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t. A new point of view for wavelet �lters is presented. Thisleads to a des
ription of wavelet �lters in terms of 
ertain linear inde-pendent basi
 �lters whi
h 
an be designed to 
onstru
t wavelets withspe
ial properties. Furthermore, it is shown, that this approa
h makesexpli
it 
losed form des
riptions for higher order Daube
hies wavelet�lters (at least for D8 and D10) possible, whi
h were una

essible be-fore. Additionally, some biorthogonal examples are dis
ussed and �nally,a 
on
eptual generalization to the twodimensional 
ase is given.1 Introdu
tionSin
e its introdu
tion in the early 1980s, the evolution of wavelet analysis 
auseda deep impa
t in nearly all tasks of signal pro
essing as well as 
omputer visionappli
ations and related questions (e.g. image 
ompression, feature dete
tion,opti
 
ow estimation, treatment of PDEs). Though, the onedimensional theoryhas grown rapidly in the last two de
ades, there are several open questions 
on-
erning the general, multidimensional wavelet theory, for example the la
k offa
torization theorems like the Fejer-Riesz-Lemma, whi
h makes the design ofs
aling (and wavelet) �lters with desirable properties in more than one dimen-sion quite tri
ky. The aim of this paper is the presentation of a framework foronedimensional s
aling �lter design, whi
h 
an be easily generalized to higherdimensions and may therefore help to over
ome some of the existing problems.The reason for this is the fa
t, that a dire
t design method is used, whi
h isindependent of fa
torization questions. Finally, we shall mention that similarresults were presented in the arti
le [AHC93℄, whi
h the author was unawareof during the �rst writing of this text. However, in [AHC93℄ the 
on
ept oflinear independen
e was not used and no multidimensional generalization wasintended; additionally, the 
losed form des
riptions for higher order maximally
at orthogonal wavelet �lters are a new 
ontribution (although, they are mostlyof theoreti
al interest).? The author is supported by the Deuts
he Fors
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2 Basi
 MaterialAll of the following investigations are restri
ted to wavelets that 
ome from adyadi
 multiresolution analysis (however, the generalization to arbitrary integerdilations is straightforward). Consider a s
aling fun
tion ' 2 L2(R) and suppose,that the related s
aling �lter symbol m0(!) is given bym0(!) = nXk=0 
k � ei!k ; ak 2 R:To yield an orthonormal basis for L2(R), the symbol has to satisfy the orthogo-nality 
riterion1 � jm0(!)j2 + jm0(! + �)j2= 2 � nXk=0 
2k + 4 � n�12Xk=1 n�2kXj=0 
j � 
j+2k � 
os (2k!):From this, we 
an dire
tly derive the following (n+1)=2 
onstraint equations oforder two:nXj=0 
2j = 1 and n�2kXj=0 
j � 
j+2k = 0; k = 1; : : : ; (n� 1)=2: (1)For most appli
ations, wavelets with a suÆ
ient high regularity and a number ofvanishing moments (this gives polynomial reprodu
ibility) are desirable. More-over, it is a well known fa
t, that both of the mentioned properties are in somesense 
onne
ted to the zero order, saym, of the s
aling �lter symbolm0(!) at thealiasing frequen
y ! = �. These zeros 
an be 
hara
terized by the Strang-Fix
onditions or sum rules of order m� 1, that isnXk=0(�1)k kl hk = 0 for l = 0; 1; : : : ;m� 1:From the 
onstraints in (1) one easily shows that an orthogonal s
aling �ltersymbol of length n+ 1 
an have at most a zero of order (n+ 1)=2 at �.3 The FrameworkThe main idea of our framework is the following: 
onsider a linear 
ombinationof linear independent (in ve
torial sense) basi
 �lters and solve the equationsystem (1) for the 
oeÆ
ients of the linear 
ombination; from this point of viewthe linear independen
e means that no redundan
y 
an o

ur and all solutions(if they exist) are a

essible. In this se
tion we will now su

essively build su
hfamilies of linear independent basi
 �lters. These will additionally be 
hosen su
hthat they satisfy the Strang-Fix 
onditions up to a 
ertain order.



Lemma 1. Suppose, the �lter [ 
0 
1 : : : 
n ℄ satis�es the sum rules exa
tly upto order n� 1. Then the �lter� ~
0 ~
1 : : : ~
n+1 � := � 1 1 � � � 
0 
0 
1 : : : 
n �satis�es the sum rules exa
tly up to order n.Proof. The proof is straightforward. Just evaluaten+1Xk=0(�1)k � kp � ~
k = � p�1Xj=0�pj� � nXk=0(�1)k � kj � 
k:The inner sum on the right side vanishes for p = 0; 1 : : : n and is di�erent fromzero for p = n+ 1 by the assumptions that were made. utCorollary 1. For every n 2 N� the �lterhn := [ 1 1 ℄�nsatis�es the sum rules up to order n � 1, where 
�n denotes the n times subse-quently repeated dis
rete 
onvolution of 
.Lemma 2. De�ne gl;m := [ 1 � 1 ℄�l � [ 1 1 ℄�m :Then, for all m; l 2 N� the �lter gm;l satis�es exa
tly the sum rules of orderm� 1.The �lters hn and the 
onvolution �lters gl;m with l + m = n form a linearindependent family of basi
 �lters and will be very useful in the design of severals
aling �lters, as we shall see in the following.Proposition 1. Let An be the (n+ 1)� (n+ 1) matrixAn = 26664hn0 g1;n�10 g2;n�20 � � � gn;00hn1 g1;n�11 g2;n�21 � � � gn;01... ... ... . . . ...hnn g1;n�1n g2;n�2n � � � gn;0n 37775 ;then detAn = (�2)n(n+1)2 :Espe
ially, detAn 6= 0 for all n 2 N� and from this, we dire
tly dedu
e that then+ 1 �lters �hn; g1;n�1; g2;n�2; : : : gn;0	



form a linear independent family of basi
 �lters and moreover, every subfamily�hn; g1;n�1; g2;n�2; : : : gn�k;k	additionally satis�es all sum rules up to order k�1 by Corollary 1 and Lemma 2.Furthermore, this family of basi
 �lters yields a natural de
omposition of everys
aling �lter that satis�es the sum rules up to order k�1 into an even (symmet-ri
) and an odd (antisymmetri
) part sin
e hn is always even and gj;n�j is evenfor j even and odd for j odd. Note further that the sum rule order de
reases byone with ea
h symmetry swit
h.Proof of Proposition 1. We will make use of the indu
tion prin
iple. For n = 1we obtain A1 = � 1 11 �1 � and detA1 = �2. In the se
ond step, we will evaluatedetAn+1 from detAn by elementary matrix operations. In parti
ular, we a
quiredetAn+1 = (�2)n+1 � detAn:By indu
tion, we obtain the desired relation. ut4 ExamplesMaximally 
at �lters.Wewill start with an example, that leads to the 
lassi
alD8 �lter, i.e. an orthogonal �lter with a zero of fourth order at the aliasingfrequen
y ! = �. Therefore, 
onsider a 
ombination of linear independent basi
�lters of length eight, that satisfy the Strang-Fix 
onditions up to order three.By Proposition 1 su
h a �lter is given by
 = �0 � h7 + �1 � g1;6 + �2 � g2;5 + �3 � g3;4:Solving (1) for this �lter yields the solution�0 = 1128�1 = 1384 ��p21 + 3�� 42��1 +q42� 3�+ 42��1 + 18p105 � (7 + �� 14��1)�1=2��2 = 64 � �21 � 7256�3 = p35128 ;where we used the abbreviation � = 3p154 + 42p15. Thus we found a 
losedform des
ription for a Daube
hies �lter of length eight, whi
h was impossibleusing other �lter design methods. In the same manner we 
an also �nd an expli
itanalyti
al form for D10. For bigger �lters, the 
omplexity in
reases too mu
h andpermits expli
it forms. However, if one 
onsiders a �lter
 = �0 � hn + �1 � g1;n�1 + �2 � g2;n�2 : : : + �(n�1)=2 � g(n�1)=2;(n+1)=2



of arbitrary even length and solves the system (1), one 
an at least verify that�0 = 2�n�2 = 2n�1 � �21 � n � 2�n�1�(n�1)=2 = 2�n �vuut n(n+ 1)=2!:We additionally remark, that the solutions for �3; : : : ; �(n�1)=2�1 
an all be writ-ten as rational fun
tions in �1, while �1 itself is a root of a polynomial of degree2(n�3)=2 for n � 7.Biorthogonal wavelets. Our framework 
an also be used to design biorthog-onal �lters, whi
h have some advantages over orthogonal �lters in spe
ial appli-
ations (e.g. symmetry for image 
ompression). We di�er between two 
ases ofbiorthogonal �lters: if a primal �lter is given, dual �lters 
an always be foundby solving a system of linear equations; this is the easy 
ase and not 
onsideredhere (sin
e this solutions 
an be obtained by several other design methods). Onthe other hand, one 
an take two linear 
ombinations of even basi
 �lters andsolve their 
oeÆ
ients for the biorthogonality 
onstraints~m0(!) �m0(!) + ~m0(! + �) �m0(! + �) � 1; ~m0(0) = m0(0) = 1;whi
h again leads to a quadrati
 equation system. For example, 
onsidering asymmetri
 pair of length 9 and 7 and imposing the maximal number of sum ruleson these �lters, in parti
ular, we take
 = �0 � h9 + �1 � g2;7 + �2 � g4;5 and ~
 = �0 � h7 + �1 � g2;5;we obtain the 
lassi
al and till today widely used 9/7 image 
ompression �lter,that was �rst presented in [ABMD92℄. Estimating the joint spe
tral radius ofthe asso
iated linear operators (T0)jk = 
2j�k�1 and (T1)jk = 
2j�k redu
edto a 
ertain invariant subspa
e E, we obtain the smoothness values � � 1:068and ~� � 1:701 in terms of the H�older exponent (these te
hniques are dis
ussedin detail in[DL92℄ and [Gri96℄). To obtain better smoothness results, one 
ouldgive up one zero order of ~
 (by adding �2 � g4;3), and use this degree of freedomto �nd better �lters. Another wish 
ould be the property, that the 
oeÆ
ientsare rationals (as in the easy 
ase), be
ause this 
an redu
e the 
omputationalamount of the wavelet transform. In order to a
hieve these requirements, we usea numeri
al heuristi
 that approximatesmin�2 �maxj�j n� 2 Spe
trum�T0jE(�2);T1jE(�2); ~T0j ~E(�2); ~T1j ~E(�2)�o�at dyadi
 rational values �2. Thereby one �nds
 = h 9320 �3160 �340 43160 1932 43160 �340 �3160 9320 i



and the dual �lter~
 = h �364 �132 1964 916 1964 �132 �364 i:This new pair of �lters is indeed very promising in appli
ations su
h as image
ompression. Its smoothness values are � � 1:48409 and ~� � 1:67807, respe
-tively. Note that ~� is only minimally worse than in the 
lassi
al 9/7 
ase, whilethe value for � is signi�
antly better and additionally, all the �lter 
oeÆ
ients arerational. Finally, we shall mention that this heuristi
 method does not guarantee,that there exist no better solutions than the given one.5 The 2D CaseIn the same manner one 
an build twodimensional �lters from linear 
ombina-tions of basi
 �lters. The main ideas of this 
on
eptual generalization will bedes
ribed in this se
tion. First, we will state a similar result to Lemma 1. Inthat 
ase, repeated 
onvolutions with the sequen
es [ 1 1 ℄ and [ 1 �1 ℄ wereused to su

essively build longer �lters with a higher sum rule order and it turnsout that a similar thing 
an be done in higher dimensions.Lemma 3. Suppose, the twodimensional �lter � f
jkgj21:::nx;k21:::ny � satis�esthe (twodimensional) sum rules up to order m� 1. Then the �lter[ 
jk ℄ � 24 �� 2�+2� �� 35satis�es the sum rules at least up to order m, if �; � 6= 0.The proof is similar to the onedimensional 
ase and omitted. However, these�lters will not be suÆ
ient; we additionally need some antisymmetri
 �lters,whi
h we will get from the following Lemma.Lemma 4. Suppose, the symmetri
 �lter � f
jkgj21:::nx;k21:::ny � satis�es thesum rules up to order m� 1. Then for � 6= 0 both of the antisymmetri
 �lters[ 
jk ℄ � 24 ���� 0 �� 35 and [ 
jk ℄ � 24 ��� 0 ��� 35ful�ll the sum rules at least up to order m.Taking a little 
are about some possible redundan
ies (sin
e spe
i�
 
hoi
es of �and � may lead to linear dependent �lters) while using these Lemmata, the linearindependen
e of the basi
 �lters dire
tly 
arries over to the twodimensional 
ase.The thing that makes everything more diÆ
ult is the orthogonality 
onstraint,whi
h now be
omesjm0(!x; !y)j2 + jm0(!x + �; !y + �)j2 � 1:



Assuming that the �lter is rhombi
 shaped (this is in some sense the most 
on-venient and appli
able 
ase) and 
onsists of � double diagonals ea
h of length�, this leads us to 2��� � � �+ 1 equations of the form�Xk=1 �Xj=1 
2j�k;j+k�1 + 
2j�k+1;j+k�1 = 1;�Xk=1 ��1Xj=1 
j�k;j+k�1 � 
j�k+�;j+k+��1 + 
j�k+1;j+k�1 � 
j�k+�+1;j+k+��1 = 0with (�; �) 2 f[�� + 1;�� + 2; : : : ; � � 1℄� [0; 1; : : : ; �� 1℄g n f(0; 0)g.Example.We will now give an example of a twodimensional orthogonal s
aling�lter, that satis�es the Strang-Fix 
onditions up to order one. Therefore, wetake the simple Haar s
aling �lters[ 1 1 ℄ and [ 1 �1 ℄and apply the Lemmata 3 and 4 to them. This gives us a linear 
ombination�0 � 24 1 11 5 5 11 1 35 + �1 � 24 �1 �11 1 1 1�1 �1 35 + �2 � 24 1 �11 3 �3 �11 �1 35 + �3 � 24 �1 �1�1 �1 1 11 1 35of four basi
 �lters. Solving the orthogonality 
riterion for the 
oeÆ
ients �i, weobtain�0 = 116 ; �1 = �18 ; �2 = �p316 and �3 = �p38 ;whi
h reprodu
es the Kova�
evi�
-Vetterli s
aling �lter (see [KV92℄), the �rstknown orthogonal 2D-�lter that leads to a 
ontinouus wavelet for the importantquin
unx sampling grid. Note, that we again found a de
omposition of the �lterinto an even and an odd part, where the even part satis�es the sum rules upto order two and the odd part up to order one | everything is very similar tothe 1D 
ase. We only need more basi
 �lters be
ause more 
onstraints are to be
onsidered. We should remark, that sin
e � = � = 2 in the previous example, wewould have to satisfy �ve 
onstraint equations and thus we should use �ve basi
�lters instead of four, but it turns out that one of the 
oeÆ
ients always getszero. For �lters that satisfy the sum rules up to a higher order (e.g. for ordertwo, one has to 
hoose at least � � 3 and � � 4 or vi
e versa), the orthogonality
onstraints seem to be solvable only numeri
ally, be
ause of the rapidly in
reas-ing 
omplexity of the related nonlinear equation system.Finally, we shall remark, that the presented framework 
ould also be used todesign twodimensional biorthogonal �lters. But due to the symmetry propertiesof these, theM
Clellan transform 
an be used to derive 2D-�lters dire
tly fromtheir 1D-prototypes, whi
h is mu
h faster to implement. Thus, the dire
t usageof basi
 �lters seems to make less sense if one is interested in twodimensionalbiorthogonal �lters.



6 Dis
ussion and Con
lusionA framework for the design of wavelet �lters was presented, whi
h 
an be gen-eralized to higher dimensions. There are very few di�erent approa
hes to dire
tmultidimensional orthogonal �lter design. The most important among these isthe paraunitary polyphase de
omposition due to Vaidyanathan ([VH88℄). Butsin
e his building matri
es do not 
ommute in general, the a priori orderingof these matri
es is not 
lear and thus there is no unique representation of allpossible orthogonal �lters of a given shape, whi
h 
an be obtained by the pro-posed method. However, numeri
al experiments lead to the 
onje
ture, that bothmethods yield the same �lter families. It is intended to apply the multidimen-sional wavelets, that stem from these approa
hes to opti
 
ow estimations andto image feature dete
tion within the s
ope of the authors further resear
h. Thepresented variations for 1D biorthogonal wavelets and their 2D 
ounterparts(built via M
Clellan transform) seem to have ni
e properties for image 
om-pression and some 
ooperation with resear
hers from this area is planned.A
knowledgements. The author would like to thank G. Sommer, B. En-gelke and S. Vukova
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