� �� 35satis�es the sum rules at least up to order m, if �; � 6= 0.The proof is similar to the onedimensional ase and omitted. However, these�lters will not be suÆient; we additionally need some antisymmetri �lters,whih we will get from the following Lemma.Lemma 4. Suppose, the symmetri �lter � fjkgj21:::nx;k21:::ny � satis�es thesum rules up to order m� 1. Then for � 6= 0 both of the antisymmetri �lters[ jk ℄ � 24 ���� 0 �� 35 and [ jk ℄ � 24 ��� 0 ��� 35ful�ll the sum rules at least up to order m.Taking a little are about some possible redundanies (sine spei� hoies of �and � may lead to linear dependent �lters) while using these Lemmata, the linearindependene of the basi �lters diretly arries over to the twodimensional ase.The thing that makes everything more diÆult is the orthogonality onstraint,whih now beomesjm0(!x; !y)j2 + jm0(!x + �; !y + �)j2 � 1:



Assuming that the �lter is rhombi shaped (this is in some sense the most on-venient and appliable ase) and onsists of � double diagonals eah of length�, this leads us to 2��� � � �+ 1 equations of the form�Xk=1 �Xj=1 2j�k;j+k�1 + 2j�k+1;j+k�1 = 1;�Xk=1 ��1Xj=1 j�k;j+k�1 � j�k+�;j+k+��1 + j�k+1;j+k�1 � j�k+�+1;j+k+��1 = 0with (�; �) 2 f[�� + 1;�� + 2; : : : ; � � 1℄� [0; 1; : : : ; �� 1℄g n f(0; 0)g.Example.We will now give an example of a twodimensional orthogonal saling�lter, that satis�es the Strang-Fix onditions up to order one. Therefore, wetake the simple Haar saling �lters[ 1 1 ℄ and [ 1 �1 ℄and apply the Lemmata 3 and 4 to them. This gives us a linear ombination�0 � 24 1 11 5 5 11 1 35 + �1 � 24 �1 �11 1 1 1�1 �1 35 + �2 � 24 1 �11 3 �3 �11 �1 35 + �3 � 24 �1 �1�1 �1 1 11 1 35of four basi �lters. Solving the orthogonality riterion for the oeÆients �i, weobtain�0 = 116 ; �1 = �18 ; �2 = �p316 and �3 = �p38 ;whih reprodues the Kova�evi�-Vetterli saling �lter (see [KV92℄), the �rstknown orthogonal 2D-�lter that leads to a ontinouus wavelet for the importantquinunx sampling grid. Note, that we again found a deomposition of the �lterinto an even and an odd part, where the even part satis�es the sum rules upto order two and the odd part up to order one | everything is very similar tothe 1D ase. We only need more basi �lters beause more onstraints are to beonsidered. We should remark, that sine � = � = 2 in the previous example, wewould have to satisfy �ve onstraint equations and thus we should use �ve basi�lters instead of four, but it turns out that one of the oeÆients always getszero. For �lters that satisfy the sum rules up to a higher order (e.g. for ordertwo, one has to hoose at least � � 3 and � � 4 or vie versa), the orthogonalityonstraints seem to be solvable only numerially, beause of the rapidly inreas-ing omplexity of the related nonlinear equation system.Finally, we shall remark, that the presented framework ould also be used todesign twodimensional biorthogonal �lters. But due to the symmetry propertiesof these, theMClellan transform an be used to derive 2D-�lters diretly fromtheir 1D-prototypes, whih is muh faster to implement. Thus, the diret usageof basi �lters seems to make less sense if one is interested in twodimensionalbiorthogonal �lters.



6 Disussion and ConlusionA framework for the design of wavelet �lters was presented, whih an be gen-eralized to higher dimensions. There are very few di�erent approahes to diretmultidimensional orthogonal �lter design. The most important among these isthe paraunitary polyphase deomposition due to Vaidyanathan ([VH88℄). Butsine his building matries do not ommute in general, the a priori orderingof these matries is not lear and thus there is no unique representation of allpossible orthogonal �lters of a given shape, whih an be obtained by the pro-posed method. However, numerial experiments lead to the onjeture, that bothmethods yield the same �lter families. It is intended to apply the multidimen-sional wavelets, that stem from these approahes to opti ow estimations andto image feature detetion within the sope of the authors further researh. Thepresented variations for 1D biorthogonal wavelets and their 2D ounterparts(built via MClellan transform) seem to have nie properties for image om-pression and some ooperation with researhers from this area is planned.Aknowledgements. The author would like to thank G. Sommer, B. En-gelke and S. Vukova.Referenes[ABMD92℄ M. Antonini, M. Barlaud, P. Mathieu, and I. Daubehies. Image CodingUsing Wavelet Transforms. IEEE Trans. on Image Proess., 1:205{220,1992.[AHC93℄ Ali N. Akansu, Rihard A. Haddad, and Hakan Caglar. The BinomialQMF-Wavelet Transform for Multiresolution Signal Deomposition. IEEETrans. on Signal Proessing, 41(1):13{19, 1993.[Dau92℄ Ingrid Daubehies. Ten Letures on Wavelets. No. 61 in CBMS-NSFRegional Conferene Series in Applied Mathematis, SIAM Publishing,Philadelphia, 1992.[DL92℄ I. Daubehies and J. Lagarias. Two-sale Di�erene Equations II. LoalRegularity, In�nite Produts of Matries and Fratals. SIAM J. Math.Anal., 23(4):1031{1079, 1992.[Gri96℄ Gustaf Gripenberg. Computing the Joint Spetral Radius. Linear Algebraand its Appliations, 234:43{60, 1996.[KV92℄ J. Kova�evi� and M. Vetterli. Nonseparable Multidimensional PerfetReonstrution Filter Banks and Wavelet Bases for Rn . IEEE Trans.Inform. Theory, Speial Issue on Wavelet Transforms and MultiresolutionSignal Analysis, 38(2):533{555, 1992.[VH88℄ P.P. Vaidyanathan and P.-Q. Hoang. Lattie Strutures for Optimal De-sign and Robust Implementation of Two-Channel Perfet ReonstrutionFilter Banks. IEEE Trans. Aoust., Speeh and Signal Pro., 36(1):81{94,1988.


