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Abstract

To relate measurements made by a sensor mounted on a mechanical
link to the robot’s coordinate frame, we must first estimate the trans-
formation between these two frames. Many algorithms have been
proposed for this so-called hand-eye calibration, but they do not treat
the relative position and orientation in a unified way. In this paper,
we introduce the use of dual quaternions, which are the algebraic
counterpart of screws. Then we show how a line transformation can
be written with the dual-quaternion product. We algebraically prove
that if we consider the camera and motor transformations as screws,
then only the line coefficients of the screw axes are relevant regard-
ing the hand-eye calibration. The dual-quaternion parameterization
facilitates a new simultaneous solution for the hand-eye rotation
and translation using the singular value decomposition. Real-world
performance is assessed directly in the application of hand-eye in-
formation for stereo reconstruction, as well as in the positioning of
cameras. Both real and synthetic experiments show the superiority
of the approach over two other proposed methods.

1. Introduction

Hand-eye calibration is the computation of the relative posi-
tion and orientation between the robot gripper and a camera
mounted rigidly on the gripper. This problem also concerns
all sensors that are rigidly mounted on mechanical links, such
as a camera mounted on a binocular head with mechanical de-
grees of freedom, as well as a camera mounted on a vehicle.
Although the term “sensor-actuator calibration” is actually
more appropriate, throughout this paper we will use the more
well-known term “hand-eye calibration.”

The hand-eye transformation is required in a number of
sensing-acting tasks. Using a camera mounted on a gripper or
a vehicle, we can estimate the position of a target to grasp or to
reach in camera coordinates. However, the control commands
can be expressed only in the coordinate system of the gripper
or the vehicle. Even if the desired control criterion is given in
camera coordinates, we have to know which is the effect of a
robot motion in the camera frame.
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The second task group is the placement of sensors at de-
sired positions. We can achieve stereo reconstruction by plac-
ing a camera mounted on a gripper at multiple poses sharing
the same field of view. However, to reconstruct the 3-D posi-
tions, we must know the relative orientation from the camera
coordinate systems. But the only transformations we know
are in the robot coordinates. The same applies for mount-
ing cameras on binocular heads. As the cameras are manu-
ally mounted, a hand-eye calibration is necessary to align the
camera coordinate system with the tilt-vergence link.

The usual way to describe the hand-eye calibration is by
means of homogeneous transformation matrices. We denote1

by X the transformation from camera to gripper, byAi the
transformation matrix from the camera to the world coordi-
nate system, and byB i the transformation matrix from the
robot base to the gripper at theith pose. Figure 1 illustrates
one of the applications of hand-eye calibration, which con-
sists of a camera mounted on a gripper. The camera-world
transformationAi is obtained with the extrinsic calibration
techniques. The robot-base-to-gripper transformationBi is
given by the direct kinematic chain from the joint-angle read-
ings. We see that for one pose we have two transformations
as unknowns: robot-base-to-world, and the camera-to-gripper
X. To eliminate the base-to-world transformation, we need
one motion (two poses) that yields the well-known hand-eye
equation first formulated by Shiu and Ahmad (1989) and Tsai
and Lenz (1989),

AX = XB, (1)

whereA = A2A
−1
1 andB = B−1

2 B1. As every homoge-
neous transformation matrix has the form(

R Et
0T 1

)
,

1. We use boldface capital letters for matricesX, arrowed boldface letters for
3-D vectorsEx, boldface letters for real quaternionsx, checked italicized fonts

x̌ for dual scalars, checked arrowed boldface for dual vectorsĚx, and checked
italicized boldface for dual quaternionsx̌. The natural inner product of two
vectors or quaternions is denoted byxT y, and the cross-product between
3-D vectors byEx × Ey.
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Fig. 1. The transformations between different frames at pose
1 and pose 2.

from eq. (1) follows one matrix and one vector equation

RARX = RXRB, (2)

(RA − I )EtX = RXEtB − EtA. (3)

The majority of the approaches regards the rotation estimation
in eq. (2) decoupled from the translation estimation, the latter
following the former. At least two rotations containing mo-
tions with nonparallel rotation axes are required to solve the
problem (Tsai and Lenz 1989). Several approaches have been
proposed for the estimation ofRX from eq (2): using the ro-
tation axis and angle (Tsai and Lenz 1989; Shiu and Ahmad
1989), quaternions (Chou and Kamel 1991), and canonical
matrix representation (Li and Betsis 1995) (a survey is pro-
vided by Wang 1992).

Horaud and Dornaika (1995) emphasize the fact that the
computation of the extrinsic calibration matricesAi given the
projection matricesM i from world to pixel coordinates is
an unstable problem. Therefore, they propose the following
alternative: assume that the matrix of intrinsic parametersC

remains constant during motion. Then the projection matrix
reads

M i = CAi = (
CRAi CEtAi

)
. (4)

We introduceN i = CRAi and Eni = CEtAi . Let us assume
that one extrinsic calibrationA1 is known, and replaceX =
A1Y . The unknown is now the world-gripper transformation
Y . Equation (1) can be rewritten as

A2Y = A1YB or A−1
1 A2Y = YB, (5)

which is just a new homogeneous transform equation. How-
ever, if we writeA−1

1 A2 as a function of the projection pa-
rameters, we find thatA−1

1 A2 is independent of the intrinsic
parametersC:

A−1
1 A2 =

(
N−1

1 N2 N−1
1 (En2 − En1)

0T 1

)
. (6)

Hence, with an appropriate change of the unknown, we obtain
eq. (5) which can be solved by all the methods solving eq. (1)
as well as the one proposed later in this paper.

Horaud and Dornaika (1995) were the first to apply a si-
multaneous nonlinear minimization with respect to the rota-
tion quaternion and the translation vector. However, the first
simultaneous consideration of rotation and translation in a
geometric way was presented by Chen (1991), who first in-
troduced the screw theory in the hand-eye calibration.

In this paper, we introduce the algebraic entity for a screw:
the unit dual quaternion. Dual quaternions are an extension
of the real quaternions by means of the dual numbers (Study
1891; Blaschke 1960), and were first introduced by Clifford
(1873). Dual numbers and dual quaternions were used earlier
in robotics (Walker 1988; Gu and Luh 1987; Funda and Paul
1990), and in computer vision (Walker, Shao, and Volz 1991;
Phong et al. 1993). Based on the dual quaternions, we prove
that:

1. the hand-eye transformation is independent of the angle
and the pitch of the camera and hand motions, and de-
pends only on the line parameters of their screw axes—a
result geometrically proved by Chen (1991); and

2. the unknown screw parameters, including both rotation
and translation, can be simultaneously recovered using
the singular value decomposition (SVD).

This is the first algorithm in the literature simultaneously
solving for rotation and translation without nonlinear min-
imization. The algorithm was implemented and compared
with a two-step algorithm that separately solves forR andEt ,
showing its superior performance. The performance with real
data is tested directly in an application. We judge the quality
of the obtained hand-eye information on the task of stereo
reconstruction using the motor-encoder readings of an active
camera.

The next section gives an exposition on the properties of
dual numbers and dual quaternions. Then, we describe how
a line transformation is expressed with dual quaternions, and
how we obtain a dual quaternion from the(R, Et) representa-
tion. The dual quaternion is given as a function of the screw
parameters, and then we prove the independence result. We
describe our solution via SVD, and end with experimental
results.

2. Dual Quaternions

This section outlines briefly the dual quaternions. First quater-
nions are explained, followed by a short description of dual
numbers. Finally, the dual quaternions and their relevant
properties are introduced.
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2.1. Quaternions

Invented by Hamilton (Blaschke 1960), quaternions are an
extension of the complex numbers toR4. Among other for-
malisms, one definition of quaternions is as pairs(s, Eq), where
s ∈ R andEq ∈ R3. The following operations

q1 + q2 = (s1 + s2, Eq1 + Eq2), (7)

λ(s, Eq) = (λs, λEq), (8)

whereλ ∈ R make the quaternions a vector space over the
reals—we will callH—with the zero element(0, 0). The
multiplication between quaternions, which is defined as

q1q2 = (s1s2 − EqT
1Eq2, s1Eq2 + s2Eq1 + Eq1 × Eq2), (9)

has a unit element(1, 0), and is associative but not commu-
tative. Therefore, the quaternions are an associative algebra,
and since they do not contain zero divisors, they are a division
algebra. The norm of a quaternion is defined as‖q‖ = qq̄,
whereq̄ is the conjugate quaternion(s, −Eq). A subgroup of
H regarding only the multiplication operation includes the
unit quaternions with norm equal one. For every rotation (el-
ement of SO(3)) about an axisEn (‖En‖ = 1) with an angleθ , a
corresponding unit quaternionq = (cosθ

2, sin θ
2 En) exists that

maps a vectorEx ∈ R3 to the vectorq(0, Ex)q̄.

2.2. Dual Numbers

Dual numbers were invented by Clifford (1873), and further
developed by Study (1891) in the last century. A dual number
is defined as

ž = a + εb with ε2 = 0. (10)

The operations addition and multiplication make them an
Abelian ring called1, but not a field, because only dual num-
bers with real part not zero possess an inverse element. An
important property is associated with the derivatives of func-
tions with dual arguments. Since all powers ofε greater than
one vanish, a Taylor expansion yields

f (a + εb) = f (a) + εbf ′(a). (11)

Dual vectors are defined in13; with the addition and the ex-
ternal multiplication with a dual number, they make a module
over the ring1. Dual vectors with orthogonal real and dual
parts are a representation of lines inR3 known as Plücker
coordinates. The real part is the direction of the line, and the
dual part is its moment. The inner product between two such
dual vectors is equal to the cosine of a dual angleθ̌ = θ + εd,
which has a nice geometric interpretation:θ is the angle be-
tween the two space lines, andd is their distance.

2.3. Dual Quaternions

Dual quaternions are defined in a similar way to real quater-

nions as(š, Ěq) whereš is a dual number anďEq is a dual vector.
The operations have the same definitions:

q̌1 + q̌2 = (š1 + š2, Ěq1 + Ěq2), (12)

λ̌(š, Ěq) = (λ̌š, λ Ěq), (13)

q̌1q̌2 = (š1š2 − q̌
T
1q̌2, š1 Ěq2 + š2 Ěq1 + Ěq1 × Ěq2). (14)

The first two, eqs. (12) and (13), make the dual quaternions a
1-module. Addition (12) and multiplication (14) make them
a non-Abelian ring with unit element(1, 0). All three opera-

tions make them an associative algebra. Dual vectorsĚq can

be written as dual quaternions(0, Ěq), and their multiplication
possesses the nice property

(0, Ěq1)(0, Ěq2) = (− ĚqT

1 Ěq2, Ěq1 × Ěq2). (15)

The norm of a dual quaternion is defined as‖q̌‖2 = q̌ ¯̌q, and
is a dual number with a positive real part. If the norm has a
nonvanishing real part, then the dual quaternion has an inverse
q̌

−1 = ‖q̌‖−1 ¯̌q. If the norm is equal to one, then an inverse
element exists and is equal to the conjugate quaternion. If
q̌ = q + εq ′, then the unity conditioňq ¯̌q = 1 can be written

qq̄ = 1 and q̄q ′ + q̄ ′q = 0. (16)

As we shall describe in the following unit, dual quaternions
represent general motions of lines and the expressionq̌x̌ ¯̌q that
is valid for the rotation of points in the case of real quaternions
is also true for the general motion of lines in the case of dual
quaternions.

3. Line Transformations with Unit Dual
Quaternions

As is already known, the rotation of a pointEpb to a point
Epa can be written by means of a unit quaternionq, as the
product Epa = q Epbq̄. This form allows the concatenation of
rotations to be represented by a simple quaternion product.
Unfortunately, no such quaternion representation exists for a
general rigid transformation that includes translation. We will
explain in this section that the introduction of dual quaternions
allows a rigid-transformation rule as simple as the one for pure
rotations; however, not for a point but for a line.

A line in space with directionEl through a pointEp can
be represented with the six-tuple(El, Em), where Em is called
the line moment and is equal toEp × El. The line moment
is normal to the plane through the line and the origin, with
magnitude equal to the distance from the line to the origin.
The constraints‖El‖ = 1 andEl T Em = 0 guarantee that the
degrees of freedom of an arbitrary line in space are four.
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We next give an answer to the following problem.

PROBLEM 1. A line given by its dual quaternioňla = la +
εma is transformed with(R, Et) into a line ľb. Show that a
unit dual quaternion exists such thatľa = q̌ ľb

¯̌q.

Applying a rotationR and a translationEt to a line(Elb, Emb),
we obtain the transformed line(Ela, Ema):

Ela = RElb, (17)

Ema = Epa × Ela = (R Epb + Et) × RElb,
= R( Epb × Elb) + Et × RElb,
= R Emb + Et × RElb. (18)

We change from vector to quaternion notation, which means
that the vectorEl is represented by a quaternion with zero
scalar partl = (0, El). The terms containing rotation can
be easily written with quaternions. The difficulty with the
cross-product is tackled with the identity

(0, Et × Eq) = 1

2
(qt̄ + tq), (19)

wheret is the translation quaternion(0, Et), andq is the rotation
quaternion(0, Eq). Using the identity eq. (19), we obtain

la = qlbq̄,

ma = qmbq̄ + 1

2
(qlbq̄ t̄ + tqlbq̄). (20)

We define a new quaternionq ′ = 1
2tq and a dual quaternion

q̌ = q +εq ′. It can be easily shown that eq. (20) is equivalent
to

la + εma = (q + εq ′)(lb + εmb)(q̄ + εq̄ ′). (21)

Denoting also the lines by dual quaternionsľa and ľb, we
obtain

ľa = q̌ ľb
¯̌q.

This formula resembles the rotation of points with
quaternions.

Lines can thus be rigidly transformed using a single oper-
ation (multiplying left and right sides with the conjugate) in
the non-Abelian ring of dual quaternions. The norm

|q̌|2 = q̌ ¯̌q = qq̄ + ε(qq̄ ′ + q ′q̄)

= qq̄ + ε/2(qq̄t̄ + tqq̄) = 1,

henceq̌ is a unit dual quaternion. The above relations also
explicitly give the transformation from (R, Et) to q + εq ′. The
dual partq ′ = 1

2tq and the quaternionq can be obtained
from the rotation matrix by finding the axis and the angle of
rotation. If q̌ is a solution, then−q̌ is also a solution. As in

nondual quaternions, it is sufficient to enforce that the scalar
nondual part be positive to eliminate this ambiguity.

Conversely, the translationt can be recovered from the
dual quaternion as

t = 2q ′q̄. (22)

The unit dual quaternioňq can be written as the concate-
nation of a pure translational unit dual quaternion and a pure
rotational quaternion with dual part equal to zero; i.e.,

q̌ = (1, ε
Et
2
)q.

4. Unit Dual Quaternions and Screws
This section shows that the scalar and the vector parts of the
dual quaternion have specific meanings which relate them
to the kinematic notion of a screw. According to Chasles’s
theorem (Chen 1991), a rigid transformation can be modeled
as a rotationwith the same angleabout an axis not through
the origin and a translation along this axis. As the screw
axis is a line in space, it depends on four parameters which
together with the rotation angleθ and the translation along
thed (pitch) axis constitute the six degrees of freedom of a
rigid transformation.

We solve the following problem.

PROBLEM 2. Given a rotationR about an axis through the
origin and a translationEt , compute the pitchd as well as the
screw axis given by its direction and moment pair(El, Em).

The directionEl is parallel to the rotation axis. The pitch
d is the projection of translation on the rotation axis, and is
therefore equal toEt T El. The not-mentioned angle,θ , is the
same in both the(R, Et) and the screw representation. To
recover the momentEm, we introduce a pointEc on the screw
axis as the projection of the origin on the axis (Fig. 2).

The coordinate system is shifted to this point and then
transformed. The resulting translation is thendEl + (I − R)Ec.

Fig. 2. The geometry of a screw: every motion can be modeled
as a rotation with angleθ about an axis atEc, with directionEl
and a subsequent translationd along the axis.
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The so-called pitchd readsd = El T Et . Using the Rodrigues
formula,

REc = Ec + sin(θ)El × Ec + (1 − cosθ)El × (El × Ec),

andEc T El = 0, it follows that

Ec = 1

2
(Et − (Et T El)El + cot

θ

2
El × Et). (23)

This point Ec and hence the screw axis is not defined if the
angleθ is either 0 or 180◦. Otherwise the moment vector
then reads

Em = Ec × El = 1

2
(Et × El + El × (Et × El) cot

θ

2
). (24)

We proceed with the computation of the corresponding
quaternion: given the screw parameters(θ, d, El, Em), compute
the corresponding dual quaternionq̌.

The quaternion derived from the rotation matrixR reads

(q0, Eq) = (cos
θ

2
, sin

θ

2
El), (25)

hence the moment eq. (24) can be written

sin
θ

2
Em = 1

2
(Et × Eq + q0Et − cos

θ

2
(El T Et)El).

Using(El T Et) = d and rewriting

sin
θ

2
Em + d

2
cos

θ

2
El = 1

2
(Et × Eq + q0Et)

(which is the vector part of the dual partq ′ of the dual quater-
nion q̌), applying eq. (25), and usingq ′ = 1

2tq, we obtain

q̌ =
(

q0
Eq
)

+ ε

( −1
2 Eq T Et

1
2(q0Et + Et × Eq)

)
=
(

cosθ
2

sin θ
2
El
)

+ ε

(
− d

2 sin θ
2

sin θ
2 Em + d

2 cosθ
2
El

)
.

(26)

Every functionf of the dual numbers obeys the rule

f (a + εb) = f (a) + εbf ′(a),

hence

cos(
θ + εd

2
) = cos

θ

2
− ε

d

2
sin

θ

2
,

and

sin(
θ + εd

2
) = sin

θ

2
+ ε

d

2
cos

θ

2
.

It is now straightforward to see that a dual quaternion can also
be written as

q̌ =
(

cos( θ+εd
2 )

sin( θ+εd
2 )(El + ε Em)

)
. (27)

This representation is very powerful since it algebraically sep-
arates the angle and pitch information from the line informa-
tion characterizing the pose of the screw axis. Moreover, writ-

ing the dual anglěθ = θ +εd and the dual vectořEl = El +ε Em,
eq. (27) becomes equivalent to the pure rotation of the nondual
eq. (25). We can easily verify that

q̌ = (cosθ̌/2, Ěl sin θ̌/2)

is a unit quaternioňq ¯̌q = 1.

5. Hand-Eye Transformation with Unit Dual
Quaternions

The concatenation of two rigid displacements or screws can be
written as the product of two dual quaternions. Letǎ denote
the screw of a camera motion, andb̌ denote the screw of
the motor motion. Motor (hand) and camera (eye) are rigidly
attached to each other. The rigid transformation between them
is unknown, and it will be denoted by the unit dual quaternion
q̌. The screw concatenation then yields

ǎ = q̌b̌ ¯̌q, (28)

which is the most compact equation for the hand-eye relation-
ship since the dual quaternion components are 8 and not 12
like in the homogeneous matrices of eq. (1). The scalar part
of a dual quaternioňa is (ǎ + ¯̌a)/2, hence

Sc(ǎ) = 1

2
(ǎ + ¯̌a) = 1

2
(q̌b̌ ¯̌q + q̌

¯̌
b ¯̌q) = 1

2
q̌(b̌ + ¯̌

b) ¯̌q
= q̌Sc(b̌) ¯̌q = Sc(b̌) q̌ ¯̌q = Sc(b̌).

(29)

According to eq. (27), the scalar parts are equal to the cosine
of the respective dual angles:

cos
(θa + εda)

2
= cos

(θb + εdb)

2
,

which is equivalent to

cos
θa

2
= cos

θb

2
and da sin

θa

2
= db sin

θb

2
.

Hence, the angle and the pitch of the motor screw are equal
to the angle and the pitch of the camera screw; therefore the
angle and the pitch remain invariant under coordinate transfor-
mations. This is also known as the screw congruence theorem
(Chen 1991), its proof without dual unit quaternions is, how-
ever, considerably longer than the one-line proof in eq. (29).
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The fundamental equatioňa = q̌b̌ ¯̌q consists of four dual
equations. Since the scalar parts are equal, only the vector
components contribute to the computation of the unknownq̌:

sin
θ̌a

2
(0, Ěa) = q̌(0, sin

θ̌b

2
Ěb) ¯̌q = sin

θ̌b

2
q̌(0, Ěb) ¯̌q.

If the anglesθa,b are not 0 or 360◦, the sines can be simplified,
yielding

(0, Ěa) = q̌(0, Ěb) ¯̌q, (30)

which is nothing other than the motion of the lines of the screw
axes.

Thus,

1. the hand-eye estimation is independent of the angle and
the pitch of the camera and the motor motions, and

2. the hand-eye calibration is equivalent to the 3-D
motion-estimation problem from 3-D line correspon-
dences, where the lines are the screw axes of the motors
and the cameras.

We should note here that all other hand-eye calibration
methods make use of the rotation angle and the pitch, at least
at the translation-estimation step of eq. (3), which turns out
in eq. (30) to be unnecessary. Having shown that the problem
is equivalent to the 3-D motion problem, we already know
from computer vision (Sabata and Aggarwal 1991) that the
minimum requirement is two nonparallel lines. Hence, the
minimal data for hand-eye calibration are two motions with
nonparallel rotation axes.

6. Estimation of the Hand-Eye Screw with SVD

Although we showed in the last section that only the vector
part of the dual quaternions is relevant for the estimation of
the unknown hand-eye unit dual quaternionq̌, let us keep the

same notatioňa andb̌ for (0, Ěb) and(0, Ěa), respectively.
We split the fundamental eq. (28) into the nondual and dual

parts, and we obtain

a = qbq̄

a′ = qbq̄ ′ + qb′q̄ + q ′bq̄.

Multiplying on the right withq and applying the identity

q̄q ′ + q̄ ′q = 0

in the first term of the right-hand side of the first equation
yields

aq = qb,

a′q = −aq ′ + qb′ + q ′b,

which may be rewritten as

aq − qb = 0,

(a′q − qb′) + (aq ′ − q ′b) = 0.

We keep in mind that from each of the two equations above
the scalar part is redundant, because they are equivalent to
eq. (30). Hence, we have in total six equations with eight
unknowns, which can be written in matrix form as follows.
Let a = (0, Ea) anda′ = (0, Ea′

), as well asb = (0, Eb) and

b′ = (0, Eb′
). The quaternion equations above can then be

written as a matrix vector equation(
Ea − Eb [Ea + Eb]× 03×1 03×3

Ea′ − Eb′ [Ea′ + Eb′]× Ea − Eb [Ea + Eb]×

)(
q

q ′
)

= 0,

(31)

where the matrix—we will call itS—is a 6× 8 matrix, and
the vector of unknowns(qT , q ′T ) is 8-dimensional. We de-
note with[Ea]× the antisymmetric matrix corresponding to the
cross-product withEa.

Recall that we have two constraints on the unknowns so
that the result is a unit dual quaternion

qT q = 1, and qT q ′ = 0. (32)

We could think that six equations plus two constraints would
suffice; however, the vectorsEa and Eb are unit vectors and
the vectorsEa′ and Eb′

are perpendicular toEa and Eb, so that
two equations are redundant. This is nothing new, since it is
well known that at least two lines are necessary so that 3-D
motion can be estimated from their correspondences (Sabata
and Aggarwal 1991). Thus, we need at least two motions of
the hand-eye system to get two lines from the corresponding
screws. Chen (1991) also recognized this fact, and analyzed
the uniqueness of the problem. He geometrically proved that
even in the case of two parallel rotation axes we can compute
all parameters up to the pitch.

Suppose now thatn ≥ 2 motions are given. We construct
the 6n × 8 matrix

T = (
ST

1 ST
2 . . . ST

n

)T
, (33)

which in the noise-free case has rank 6. Since in the noise-
free case the equations arise from natural constraints, the null
space contains at least the solution(q, q ′). It is trivial to see
that an additional orthogonal solution is(04×1, q). Hence,
the matrix is maximally of rank 6. If all axesEb are mutually
parallel, then the rank of the matrix is 5. The proof is quite
lengthy and will not be given here; however, it is plausible
that in this case a three-parameter family of solutions cannot
be constrained by the two conditions of eq. (32).

We compute the singular value decompositionT =
U6V T , where6 is a diagonal matrix with the singular values,
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the columns ofU are the left-singular vectors, and the columns
of V are the right-singular vectors. If the rank is 6, then the
last two right-singular vectorsEv7 and Ev8—corresponding to
the two vanishing singular values—span the null space of
T . We write them as being composed of two 4× 1 vectors,

Ev7
T = (EuT

1 , EvT
1 ) and Ev8

T = (EuT
2 , EvT

2 ). A vector (qT , q ′T )

satisfyingT (qT , q ′T )T = 0 must be a linear combination of
Ev7 andEv8. Hence(

q

q ′
)

= λ1

( Eu1
Ev1

)
+ λ2

( Eu2
Ev2

)
.

The two degrees of freedom are fixed by the constraints of eq.
(32), which imply two quadratic equations inλ1 andλ2:

λ2
1EuT

1 Eu1 + 2λ1λ2EuT
1 Eu2 + λ2

2EuT
2 Eu2 = 1, (34)

λ2
1EuT

1 Ev1 + λ1λ2(EuT
1 Ev2 + EuT

2 Ev1) + λ2
2EuT

2 Ev2 = 0. (35)

Sinceλ1 andλ2 never both vanish, assume without loss of
generality thatEuT

1 Ev1 6= 0, so thatλ2 6= 0. Settings = λ1/λ2
we first solve eq. (35), obtaining two solutions fors. Inserting
λ1 = sλ2 in eq. (34) yields

λ2
2(s

2EuT
1 Eu1 + 2s EuT

1 Eu2 + EuT
2 Eu2) = 1, (36)

which has two real solutions of opposite sign, because it can
be easily proved that the trinomial

(s2EuT
1 Eu1 + 2s EuT

1 Eu2 + EuT
2 Eu2)

is always positive or zero. Indeed, the second-order coef-
ficient EuT

1 Eu1 is positive, and the discriminant 4(EuT
1 Eu2)

2 −
4(EuT

1 Eu1)(EuT
2 Eu2) is always negative or equal to zero due to the

Schwartz inequality. We can easily prove that in the noise-
free case the discriminant is equal to zero and ans exists
that makes the left side of eq. (36) vanish: if(qT , q ′T ) is
a solution, then(04×1, q) belongs to the kernel of the ma-
trix T . Hence,λ1 and λ2 exist so thatλ1Eu1 + λ2Eu2 =
0: that meansEu1 and Eu2 are parallel and the discriminant
4(EuT

1 Eu2)
2 − 4(EuT

1 Eu1)(EuT
2 Eu2) vanishes. Then, the double so-

lution of s2EuT
1 Eu1 + 2s EuT

1 Eu2 + EuT
2 Eu2 for s is −‖Eu1‖/‖Eu2‖. It

can be easily proved that it is also one of the solutions of eq.
(35) forλ1 = sλ2 if Eu2 = µEu1:

s2EuT
1 Ev1 + s EuT

1 (Ev2 + µEv1) + µEuT
1 Ev2 = 0

⇒ (s + µ)EuT
1 (sEv1 + Ev2) = 0.

In the presence of noise, to avoid this solution fors resulting
to (04×1, q), we always choose from the twos-solutions the
one that gives the largest value fors2EuT

1 Eu1+2s EuT
1 Eu2+ EuT

2 Eu2.
The sign variation in the solution forλ2 in eq. (36) is due

to the sign invariance of the solution: both(qT , q ′T ) and
(−qT , −q ′T ) satisfy the motion equations and the constraints.

The computation algorithm consists of the following steps:

1. Givenn motor motions(bi , b
′
i ) and the corresponding

camera motions(ai , a
′
i ), check if the scalar parts are

equal. Then extract the line directions and moments of
the screw axes and construct the matrixT in eq. (33).

2. Compute the SVD ofT and check if only two singular
values are almost equal to zero (due to noise, we ap-
ply a threshold). Take the corresponding right-singular
vectorsEv7 andEv8.

3. Compute the coefficients of eq. (35) and solve it, finding
two solutions fors.

4. For these two values ofs, computes2EuT
1 Eu1+2s EuT

1 Eu2+
EuT

2 Eu2, and choose the largest of them to computeλ2 and
thenλ1.

5. The result isλ1Ev7 + λ2Ev8.

7. Experiments

To experimentally test the dual-quaternion method, we per-
formed simulations and a real experiment. To compare its
performance and experimentally substantiate the theoretical
differences, we implemented two additional methods from
the literature. The first one is similar to the method proposed
by Horaud and Dornaika (1995), and is based (like ours) on
the simultaneous computation of rotation and translation. Its
representation consists of quaternions for the rotations and
vectors for the translations. Equations (2) and (3) are com-
bined additively into the following objective function:

J (q, EtX) = ‖aq − qb‖2 + ‖((RA − I )Etx + EtA)q − qEtB‖2,

(37)

to be minimized with respect toq andEtX subject to‖q‖2 = 1.
After expressing the quaternion in spherical coordinates, we
apply the Levenberg-Marquardt minimization in its NETLIB
Fortran implementation. This method makes use of all of the
information in the camera and motor motions, including the
angles and the pitches, which are not used in the dual quater-
nion method. Like every iterative nonlinear minimization, it
must be provided with starting values.

The second alternative method we applied was a two-step
method as described by Chou and Kamel (1991). The first
step solves for the rotation by minimizing

‖aq − qb‖2 with respect to q subject to ‖q‖2 = 1,

which can be reduced to an eigenvector problem. The second
step solves the linear system of eq. (3) for the translation

(RA − I )EtX = RXEtB − EtA.

In the following experiments and graphs, we denote our dual
quaternion method by “DUAL,” the nonlinear simultaneous
solution for rotation and translation by “NLIN,” and the sep-
arate solution by “SEPA.”
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7.1. Synthetic Experiments

The intent of the synthetic experiments is to test the behavior
of the above three methods under controllably varying fac-
tors. The simulation is conducted as follows: we establish
N hand motions(RB, EtB) in a realistic setup similar to the
real experiment of the next section. We add Gaussian noise of
relative standard deviation of 1% corresponding to the angle
readings. We assume a hand-eye setup and compute the cam-
era motions(RA, EtA), to which we also add Gaussian noise
of varying standard deviation, because this is the main source
of error owing to the sensitive step of camera calibration. The
noise is added as absolute value to the unit rotational quater-
nion, and as relative value to the translation. For every noise
setting, each algorithm runs 1,000 times and outputs the es-

timated rotation quaternion̂q and the estimated translationÊt
between the gripper and the camera. To qualify the results,
we take the RMS of the errors in the rotation unit quaternion
‖q − q̂‖ and the RMS of the relative errors in the translation

‖Et − Êt‖/‖Et‖. These are customary error metrics also used
by Tsai and Lenz (1989) and Horaud and Dornaika (1995).
However, the reader should be aware that the Frobenius norm
of the difference of the rotation matrices‖R − R̂‖ applied in
these studies is much higher than the quaternionic error norm
‖q − q̂‖ (2

√
2 times larger if the axes are the same and the

error is only in the angle).
In the first experiment, we tested a standard configuration

of 20 hand motions under different noise levels in the camera
poses. In Figure 3 we compare our algorithm (DUAL) with
the nonlinear (NLIN) and the two-step (SEPA) algorithms.
The dual-quaternion approach exhibits the best behavior, fol-
lowed by the nonlinear minimizer. The reason for this dis-
crepancy is the convergence of the nonlinear method to local
minima in a subset of the 1,000 runs for each noise level,
as well as the use of the angles and pitches in the nonlinear
method.

In the second experiment, we keep the noise level at 1%
and we vary the number of motions from 2 to 20. We observe
(Fig. 4) the same behavior in the simultaneous and the separate
solutions in the case of just two motions. This is plausible,
since the number of unknowns is equal to the number of inde-
pendent constraints in the pure rotational equations, making
it irrelevant whether we solve separately or not. For a few
motions, the nonlinear algorithm does not converge properly.
The dual quaternion algorithm is superior in multiple motions.

In the third experiment, we varied the variance of the in-
terstation rotation axes. According to work by Tsai and Lenz
(1989), this is the most critical factor in the accuracy of hand-
eye calibration. Again we keep the noise level at 1%, and
choose 20 rotation axes from a varying area on the unit sphere
characterized by the polar angle. Thex-axis in the plot of Fig-
ure 5 represents the inverse of this area or the inverse of the
axes’ direction variance. The behavior is explained by Tsai
and Lenz (1989) for the two-step separate solution algorithm

(SEPA): the smaller the variance in the direction of rotation
axes, the higher is the estimation error. In the limiting case
(not shown in the diagram) when all rotation axes are parallel
the problem becomes singular. However, this is not an intrin-
sic property of the hand-eye calibration problem. We observe
the striking phenomenon that the rotation error in both the
nonlinear and the dual quaternion approaches is invariant to
this variation. This is not a surprise, but is a main advantage of
the approaches solving simultaneously for rotation and trans-
lation: rotation cannot be recovered from eq. (2) if all rotation
axes are parallel. However, if both eq. (2) and eq. (3) are con-
sidered, a unique solution for rotation exists but the translation
still possesses one degree of freedom (Chen 1991).

In all of the simulations, we observe the superior perfor-
mance of the dual quaternion algorithm. The nonlinear mini-
mizer could perform better if we could guarantee that it would
converge to the global minimum, independent of the starting
value. We experimentally showed that total ill-conditioning
due to insufficient variation of the rotation axes is not an in-
trinsic property of the problem.

7.2. Real Experiments

The real experiments were conducted2 with a Robosoft Pan-
Tilt unit TO30 mounted on a controllable slider. The exper-
imental configuration is illustrated in Figure 6. The axes of
the camera coordinate system(xc, yc, zc) are parallel to the
axes(xm, ym, zm) of the motor coordinate system. There is
a relative translation between the two coordinate systems in
they- andz-directions. To avoid introducing new terms, in
the following we refer to the motor coordinate system as the
hand or the gripper.

Since the ground truth is unknown, we assess the perfor-
mance of hand-eye calibration with two task-dependent meth-
ods. The first one—which is also applied in the classical paper
by Tsai and Lenz (1989)—is the ability to predict the camera
pose by using only the motor-motion data. This is very im-
portant for all tasks involving view planning or the opposite
problem of gripper-pose planning. The second assessment is
reconstruction by motion stereo using one camera: the cam-
era is calibrated only once and then moved to new positions
where it is not calibrated again, as would be the case in using
a left-right camera stereo system.

In the first assessment, the camera was moved to 25 lo-
cations with different pan and tilt angles as well as different
positions along the slider. The translation along the slider var-
ied between 50 and 900 mm, and the calibration object was at
an approximate distance of 1,000 mm. The camera was cali-
brated with the ellipse-based method (Tarel and Vzien 1996),
which includes the computation of the 3×4 projective matrix

2. The image and motor recordings are courtesy of Jean-Philippe Tarel, SYN-
TIM Project, INRIA Rocquencourt.



294 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / March 1999

Fig. 3. Behavior of the dual quaternion (DUAL), the nonlinear (NLIN), and the two-step (SEPA) algorithms with variation in
noise. The RMS rotation error is shown on the left; the RMS relative translation error is on the right.

Fig. 4. The RMS error in rotation (left) and the RMS relative error in translation (right) as a function of the number of hand
and camera motions.

Fig. 5. The RMS error in rotation (left) and the RMS relative error in translation (right) as a function of the inverse of the
rotation axes variation. The horizontal axis is proportional to the inverse of an area on the unit sphere inside where the rotation
axes are distributed.
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Fig. 6. The pan/tilt from a top view is shown on the left. The axes of the camera and the motor coordinate systems are parallel.
The origins of the two coordinate systems differ byy- andz-offsets. On the right, we show the experimental setup with the
slider, the pan/tilt head, and the calibration board.

as well as its decomposition in intrinsic and extrinsic param-
eters (Faugeras and Toscani 1986).

For N = 11...19 stations, we compute the hand-eye cal-
ibration by all three methods: the one proposed here using
dual quaternions, the nonlinear simultaneous estimation, and
the separate estimation of rotation and translation.

We extract the extrinsic parametersAi from every projec-
tive camera matrix in eq. (4) and use them together with the
motor posesB i for the computation of the camera-gripper
transformationX from N positions. Then we predict the
camera pose for the verification stationsj = 20...25 from the
motor motion1Bj and the first camera poseA1:

Âj = X1B−1
j X−1 A1.

We compare the predicted camera poseÂj with the camera
poseAj extracted from the camera calibration, and average
the errors over the five verification stations. The camera poses
have an estimation error, but we assume that this is much
lower than the error in the predicted pose. This procedure is
repeated for a different number of framesN = 10...20 used in
the computation of the hand-eye matrixX. The results for all
three methods for varyingN are shown in Figure 7, including
the average absolute error for the rotation (left) and the aver-
age relative error for the translation (right). The number of
verification stations was kept constant. The dual quaternion
method was slightly superior. Both simultaneous methods
(dual quaternion and nonlinear) performed better in the trans-
lation case, where all methods showed an error under 2%. We
observed the expected decrease with the number of stations
used; however, the decrease was not as steep as expected,
because the variation in the interstation rotation axes was re-
stricted (as explained in the next paragraph).

The error in the estimation of the hand-eye calibration de-
pends on the errors in the camera poses and the motor record-
ings. Common sources of observed error in the assessment
of all methods are in the extrinsic pose extraction for the ver-
ification stations and the motor recordings in moving to these
stations. Translation computation is very sensitive to noise,
due to the limited variation of the rotation axes of the in-
terstation motions. This variation is constrained in that the
calibration target must always be inside the field of view.

To obtain a rough perception of the values of the hand-eye
transformation itself, the mapping computed with the dual
quaternion methods using 20 stations was a rotation of 1.8◦
about thex-axis and a relative translation(0, 125, −146) of
the gripper with respect to the camera (cf. Fig. 6).

The second experiment, motion stereo, assesses the hand-
eye calibration by one of each of the applications. Every time
we have one camera and a controllable motion of a robot,
we can produce a polynocular stereo configuration only if
we know the actuator-to-camera transformation. It is also
a direct assessment, since the assumed “ground truths” are
the positions of the world points in space, which we know
by designing the calibration object. In the first experiment,
the “ground truth” was not veridical, since the poses com-
puted after calibration and decomposition were erroneous.
We show in Figure 8 two of the images used for the stereo
reconstruction.

Stereo reconstruction with respect to a world-centered co-
ordinate system necessitates the feature correspondences as
well as two projective matrices,M1 andM2, as defined in
eq. (4) for two cameras. The correspondences are given be-
cause we used the same calibration pattern as an object to
reconstruct. We applied all three methods described in the
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Fig. 7. The discrepancy between the predicted camera pose and the camera pose computed by camera calibration averaged
over five verification stations. The absolute error for the rotation matrices is on the left, and the relative error in the translation
vectors is on the right.

simulation section in two modes: theextrinsicmode and the
projectivemode.

In the extrinsic mode, we used the extrinsic camera poses
to compute the interstation camera motionsA, and the result
was the camera-hand transformationX. Given only the first
extrinsic matrixA1 and the motor motion1B2 to a second
position, the projection matrices could be computed only if
the intrinsic parameter matrixC was known:

M2 = C X 1B−1
2 X−1 A1. (38)

Given the correspondences in the first and the second im-
ages and the projection matricesM1 from camera calibration
andM2 computed as above, we performed classical stereo
triangulation.

The results of the extrinsic mode in all methods (denoted
by DUAL, NLIN, and SEPA) are shown in the left side of
Figure 9. In the same figure, we show the reconstruction
(CAM) using the second projection matrix from calibration
as if we were calibrating in every position. Of course, the lat-
ter is superior to all motion-stereo methods, because no errors
from the motor encodings, the motor-angle offsets, or hand-
eye calibration were involved. The same computed hand-eye
transformation was used for all stations of the “second” cam-
era. The curves show the absolute error for reconstruction
between the 1st and theN th frame, where the baseline is in-
creasing withN . We observed the reconstruction-error decay
as the effective baseline increased. The nonregular behavior
for specific stations was due to erroneous motor recordings.

In the projective mode, we avoided the decomposition in
intrinsic and extrinsic parameters using the trick in eq. (5)
(Horaud and Dornaika 1995). Equation (5) can be solved
using dual quaternions in the same manner as in the first
experiment. The result is the world-to-gripper transforma-
tion Y = A−1

1 X at the first pose. The image-to-gripper

Fig. 8. The 1st (left) and the 22nd (right) image of the se-
quences of images used for stereo reconstruction.

transformationCX can be substituted by the image-to-world
× world-to-gripper transformation asCX = M1Y . The nec-
essary second projection matrix reads as follows:

M2 = M1 Y 1B−1
2 Y−1. (39)

We observe that the second projection matrix can be written in
terms of the solution of the hand-eye problem without decom-
posing any matrix in intrinsic and extrinsic parameters. The
results are shown in the right side of Figure 9, and are in most
of the cases about 25% better than the results in the extrinsic
mode. This error reduction is due to a more-accurate hand-eye
calibration using just projection matrices (eq. (6)) and owing
to the fact that no decomposition was used in eq. (39) either.
The outliers were observed in the same stations, which con-
firmed our conjectures that they arise due to motor-encoding
errors in1B2. In both modes we again observe the superi-
ority of the methods solving simultaneously for rotation and
translation.
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Fig. 9. The average reconstruction error in mm as a function of the station, which is proportional to the effective baseline (see
also Fig. 6). The approximate depth of the points is about 100 mm. The lowest curve (CAM) shows the error for conventional
reconstruction using projection matrices computed at every frame. The curves show the average error of reconstruction using
the second projection matrix computed from the extrinsic mode (left) and the projective mode (right) of hand-eye calibration.
We denote by DUAL, NLIN, and SEPA the dual-quaternion method, the nonlinear simultaneous method, and the separate
solution, respectively.

8. Conclusion

Dual quaternions were long ago known in kinematics as the al-
gebraic representation of screws. In this paper we introduced
this language to formalize the screw approach to hand-eye
calibration. We proved the fundamental fact that hand-eye
calibration is a 3-D motion from the 3-D lines problem. The
invariance of the angle and the pitch are straightforward re-
sults of the dual quaternion parameterization. This parameter-
ization enabled us to establish a linear homogeneous system
for the solution of all dual quaternion parameters. The com-
putation of the null space with SVD and the consideration
of the constraints for the dual quaternion to be unit yields a
simple algorithm avoiding nonlinear steps.

We implemented two other methods, the first involving a
nonlinear minimization but solving simultaneously for rota-
tion and translation, and the second solving linearly first for
the rotation and then for the translation. We compared all
three methods in simulations where we varied the noise level
in the camera and motor poses. We also tested the effect of the
number of calibration stations as well as the effect of the main
conditioning factor, which is the difference between the rota-
tion axes’ directions. The superiority of the dual quaternion
method lies not only in the simultaneous solution for rotation
and translation but also in the use of the information which
is just necessary for the hand-eye calibration problem. The
angle and the pitch of the camera and the motor screws are ir-
relevant to the problem, as also shown in the simulations. We
applied all the methods in two variations in a real experiment
of the active-vision area. To achieve a better assessment of the
methods, we employed two different performance tests related
to the tasks of controlled camera motion and stereo reconstruc-

tion, respectively. We elaborate further on the dual quaternion
approach for estimating hand-eye calibration in naturally sin-
gular configurations where conventional approaches are de-
feated. These include the calibration of cameras mounted
on vehicles. Furthermore, the new representation opens new
ways for the solution of many computer-vision problems in-
volving line correspondences; for example, the extension of
the algorithm presented here to the problem of registration of
3-D line sets is trivial.
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