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Abstract. We present a framework for fast (linear time) local estima-
tion of optical flow in image sequences. Starting from the commonly used
brightness constancy assumption, a simple differential technique is de-
rived in a first step. Afterwards, this approach will be extended by the
application of a nonlinear diffusion process to the flow field in order to
reduce smoothing at motion boundaries. Due to the ill-posedness of the
determination of optical flow from the related differen
Wavelet-GALERKIN projection method
earize the problem.
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1 Introduction

The main purpose of this article is the presentation of a fast algorithm for

the determination of optical flow fields from given image sequences, which

is a very important task in image processing. The question of a reliable
estimation has been adressed by several authors and just as many different
approaches were made (see, e.g. [9], [20], [7], [23], [1] and many others mentioned
therein). Our approach falls into the large group of differential methods and
the flow is computed locally, because here we are mostly interested in fast
computations — nonlocal approaches lead to very large equation systems,
that can only be solved iteratively, which is usually more expensive. On the
other hand, nonlocal methods give commonly better results and are better
suited to handle large displacements. Howerver, the presented methods are
not limited to the local case and might also be applied to global flow calculations.

The paper is organized as follows: in Section 2, we will briefly recall the differ-
ential flow model and the most importantlinvariant, which occurs as brightness
constancy assumption. Additionally, we will show, how a Wavelet-GALERKIN
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procedure helps to linearize and regularize the associated flow equations in order
to get stable estimations ([11]) and we argue, how certain properties of MRA-
Wavelets may be utilized in this context. Since this simple model has some
drawbacks, in particular blurring at motion edges and numerical instabilites at
image points with very slow motion, we derive a certain extension in the fol-
lowing section; this extension is closely related to nonlinear diffusion processes,
which are also briefly presented there. Finally, we will show some experimental
results of the implementations in Section 4 and we discuss the advantages and
disadvantages of this method in comparison to existing approaches of optical
flow calculation.

2 A Simple Differential Model

As mentioned above, the starting point to calculate the optical flow will be the
assumption, that the image brightness between distinct frames of the considered
sequence is pointwise time-invariant under motion. This idealization has shown
to be reliable for most real world image sequences unless no rapid illumina-
tion changes occur. A simple TAYLOR expansion of first order of the statement
I(z(t),y(t)) = const leads to the famous differential flow equation

Ii-u+1I,-v =—1I, (1)

where the vector field (u, v) contains the optical flow information. Unfortunately,
there are several problems concerned with this formulation, starting from the
problem to determine two unknowns from one equation or from the difficulty
to find good approximations of the partial derivatives of the image sequence in
order to achieve credible solutions of (1). Many of these and other aspects of
model problems are intensively discussed in [2] and [12].

We propose the following method to regularize the ill-posed optical flow equa-
tion: by projecting (1) into several subspaces V; of the signal space Ly(R), we
obtain a number of equations, that contain the whole flow information and we
may hope to get a solution to (1) by an optimization procedure of the received
equation system. In more detail, we use a wavelet basis (or frame) to obtain a
multiresolution analysis (MRA) of Ly(R) (many details may be found in [6]).
Now, the projection can be easily done by taking the inner products of (1) with
the building functions of the V; (sometimes called test functions), which are the
scaling functions and wavelets the MRA stems from. Moreover, we may also em-
bed the image representation into this multiscale framework, by approximating
I(z,y) as well as the temporal derivation I;(z,y) by series of the type

I($,y) ~ Z Z c»‘\':f,:,kyr : (roi(a:—'kmay_ky) and
i kg,ky

Ii(z,y) = Z Z k. k, " Pi(T — kzy,y — ky).

i Kaiky
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To complete our modelling, the optical flow is assumed to be locally polynomial,
l.e. we assume

w(z,y)| B, ,1,) = oo + u0- (x—1z) + uwor - (y—1y) + ...
U(a"«',y)[ﬂ(zz,zy) = wvoo + V10 (T —lz) + vo1 - (¥ — Zy) + ...

for a capable surrounding B(l;,l,) of a considered image point I(l;,1,). After
this procedure, we arrive at the system

k.l
E : Cha,ky * (uk,l ‘Pi,j,z(ka:—lz_"sraky_ly — Sy) +
i,j,k,t,kx,ky,ftz:'!'y
k,l
g Ei (s — = 8y Ry — 1, — sy))
0,0
= — E tk, k, 'I;,j,l(kl' — —-Sm,ky—zy ——Sy)

?;,j‘k;; ;ky ;z:z: :ly

for (Iz + sz,ly + sy) € B(l;,l,). Hereby, the F((.".')_)(-, -) denote the generalized
wavelet connection coefficients, which are given by

kL o
L5 c(ma, my) = /ﬂ;z -yt pi(x — ma,y —my) - a—ccpj(:r — Mg,y — My).

As was shown in [10] for 1D and in [15] for the general multidimensional case,
these connection coefficients can be evaluated (which might be quite expensive)
by a finite-dimensional linear system, if the filter mask of the scaling function
is finite and the scaling matrix for the associated MRA satisfies a certain
mild criterion. However, one obviously sees, that the connection coefficients
are independent of the data to be processed and can thus be computed offline
and stored in look-up-tables afterwards. Therefore, the linear equation system
determining the optical flow can be built up by simple discrete convolutions of
the image data with the connection coefficient matrices. Moreover, since we use
compactly supported wavelets (see e.g. [14] for design principles of compactly
supported multidimensional wavelets), only a rather small number of nontrivial
linear equations has to be solved for each image point; the whole processing can
be done in linear time and is in addition massively parallelisable.

One might see this approach as a kind of advanced finite difference method, which
might be enlightened before the background, that connection coefficients are
closely related to discrete differentiation schemes [18]. This is very much in the
spirit of [20] and [3], where somewhat similar approaches were made. However,
in [20] a scale-space-embedding using GAUssians and GAUssian derivatives on
several scales were used to obtain a linear equation system from (1) and in
(3], partial integration and analytical wavelets were employed instead of the
connection coefficient framework.
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3 Application of Nonlinear Diffusion

The algorithm derived in the previous section has some nice features, in
particular, it is very simple to implement and it is also very fast. But on
the other hand there are also some deficiencies. The linear filtering, which
is implicitly performed by using the MRA framework leads to blurring that
especially detoriorates the flow estimation at motion boundaries and moreover,
the equations become numerically instable for small displacement areas; this is
a general problem in optimization of overdetermined linear systems with entries
of small magnitude. Here, the consequence are estimation outliers.

To overcome these problems, several authors ([13], [23]) proposed the usage of
some additional nonlinear flow-based functional, that shall be minimized in order
to reduce smoothing at motion boundaries and to stabilize the numerical robust-
ness of the estimations [4]. One very well-known approach is the minimization
of the functional

f A Wo(IVul2 + |Vol2) + (Le-u + I v + L)? dzdy, 2)
2

where W, (|Vu|? +|Vv|?) is some potential function, that shall guarantee piece-
wise smooth flow fields as solutions. Here, A is just a weighting factor and o is
a steering parameter, that thresholds motion boundaries. A necessary condition
for (u,v) to be a minimizing solution to (2) is the satisfaction of the related
EULER differential equations

A-div (WA(|Vul? + |[Vv|?) - Vu) = L - (Ie-u + Iy v + 1),

_ 3
A - div (WL (|Vul® + Vu|?)-Vv) = Iy (Ie-u + Iy v + It), )

which are closely related to nonlinear diffusion processes ([16], [21]). In this
context, the solutions are obtained by an evolutionary iteration of the PDEs
using e.g. GAUSS-SEIDEL iterations or some advanced semi-implicit numerical
schemes like additive operator splitting [22]. Here, we want to go a different
way, by solving the EULER differential equations not by temporal evolution, but
directly with the connection coefficient framework presented in Section 2. Since
we want to use non-polynomial potentials W, (e.g. like in [17]), the PDEs (3)
cannot by linearized directly by the usage of connection coefficients — aiming
to receive a system of linear equations, we have to do some modification first.
The technique, we use here is called half-quadratic regularization [5], its starting
point is the fact, that W, may be rewritten as

Wo(a?) = inf(y-2* + p(7))

with some well-chosen convex function p depending on W,. Rewriting (2) leads
to the minimization of

/QA- (v(z,y) - ((Vul? + |[Vo|?) + p(v(z,¥)) + Iz -u + Iy -v + I)? dzdy,
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which is done in a two-step-way. First, the functional is minimized with respect
to 7, while (u,v) are fixed. Under certain conditions, which are fulfilled by the
used potential, the solution is given by v = W/. In the second step, we keep
this v fixed and minimize with respect to (u,v) which leads to the linear EULER
differential equations

Adiv(y-Vu) = I, -(Ip-u+ I,-v + It),

Aediv(y- Vo) = I,- (Ip-u+ Iy-v + I). (4)

These linear PDEs are again solved by the Wavelet-GALERKIN projection
method under application of the connection coefficient framework as described
before. The processing is still feasible in linear time, but requires about six
times more operations than the simple method. We close this section with one
final remark about the half-quadratic regularization utilized here: obviously, in
our case this method is equivalent to a BANACH-type iteration of the system
(3) with W/ (|Vug—1|? + |Vvk—1|?) as linearizer from the previous step. Thus,
a good preprocessing for the initial guess of (u,v) is very desirable and in our
implementation realized by the simple differential approach described before.
With this initializing step, very few iterations of the system (4) are sufficient to
achieve a stable solution.

4 Implementation and Experimental Results

First, we will give a brief overview of our implementation. We used symmetric,
nonorthogonal, twodimensional, nonseparable wavelets with at least two van-
ishing moments as generators of an MRA. The same wavelets (scaling func-
tions) and their connection coefficients were used to build the linearized flow
equations, which are solved by QR-algorithm. In order to handle large displace-
ments, a multiscale coarse-to-fine strategy with subsequent image warping is
utilized, motion outliers are identified via thresholding the temporal derivatives.

Table 1. Various results for the Yosemite fly-through.

Method Av. ang. err. Density Type
FLEET & JEPSON 4.36° 34.1% phase-based
WEBER & MALIK 4.31° 64.2% local / differential

SINGH 12.90° 97.8% region-based

URAS 10.44° 100% local / differential
ALVAREZ ET AL. 5.53° 100% global / differential

NAGEL 11.71° 100% global / differential

Section 2 6.94° 96.1% local / differential

Section 3 6.88° 100% local / differential

We applied our methods to the famous Yosemite sequence (synthetic), see Figure
1. Additionally, in Table 1, we present the results that were achieved by the
described methods regarding the average angular error from the true flow field.
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One sees, that both described methods perform competitively well in comparison
with other methods, especially to those with high estimation densities.

Rt i it PAC AT I O B B S A L A S R S R [ e et ol o b S B S
e R R P R R P R P R R R R R R R N ] e I I A R R
e ot ot i o o R B P P P
bt S S F i e
B i i A A A A A e i A S A R
e Al S LSS R i A A R
O il o it A A A A LA i i A AT A T A R
B it i A A A A A A R Al i At A AT AT A A NS
e PP AL LSS LTI AT e A AL E ST
R  dd A e A S TS
e A A A A AL o LSS T
A AN R NN
LSS AL LSS LSS
P P i A AT A A A A S R i S A A A A N AR
P N D A A A A AT A A A o SR
VAR AL LSS L LTI
Y PPV I Yy YER NN LAl

e e e e e A A A A T T AT
e e e e e e T T
B e e e e e e e S i

AT A e A T AT AT AT A T A T AT AT T

e e S e s S T e e o e e e
AT T e, ey e T TR T A TR TR R e
AT AT T T e g, e T T TR TR
B e e i e e i L

- e T Ty, g e T A A TR TR T —— - — e e R
v T e T M e B e — e —
- e = e e = m i m om m m = m a m m = = o= - P e m m wm mm mpmgme y —m — — — — —a ——
R R R e el & i @ U e o KL R W YT S el o aw o e wm
...... - - = ~ - SoE Ve AR e
e e e = m om m o~ s = = = = = = = = = - e e m m m e mwe w a = o=
e e m e e = = = = o= = = = = - - D e T e —memL w A A A A e ow o= o= = =

Fig. 1. Top: The data. Left: One frame of the Yosemite sequence. Right: A little sec-
tion of the ridge in focus. Middle left: Calculated flow field for the method described
in Section 2. Middle Right: Results belonging to the extended nonlinear method.
Bottom: Improvement in the recovery of motion boundaries and supression of motion
outliers — a little section of the ridge in the upper left from the Yosemite sequence is
focussed. Left: Calculated flow by the simple differential method. Right: Results of
nonlinear diffusion method.




Fast Local Estimation of Optical Flow 355

5 Discussion

We presented a new very fast (i.e. linear time) algorithm for the estimation of
optical flow, that mainly bases on the usage of wavelet connection coefficients.
By adding a nonlinear diffusion term, flow blurring at motion boundaries could
be reduced. However, as the experiments show, there is still some smoothing
at such boundaries. This is mainly due to the fact, that the discrete filters,
that are used to approximate the partial derivatives, cause some overlapping of
the spatial information and thus, different motion information are mixed near
singular curves (motion boudaries). This is a general problem with differential
techniques and cannot be completely overcome. Therefore, if one is interested
in exact detection of motion boundaries, treatments that try to minimize
some kind of displacement energy functional are superior. On the other hand
such approaches are nonlocal and require more computational amount. Which
method one should finally use, depends surely on the application, that stands
behind. For tracking or video compression purposes, a fast method is certainly
preferrable, while for object detection or segmentation, nonlocal but more
exact algorithms might be the better choice. However, as already mentioned,
the wavelet connection coefficient framework could also be applied to nonlocal
approaches, but the price of a higher computational cost has to be paid also.
Nevertheless, this is one of the authors purposes for the next time in order to
improve his flow calculations further.

Acknowledgements. The author would like to thank G. SOMMER and S.
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