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Abstract

Solutions to the structure from motion problem have been shown to be very sensitive to measurement
noise and the respective motion and geometry configuration. Statistical error analysis has become an
invaluable tool in analyzing the sensitivity phenomenon. This paper presents a unifying approach to the
problems of statistical bias, correlated noise, choice of error metrics, geometric instabilities and information
fusion exploring several assumptions commonly used in motion estimation and reviews several promising
techniques for motion estimation. The techniques are based on a small number of principles of statistics
and perturbation theory. The analyticity of the approach enables the design of alternatives overcoming the
observed instabilities.

1. Introduction

The problem of estimation of structure and motion from moving sequences of images has been attacked
by the research community in three stages. The first stage was to answer the question of existence of
a solution. This question was answered in the early eighties with algorithms like Longuet-Higgins [1]
and independently by Tsai and Huang [2] for the discrete case and Prazdny and Longuet-Higgins [3] and
Waxman and Wohn [4] for the differential case. A unique solution was proven to exist and algorithms
were developed to find it. The algorithms were practically closed form, simple and easy to implement.
Unbeknown to the computer vision community very similar problems had been solved in the context of
photogrammetry earlier this century and summarized in standard literature [5].

The second stage was to discover practical algorithms that work under realistic situations were noise is
present. The first attempts to solve the problem were frustrated by the high sensitivity to the noise. The
opinions in the research community ranged from the pessimistic that the problem is unsolvable, to the
optimistic that a few simple heuristics would be sufficient to obtain a general solution. In fact photogram-
metrists do have practical algorithms for their needs but these are not directly applicable to most computer
vision problems. They depend on extremely high quality cameras, quite often film cameras and they de-
pend on human intervention, to guide the matching process and to take the image sequence. In order for
structure from motion to become a general purpose tool, it has to be able to work with general purpose
cameras that have very limited resolution, work fast on inexpensive computers and do it with almost no
human intervention.

The limited resolution and low quality of the output of ordinary video cameras exaggerates the instabil-
ities in the algorithms for the recovery of the structure and motion. The two interrelated problems here are
the the possibility of more than one solution (the ambiguity problem) under certain viewing circumstances
(e.g. when viewing a plane) and the noise instabilities. By itself the ambiguity problem is not so interesting
because such situations are highly improbable (a perfect plane with no visible features outside the plane in
the whole scene is rare). But being near an ambiguous configuration in not improbable and the definition
of nearness becomes more inclusive when the noise level increases. The result is increased noise sensitivity
especially when the spurious solution is very close to the real one.

1



The noise sensitivity is usually expressed as a high variance (mean square difference between the ground
truth and the estimate) or a bias (mean difference between the ground truth and the estimate). One ap-
proach to the problem is to design algorithms to minimize the effects of noise by using a form of constrained
minimization [6, 7], use statistical estimation [8, 9, 10], analyze the behavior of the error in a wide variety of
configurations [11, 12, 13], analyze the Cramer-Rao Lower Bound (CRLB) of the estimation [14], study the
effects of bias and devising tools to reduce it [15] etc. Most of this work has been collected and presented in
a recent book by Kanatani [16].

Other approaches include the direct methods [17, 18] that avoid the first step of computing a form of
displacement field (flow or correspondence), the subspace methods [19] which provide an elegant solution
that involves little more than a set of convolutions and the decoupling methods [20] where the estimation
of structure and motion is decoupled in an elegant way using SVD.

Yet another approach involves using features at a level higher than points. Lines were such a feature
that produced a great deal of interest. At the beginning non linear algorithms appeared that could not
guarantee unique solutions [21] but later with linearized algorithms it was possible to get unique solution
almost always [22]. The question whether there exists such linearized algorithm that can use both lines and
points was answered positively [23]. When using both points and lines three frames are needed because
lines alone provide no constraint for motion with two frames. This method used even with points alone has
the advantage of fewer ambiguous configurations. The reason is that an ambiguous configuration with two
frames, let us say the first and second frame, will have spurious solutions that are almost always different
from the spurious solutions obtained from the first and third frames. Thus the likelihood of a particular
configuration being very close to an ambiguous one is much lower than when dealing with two frames.
Unfortunately while there exist detailed analyses for the ambiguous configurations for two frames there is
very little for three frames.

In most approaches the motion estimation involves two steps. The first step uses as input the image
sequence itself and produces a displacement field in the form of discrete point (or feature) correspondences
or optical flow field. The flow field has to be accompanied with a representation of the expected error
because it is not possible to have reliable dense measurements of the flow over the whole image. Thus a
set of discrete correspondences can be considered as a flow field that contains data only at places where
the certainty of the flow vectors is high or locally maximal. In most literature the flow is considered small,
typically fraction of a pixel and the term discrete displacement field is preferred when the flow is higher
than that. The second step consists of the estimation of the motion parameters (rotation and translation) in
the form of finite displacements (a vector for the translation and a matrix for the rotation) or infinitesimal
displacements (linear and angular velocities). There are algorithms that work either with flow and produce
infinitesimal displacements or with discrete matches and produce finite motion. In terms of noise sensitivity
and instability, the two general approaches are qualitatively equivalent and they differ mainly in the clarity
that different ideas can be presented. In this chapter we are going to use the one most appropriate for each
case.

The preferred approach in the study of noise sensitivity is to use analytical rather than numerical tools
because of the greater freedom they provide. Simple analytical expressions provide direct insight and more
complicated ones can be plotted with various parameters.

The third stage is about how to use the output in conjunction with other perceptory information or
cognitive processes to achieve intelligent behavior. As mentioned above the success of the photogrammetric
approach is partially due to the intelligent gathering of the data (image sequences) by a skilled operator.
An autonomous robotic system has to incorporate techniques that are known as active vision [24], to collect
data that are more reliable. A great contributor to the mistrust of structure from motion algorithms for real
applications comes from the fact that their worst case behavior is very bad. But using some intelligence
in the gathering of data, the worst case situations can be avoided. As shown in [24], several ill posed
problems become tractable using this paradigm. A related approach is the purposive vision [25], where
instead of computing the whole structure and motion representation, we can compute only the part that is
meaningful to the specific purpose of the system in consideration. This paradigm holds a great promise for
the increase of the efficiency of autonomous systems and the reduction of their complexity [26].

The progress of structure from motion cannot be separated from the progress of establishing one or an-
other form of correspondence. The most impressive progress has come from the area of flow computation.
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Several novel techniques have been proposed the past several years each one with different advantages and
shortcomings. Many of these techniques can be combined with often good results. One of the oldest and
simplest techniques by Lucas and Kanade [27] was recently found to outperform most other sophisticated
ones [28]. Among the techniques that show great promise when combined and are flexible enough to be
combined are the venerable smoothness constraints [29, 30] that, although they do not provide much sta-
bility by themselves, they tend to be easy to combine, the hierarchical (or coarse to fine) methods [31] that
can help increase the range over which flow can be computed, the statistical techniques proposed by Singh
[32] that can relax the Gaussian noise assumption, the affine models of flow that relax the assumption of
locally uniform motion [33, 34], the phase based methods that work exceptionally well [35] although they
are computationally expensive etc. While flow is usually associated with algorithms with input instanta-
neous linear and angular velocities, it can be used with any algorithm including the ones that accept as
input discrete point correspondences. Using hierarchical techniques, the flow can be computed between
images that have much more than one pixel displacement [36].

This chapter is divided into two parts. In the first part we study analytically motion and geometry
configurations that yield noise sensitive 3D-information. We present our results and compare them with a
state of the art approach [19, 37]. In the second part, we try to overcome some of the instabilities of the first
part by paying special attention on the statistical terms of bias and variance. Then, we unify our approach
by treating both point and line correspondences in the same way. Last, we analyze the case of recovering
the motion parameters from statistically correlated displacement fields.

2. Error analysis of motion estimation

The goal of error analysis is, given the noise level in the measurements, to predict with statistical measures
or bounds the error in the motion and depth estimates. These error measures may be computed in closed
form or numerically with an algorithm. They express the error in the computed parameters as a function of
the true parameters and the measurement noise. Studies like [13, 11, 14, 38, 39] belong to the first category
because they contain explicit expressions with respect to the problem parameters. Analyses like those in
[10, 40, 41] comprise a second category because they establish bounds or approximations of the estimate
error which are computed by sampling the parameter space. Given an expression for the error in the
estimate we first study if the error originates in the problem formulation and the algorithm used or if it is
inherent in the problem. Since the ultimate goal of error analysis is to find less noise sensitive solutions
we are particularly interested in explicit error expressions that will allow either to correct the problem
formulation or to actively control the parameter space. The results about the problem formulation –in
particular, the form of error metric– described below confirm the fact that the only way to avoid such error
is to use the statistical analysis of motion estimation described in the statistical part of this chapter. The
way to overcome the problem inherent sensitivities by actively controlling a subset of the parameters is an
object of active vision we will not describe here.

In this section we will use the instantaneous case because of the easier mathematical treatment due to
the linear dependency on the rotational parameters and the presence of measurement noise on the motion
field only. In discrete methods the noise can be assumed to corrupt the displacement or each point of the
correspondence pair leading to different error measures.

Let an object be moving with translational velocity V = (Vx, Vy , Vz)T and angular velocity Ω = (Ωx,Ωy,Ωz)T

relative to the camera. We denote by X the position of a point on the object with respect to the camera co-
ordinate system and by x = (x, y, 1)T its projection on the image plane Z = 1. The direction of the optical
axis is given by the unit vector ẑ. The motion field vector reads [17]

ẋ =
1

ẑT X
ẑ × (V × x) + ẑ × (x × (x × Ω)). (1)

In case of ego-motion of the camera with the above velocities and a stationary environment, the above
equation as well as all following equations have to be read with the opposite sign for V and Ω. Due to the
linear dependency on the angular velocity Ω in (1) it is trivial to prove that the error estimate in motion and
depth does not depend on the rotational parameters. All the results into which we will delve concern the
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case of a small field of view. In particular, we will describe the following facts – proved by other authors or
ourselves – that characterize the instability in the 3D-motion estimation from two views:

• A translation can easily be confounded with a rotation in case of small field of view, lateral motion,
and not sufficient depth variation [13, 38, 12].

• In case of a small field of view the translation estimate is biased towards the viewing direction if the
error metric is not appropriately normalized.

• In case of a small field of view and an irregular surface the cost function to minimize takes its minima
along a line in the space of translation directions that goes through the viewing direction and the true
translation direction [38, 42]. If the region of interest is fixated this result implies that the azimuth
angle of the translation direction can be estimated much more reliable than the polar angle.

• A relation exists between the critical surfaces causing an ambiguity and the critical surfaces causing
an instability. This relation provides geometric hints for error sensitivity – among them the translation
- rotation confounding mentioned above.

2.1. The translation-rotation confounding

The motion field vector is the sum of two components, a translational that carries the information about
the environment and a rotational one (see also eq. (1)). Motions almost parallel to the image plane and in
the same direction – like the (Vx,Ωy) and (Vy,−Ωx) pairs – cause a confusion to the observer who cannot
disambiguate whether a motion field is induced by a translation or a rotation (see Fig. 1). This confounding
becomes dominant if the field of view is small or if there is no depth variation in the environment. However,
as already argued by other authors, one may robustly compute the amount of motion represented by the
sum Vx + Ωy and the difference Vy − Ωx since they build the zeroth order terms regarding the motion field
as a polynomial with respect to the image coordinates (x, y).

We will first describe the arguments of [38] and then delve into the Cramer-Rao bounds established in
[12]. Given the motion field vectors ẋi=1..l in l points we summarize them into an observation vector s of
dimension 2l and the unknown depths Zi=1..l into the vector of inverse depths Z of dimension l. We may
write then the measurement equations (1) for l points as

s = C(V )
(

Z
Ω

)
with C(V ) =

(
A(V ) B

)
(2)

where

A(V ) =




Vx − x1Vz . . . 0
Vy − y1Vz . . . 0

...
...

0 . . . Vx − xlVz

0 . . . Vy − ylVz




B =




−x1y1 1 + x2
1 −y1

−(1 + y2
1) x1y1 x1

...
−xlyl 1 + x2

l −yl

−(1 + y2
l ) xlyl xl




are matrices of dimension 2l × l and 2l × 3, respectively. According to [38] the necessary and sufficient
condition for an observation vector s to be consistent with a translation V is that

s ∈ range(C(V )). (3)

This condition is equivalent to the requirement that the observation vector s is orthogonal to every vector
of the orthogonal complement of range(C(V )). Since the orthogonal complement of the range of a matrix
is equal to the null-space of the transpose of the matrix we have

sT Ψ(V ) = 0 for every Ψ(V ) ∈ null(C(V )T ). (4)
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(a)

(b)

Figure 1: Pure translational (a) and pure rotational (b) motion field induced by Vx-translation and Ωy-rotation, respec-
tively. A large field of view allows the perception of the depth variation through the change of the flow magnitude in
(a). A small field of view around the center contains in both cases (a) and (b) almost identical fields.
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The Ψ-vectors are constructed as a linear combination
∑l

i=1 ci(V )Φi(V ) of l vectors Φi(V ) spanning the
null-space null(A(V )T ) of the submatrixA(V )T . The necessary and sufficient condition for Ψ(V ) to belong
to null(C(V )T ) is to annihilate the rotational component:

BT
l∑

i=1

ci(V )Φi(V ) = 0 or E(V )
(

c1 . . . cl
)T = 0 (5)

with
E(V ) = BT

(
Φ1 . . . Φl

)
.

Hence, the problem is reduced to the computation of the null-space of E(V ). The degenerate case of
deficient rank of C(V ) occurs if the Φi(V ) are not independent – this implies that the FOE is on one of the
points – or if the matrix E(V ) has rank less than three. In the latter case, it exists a configuration of depths
and rotation (Z ′,Ω′)T such that C(V )(Z ′,Ω′)T = 0. This means, that there exists a rotation Ω′ that induces
a pure translational motion field:

BΩ′ = −A(V )Z ′.

In case of a small field of view it can be proved that the induced depths are planar and the induced transla-
tion is perpendicular to the actual one [38].

We next proceed to show the confounding in the space of uncertainty directions as represented by the
eigenspace of the Fisher Information matrix. In order to reduce the number of the depth unknowns we
sacrifice generality and assume that the perceived surface in motion is planar. Let the plane be given by
the equation NT X = 1 where N = (Nx, Ny, Nz)T has the direction of the normal to the plane and a
magnitude equal to the inverse of the distance of the origin to the plane. By dividing by the depth we
obtain 1/ẑT X = NT x which we insert in eq. (1):

ẋ = (NT x)(ẑ × (V × x)) + ẑ × (x × (x × Ω)). (6)

Let p be the vector of unknown parameters – in our case motion parameters and the normal, but we will
define them later – and Z be the set of all measurements – in our case all motion field vectors. The Fisher
information matrix is defined as follows [43]

F = E[
∂ ln p(Z|p)

∂p

T ∂ ln p(Z|p)
∂p

], (7)

where p(Z|p) is the conditional probability density function. The uncertainty of an estimator p̂ is given by
its error covariance E[(p − p̂)(p − p̂)T ]. Following the Cramer-Rao inequality [43], the error covariance of
an unbiased estimator is bounded from below by the inverse of the Fisher information matrix:

E[(p − p̂)(p − p̂)T ] ≥ F−1. (8)

The inequality for matrices means that the difference of the lhs minus the rhs is a positive semidefinite
matrix. Since the diagonal elements of a positive semidefinite matrix are greater or equal to zero we can
directly recover scalar lower bounds for the variances of the unknowns. However, the inverse of the Fisher
information matrix provides much richer information about the most and least error sensitive directions in
the parameter space. In the optimistic case of an efficient estimator, the uncertainty may be illustrated by
the following uncertainty ellipsoid

(p − p̂)TF (p − p̂) = c (9)

with the estimate being the center of the ellipsoid. The probability that the true value p lies inside the ellip-
soid is given by the constant c which geometrically expresses the stretching of the ellipsoid. The directions
of the axes of symmetry of the ellipsoid are given by the eigenvectors of F . The lengths of the semi-axes
are equal to

√
(c/λ) where λ is the corresponding eigenvalue of F . The direction of the lowest uncertainty

is given by the eigenvector corresponding to the largest eigenvalue of F – this is not a contradiction, if
one recalls that the error covariance lower bound is equal to the inverse of F . This direction allows us to
obtain insight into the question which linear combinations of the unknown parameters (projections of the
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parameter vector onto subspaces) can be robustly estimated even if each parameter estimate for itself may
have a high uncertainty.

The analytic computation of the Fisher information matrix requires a model of the probability density
function of the measurements. We assume a Gaussian distribution for all measured motion field vectors,
with zero mean and covariance equal to σ2I . Under the above assumptions it can be proved that the Fisher
information matrix reads

F =
∫∫

ID

∂h

∂p

T ∂h

∂p
dx dy. (10)

We assume a dense motion field over the domain D equal to the area of the projection of the environmental
part moving relative to the camera which we call the effective field of view. It is equal to the field of view
in case of a stationary environment and egomotion of the camera. The measurement function h(p) of the
motion field (1) is given by

~̇x = Dq =
(

1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

)
q

with q = (VxNz + Ωy, VxNx − VzNz, VxNy − Ωz,

VyNz − Ωx, VyNx + Ωz, VyNy − VzNz,

Ωy − VzNx, −VzNy − Ωx)T .

We used a different symbol ~̇x for the motion field vector in R2 in contrast to ẋ in (1) which belongs to R3

with the third component equal to zero.
The Jacobian ∂q/∂p is independent of the image coordinates, hence

F =
∂q

∂p

T {∫∫
ID

DTDdxdy

}
∂q

∂p
. (11)

We model the integration domain ID – i.e. the effective field of view – as a rectangle placed in the image
center with side lengths equal to α and β. The integral matrix

Dint =
∫∫

ID

DTDdxdy (12)

depends only on the size of the field of view and is a multiple of αβ. Thus, the error covariance is a
monotonically decreasing function of the size of the effective field of view. Before we proceed with the
computation of the Jacobian ∂q/∂p we must choose eight independent unknowns among the elements of V ,
Ω and N . We assume thatNz 6= 0 which implies that the planar surface is not parallel to the optical axis and
we make the following substitutions: N ′

x = Nx/Nz, N
′
y = Ny/Nz, V

′
x = Vx/Nz, V

′
y = Vy/Nz, V

′
z = Vz/Nz .

For the sake of simple expressions, we retain the unprimed symbols instead of the primed ones. The vector
of independent unknown parameters then reads as follows:

p =
(

Vx Vy Vz Ωx Ωy Ωz Nx Ny

)T
.

Before we recover the inverse of the Fisher information matrix we compute its determinant:

det(F ) = det2(
∂q

∂p
)det(Dint)

After tedious adding and subtracting the rows of the Jacobian ∂q/∂p we obtain

det(
∂q

∂p
) = ‖N × V ‖2. (13)

which shows as expected that the case of parallel translation and normal causes a high uncertainty as the
degenerate case of the merging of the two solutions to one [44]. We carry out the matrix multiplications in
(11) and obtain

F =
(

K L
LT M

)
(14)
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Figure 2: The smallest eigenvalue of S as a function of the angles ψ of translation and χ of the normal with the optical
axis for a small field of view: A = 0.1

where K , L, M are 6 × 6, 6 × 2 and 2 × 2 matrices, respectively. In order to invert the Fisher information
matrix computed in the last section we make use of the formula [45]

F−1 =
(

E−1 −E−1LM−1

−M−1LTE−1 M−1 +M−1LTE−1LM−1

)
(15)

with E = (K − LM−1LT )

and F as in (14). The matrix E obtains the following block-diagonal form

E =
(

E135 0
0 E246

)
, (16)

if we set Vy = 0 and Ny = 0. This means that the translational velocity as well as the normal lie on the XZ
plane. We introduce the angles ψ and χ between the optical axis and V and N , respectively:

V =
(

Vx 0 Vz

)
=

( ‖V ‖ sinψ 0 ‖V ‖ cosψ
)

N =
(

Nx 0 1
)

=
(

tanχ 0 1
)
.

The block matrices E135 and E246 correspond to the unknown triples (Vx, Vz ,Ωy) and (Vy ,Ωx,Ωz), respec-
tively. We are, thus, able to invert the matrix E by inverting the two 3 × 3 block matrices.

E−1 =
(

E−1
135 0
0 E−1

246

)
. (17)

We used the MAPLE symbolic package to compute the inverses E−1
135 and E−1

246. The uncertainty between
the two unknown-triples is decoupled. We will study the first triple (Vx, Vz ,Ωy), the study of the second
triple can be conducted analogously. We introduce the unit-vector u = (cosφ, 0, sinφ)T . The quadratic form
uTE−1

135u represents the uncertainty in direction φ. The uncertainty in the (Vx,Ωy) space can be illustrated
geometrically as the intersection of an ellipsoid in (Vx, , Vz,Ωy) space with a plane. Let S be the 2 × 2 sub-
matrix of E135 built by the first and third columns and rows of E135. The bounds of the quadratic form
uTE−1

135u are given by the smallest and the largest eigenvalue of S [46]:

λmin(S) ≤ uTE−1
135u ≤ λmax(S). (18)

We are interested in the value of the lowest uncertainty which is proportional to λmin(S). The expression
for λmin(S) computed by MAPLE is very long. We restrict ourselves to plot it as a function of ψ and χ.
Fig. 2 shows that the smallest eigenvalue is not affected by the singularity χ = ψ. However, the error
variances of Vx and Ωy become infinitely large. This fact substantiates our methodology in exploiting the
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Figure 3: The angle φmin of the lowest uncertainty direction as a function of the angles ψ of translation and χ of the
normal with the optical axis for two sizes of the field of view: A = 0.1 (a) and A = 1.0 (b). In case (a) of small field of
view this angle is almost everywhere equal π/4. Thus the direction of lowest uncertainty is (1, 1) and the sum Vx + Ωy

may be robustly estimated. This effect becomes the weaker the larger the size of the field of view.

entire structure of the lower bound covariance matrix. Fig. 2 shows that the variance in the direction of the
lowest uncertainty is an increasing function of the slant χ if the translation is parallel to the image plane
(ψ = π/2) and a decreasing function of the slant χ if the translation is parallel to the optical axis (ψ = 0). We
next compute the angle φmin that gives the direction of lowest uncertainty with the help of MAPLE. Fig. 3
shows that for a small field of view the angle φmin takes almost everywhere values close to π/4. Hence, the
direction of lowest uncertainty is (cosπ/4, sinπ/4) which implies that the sum Vx + Ωy = (1, 1)(Vx,Ωy)T

can be robustly estimated. Values of φmin near zero mean that the most robust direction in (Vx,Ωy)-space is
(1, 0), implying that the estimate for translational velocity Vx is robust. This happens if the plane is parallel
to the optical axis (χ near π/2) and the translation is parallel to the optical axis (ψ near zero) as well.
Planes parallel to the optical axis induce a high variation in the magnitudes of the motion field vectors.
Translations parallel to the optical axis induce radially expanding motion fields. In both cases the motion
field cannot be confused with a motion field induced by a pure rotation about an axis parallel to the image
plane. The effect of a dominant direction in (Vx,Ωy)-space is weaker if the field of view is large (Fig. 3
below). The angle φmin may take values greater than π/4 but is never close to π/2 which prevents the
estimate for Ωy from having the lowest uncertainty. We have, thus, shown that the directions of the lowest
uncertainty in the mixed translational-rotational parameter space correspond to the sum and difference of
the components of the velocities causing motion parallel to the image plane. The lower bounds for each
component individually are higher and this effect is amplified if the size of the field of view and the slant
of the plane become smaller. The only way to attenuate this inherent sensitivity is to keep the amount of
lateral translation as small as possible by actively fixating on the Focus of Expansion.

2.2. The bias towards the viewing direction

In this section we are going to prove the bias in the estimated translation direction towards the viewing
direction if the field of view is small. This bias was already observed in [47, 48, 49, 37]. We will show here
using the arguments in [39, 11] that this bias can be eliminated if the error metric is derived by the statistical
analysis in the first part of the chapter. The bias affected error metrics are those derived directly from the
epipolar constraint in its discrete form

x2
T (T ×Rx1) = 0. (19)

or its instantaneous form
(V × x)T (ẋ − Ω× x) = 0 (20)

without considering the noise in (x1,x2) or ẋ, respectively. It should be noted that the above equations
are valid in both cases of a planar and a spherical image surface. Furthermore, the bias does not affect
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approaches minimizing
∫∫

ID

∥∥∥∥ẋ − 1
ẑT X

ẑ × (V × x) − ẑ × (x × (x × Ω))
∥∥∥∥

2

dx dy (21)

like [19, 50, 51, 52] since the error metric obtained after elimination of depth

∫∫
ID

{
(V × x)T (ẋ − Ω × x)

‖ẑ × (V × x)‖
}2

dx dy, (22)

is correctly normalized. The error-metric (22) is equivalent to the error metrics for the discrete case obtained
in the first part of the chapter by statistical arguments. On the contrary, it affects the minimization of the
error metric

N∑
n=1

(
cn(x × ẋ)T V

)2
(23)

used in [37] where the coefficient vector (c1..cN ) is chosen to be orthogonal to all quadratic polynomials in
(x, y) so that the quadratic rotational component of the motion field will be annihilated. Since the coeffi-
cients cn are independent of the translation V the above error metric is biased in the same way as the metric
(x × ẋ)T V .

We proceed with introducing essential parameters into the instantaneous epipolar constraint (20) which
may be written as

V T (x × ẋ) + xTKx = 0 (24)

with K = V TΩI − 1
2 (V ΩT + ΩV T ). Ignoring the constraints for the decomposability of K in V and Ω

temporarily a solution for the minimization of∫∫
ID

(
V T (x × ẋ) + xTKx

)2

dx dy

is given by the eigenvector for the smallest eigenvalue of the matrix [39]

Y =
∫∫

ID

(x × ẋ)(x × ẋ)T dx dy −M

where M depends only on the image coordinates (x, y). Suppose now that the motion field vectors ẋ are
corrupted by additive noise

ẋ′ = ẋ +


 ξ

η
0




with vanishing expectations and isotropic variances E[ξ2] = E[η2] = σ2 and E[ξη] = 0. The expectation of
the corrupted matrix Y ′ reads then

E[Y ′] = Y + σ2


 αβ 0 0

0 αβ 0
0 0 αβ α2+β2

12


 ,

where α and β are the side lengths of the rectangular domain of integration around the viewing direction
assumed to be parallel to the optical axis. The bias in the matrix Y affects the eigenvector for the smallest
eigenvalue and is of order O(σ2). It increases with decreasing difference between the two smallest eigenval-
ues according to the well known theorem [46] that the perturbed eigenvector x′

k of a perturbed symmetric
matrix A+ E reads

x′
k ≈ xk +

∑
j 6=k

xT
j Exk

(λj − λk)
xj , (25)

with λi, xi the eigenvalues and eigenvectors of the unperturbed matrix respectively. Assuming a true
motion field arising from a planar surface NxX +NyY +NzZ = 1 it is proved in [11] that
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1. The difference between the two smallest eigenvalues is a monotonically decreasing function of the
polar angle θ of the true translational direction

|λ′1 − λ′3| =
(
F 2 +G2 + 2FG cos 2θ

) 1
2 , (26)

where F and G depend on the noise σ2, the area of the field of view, the slope of the surface, and the
ratio of translation to distance.

2. The upper bound on the bias of the eigenvector expressed as the sine of its rotation is a monotonically
increasing function of the polar angle of the translation

| sin δϕ| ≤
σ2

√
sin2 θ + (α2+β2

12 )2 cos2 θ

λ3 + σ2 α2+β2

12

. (27)

We conclude that the more lateral the true translation and the smaller the field of view, the more severe are
the bias effects.

For the elimination of bias it is proposed by Kanatani [39] to minimize the Rayleigh quotient

V TYV

V TBV

where B is the bias matrix 
 αβ 0 0

0 αβ 0
0 0 αβ α2+β2

12


 .

This can be reduced to a generalized eigenvalue problem YV = λBV . This is equivalent to finding the
eigenvector for the smallest eigenvalue of the unbiased matrix Y −λB where the unknown λ represents the
noise level in the motion field. It can be easily proved that the normalizing denominator is equal

V TBV =
∫∫

ID

‖ẑ × (V × x)‖2 dx dy.

Thus, the bias can be eliminated if we integrate separately the denominator in (22) what is approximately
correct if the field of view is very small.

2.3. The important line

In this section we will describe the results obtained in [38, 42] about the form of the error surface around
the minimum in the space of translation directions. We should remark at this point that the curvature of
the error surface in the neighborhood of the minimum is a measure of the stability of this minimum. The
Fisher Information matrix of the last chapter is nothing else than an approximate measure of the flatness
of the error surface near the minimum. The error surface used by Jepson and Heeger [38] is the residuum
obtained by the pseudoinverse solution of (2):

J(V ) = ‖(I − C(V )C†(V ))s‖2. (28)

For a sufficiently small field of view and an irregular depth variation the residuum J(V ) was proved to be
proportional to sin θo sin(φ − φo) where

V = (cosφ sin θ, sinφ sin θ, cos θ)T

and (θo, φo) are the polar and azimuth angle of the actual translation. Thus, the residuum varies only in the
direction perpendicular to the line connecting the viewing direction and the true translation. We illustrate
this fact in the (θ, φ) coordinate system of Fig. 4.
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Figure 4: The residuum J(V ) as a function of the translation direction angles (θ, φ). The actual translation
is (1/2, 1/2, 1), the depth is a step function, and there is no rotation. The residuum is shown for a small
(0.2 × 0.2) and a large (1 × 1) field of view. The valley of minima can be clearly seen in case of a small field
of view (left).
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Figure 5: The residuum Jm(V ) as a function of the translation direction angles (θ, φ). The actual translation
is (1/2, 1/2, 1), the depth is a step function, and there is no rotation. The residuum is shown for a small
(0.2 × 0.2) and a large (1 × 1) field of view. The valley of minima can be clearly seen in case of a small field
of view (left). Furthermore, we observe the bias towards the viewing direction (θ = 0) due to the use of the
unnormalized epipolar constraint.

A similar relationship was derived be Maybank [42, 53] but the residuum after elimination of depths
becomes

Jm(V ) =
l∑

i=1

‖(V × xi)T (ẋi − Ω × xi)‖2. (29)

It was proved that under the same assumptions of small field of view and irregular depth distribution the
residuum above is proportional to ‖V T (V o × xo)‖ where xo is the viewing direction and V o is the true
translation. It is trivial to show that the triple product has as a factor sin(φ−φo). The same valley of minima
can be observed in Fig. 5 with a small but expected surprise: Due to the use of the epipolar constraint as an
error metric the locations of minima are biased towards the viewing direction θ = 0.

2.4. Critical surfaces and instability

In this section we switch over again to the discrete case of given point correspondences (x1,x2) in order to
study the relation between ambiguity and error sensitivity in the structure from motion problem. It has been
repeatedly shown in the past that certain configurations of scene points and optical centers – called critical
surfaces – cause the existence of two or three solutions given more than five point correspondences (see [53]
and the references therein). In the context of error sensitivity we are interested here only in solutions that
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differ slightly from each other. Given a solution for translation and rotation we study the geometries for
which a first order perturbation of the solution yields the same point correspondences. Horn [54] showed
that the epipolar constraint remains unaffected by first order deformations of the motion parameters if
the points lie on a quadric with certain properties. The relation of these instability-critical surfaces to the
ambiguity-critical surfaces has been an open problem in visual motiona. Such a relationship was first es-
tablished in pure geometric terms by Hofmann [56]. Following [57] we show here that an instability-critical
surface arises when the two optical centers take special positions on the ambiguity-critical surface.

Let (R,a) and (S, b) be two rotation-translation pairs that yield the same point correspondences (x1,x2).
The pair of the two ambiguity surfaces associated with each of the solutions reads [53]

(UX × X)T b = (Ua × X)T b (30)
(UT X × X)T a = (UT b × X)T a, (31)

where U = SRT is the rotation difference and X the scene point with respect to the first coordinate system.
The surfaces are quadrics of the form

XTMX + lT X = 0.

We will briefly elucidate the properties of such a quadric by means of the hyperboloid of one sheet which
is its non-degenerate shape. The hyperboloid of one sheet (Fig. 6) is a doubly ruled surface and has two
families of generators. Each family has two main generators passing through the main vertices (the inter-
sections of the ellipse with its major axis) of the smallest ellipse (the ellipse satisfying x2/a2 + y2/b2 = 1 if
the hyperboloid has the standard form x2/a2+y2/b2−z2/c2 = 1). If all the scene points lie on a hyperboloid
of one sheet then this hyperboloid is an ambiguity-critical surface [58, 59] iff

• It is rectangular (every plane perpendicular to the main generator intersects the surface in a circle)
and

• The two optical centers o and a lie on generators g1 and g2 symmetric to the main generator.

Suppose now that the two motion solutions differ only by first-order perturbations (δΩ, δa):

U = I + [δΩ]× b = a + δa, (32)

where [δΩ]× is the antisymmetric matrix for the vector δΩ. We substitute the above terms in (30) and after
cancellation of the terms second-order in (δΩ, δa) we obtain

(δΩ × X)T (X × a) + (a × (a × δΩ + δa))T
X = 0. (33)

which has also the form XTMX + lT X = 0 where

M =
1
2
(aδΩT + δΩaT ) − aT δΩI (34)

l = a × (a × δΩ + δa). (35)

From the form of the M -matrix it can be easily proved that the quadric is still rectangularb. We will prove
that the optical centers o and a lie on the main generator of the quadric.

The main generator of the quadric passes through the main vertex of the smallest intersection ellipse.
The center of the quadric is given by [60]

c = −1
2
M−1l. (36)

The main axis of the considered ellipse is parallel to the second eigenvector of the matrix M

u2 =
a × δΩ

‖a × δΩ‖
aSee [55] “Because of his [54] particular formulation of the problem, the relationship between his results and those presented here is hard to

establish.”
bThe algebraic definition for rectangularity of a quadric is that the middle eigenvalue of M is equal to the sum of the other two.
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Figure 6: The hyperboloid of one sheet with three lines belonging to the same generator family. The line g
through the main vertex of the smallest ellipse is the main generator of the family

corresponding to the eigenvalue λ2 = −aT δΩ. The length of the semi-axis is
√
c/λ2 with c =

1
4
lTM−1l.

Hence, the main vertices have position vectors

c ±
√

c

λ2
u2.

After a tedious calculations it can be proved that the line

c ±
√

c

λ2
u2 + µa

is the main generator. On the other hand the line λa joining the two optical centers is a generator since
λ2aTMa + λlT a = 0 for every λ. Because no two lines of a generator family are parallel to each other the
line λa is identical to the main generator. Hence, if the two solutions differ by a first-order perturbation
the two optical centers lie on the main generator. The instability-critical quadric (33) is identical with the
quadric obtained by Horn [54] who studied which scene point configurations let the epipolar constraint
x1

T (a × Rx2) unaffected by a first-order perturbation (δΩ, δa). We, thus, made the required link between
instability- and ambiguity-critical surfaces.

The degenerate forms of a hyperboloid of one sheet are the hyperbolic paraboloid, the cone, the elliptic
cylinder, and the plane pair. We will look into the case of the elliptic cylinder. We obtain a cylinder in
the special case of a ‖ δΩ. The generators of a cylinder are all parallel to its axis a. Thus, we obtain an
unstable solution if an observer is moving on a cylinder parallel to the axis and is looking the other side
of the cylinder. This is a very realistic situation in case of a small field of view because a small part of a
scene can be often approximated by a quadratic cylinder patch. Since the translation perturbation δa is
perpendicular to the translation a due to ‖a‖ = 1 we obtain a second slightly different solution including
a rotation and a translation around axes (δΩ, δa) perpendicular to each other. We gave, thus, yet another
explanation for the confounding between translation and rotation.
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3. Statistical Bias

The goal of estimation is to recover a set of unknown parameters with as little deviation from the ground
truth as possible and in practice we need several ways to qualitatively describe the nature of the deviation
that we can expect. We concentrate again on two of them, the bias and the variance. The bias is the dif-
ference between the expected value of the estimate and the ground truth and the variance is the expected
value of the squared difference between the estimate and the ground truth. It seems obvious that in most
cases reducing the bias will reduce the variance and the opposite but this is increasingly incorrect as our
estimators become better and more complicated so we move away from straightforward intuition. It is
not uncommon to have unbiased solutions with high variance, or biased solution to outperform unbiased
ones in terms of variance. We could restrict ourselves to linear estimators with Gaussian distribution and
preserve the monotone relation between bias and variance but this could be hardly useful for structure
estimation using discrete matches where even the so called linear solutions include nonlinear steps.

T he bias itself can be a very useful property and worth striving to include among the advantages of an
algorithm. It is not without caveats though. Assume that we want to recover the size of a square in three
dimensional space. We use an algorithm to obtain an unbiased estimate of the length of the sides of the
square

E{x∗} = x

where x∗ is the estimate and x is the actual length of the side of the square. But using the same algorithm
we cannot get an unbiased estimate of the area x2 by simply squaring the result because

E{x2∗} = x2 + σ2 6= x2

where σ is the standard deviation of x. In other words the bias is a very fragile property and it might not be
always easy to obtain estimators whose bias is exactly zero although in most cases simple corrections are
sufficient.

The estimation of the rotation component of a general motion poses similar problems. If one designs an
unbiased estimator of the Euler angles of the motion then the same estimator cannot be simply translated to
one that computes the Rodriguess parameters. Even the translation component poses difficulties depending
on whether is reported as a focus of expansion or a unit vector.

Then one cannot prove that a certain estimator is unbiased without reference to the exact representation
of the required result because if a certain representation is unbiased we cannot infer that an equivalent one
is also unbiased. On the other hand the bias that appears when we simply change representation is very
often too small to be observable by plotting or visualizing the data. If the bias is due to deficiencies in
the formulation of the estimator then in several cases it is very noticeable by simple inspection of the data,
which is what happened to the structure from motion problem [8, 9].

Several of the oldest techniques to recover the motion parameters from point matches in two frames
involve the minimization of the sum of the squared residuals of the epipolar constraint

p2i
TEp1i = 0

where p1i and p2i are the images of the ith point in the first and second image, the matrix E is

E =


 0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0


R

with T = (Tx, Ty, Tz)T . The minimization of
∑

i

(
p2

T
i Ep1i

)2

is fairly easy and there are several solutions in the literature [6, 61] but it is heavily biased in the presence
of noise. To see intuitively why we can rewrite the epipolar constraint as

p2i
TEp1i = p2i

T (T × (Rp1i))
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It is easy to see that the cross product introduces the sine of the angle between vectors T and Rp1i as a
factor. This will make the minimization to prefer vectors T that are closer to the center of gravity of the
bundle of points Rp1i so that the sine and hence the residual of the epipolar is smaller [9].

The magnitude of the bias and the suspicious presence of the sine in the form of the epipolar suggest
that there is some oversimplification in the way we handled this minimization. We can use Maximum
Likelihood method from statistics and solve the problem as follows [9]. Assume that every world point P 1i

is equal to P 1i = Zip1i, where p1i is the image point vector and Zi is the unknown scalar depth (which is
equal to the z component in planar images). If we move the point P 1i by a rotation R and a translation T
we get

P 2i = ZiRp1i + T

If we project this vector on the second camera we get

p2
′′
i =

P 2i

ẑT P 2i

which in the presence of noise does not coincide with the projection of the same point p2i on the second
camera. The noise is the distance between these two vectors ni = p2

′′
i −p2i. A simple application of the the

maximum likelihood method can show that we need to minimize the weighted least squares of the noise
for all points ∑

i

ni
T Σi

+ni → min.

where Σi
+ is the pseudoinverse of a covariance matrix of suitable form (e.g. for planar images only the top

left two by two submatrix is important). We can eliminate Zi which is one unknown per pixel by setting it
equal to

Zi =
(p2i × T )T Σi(T ×Rp1i)

(T ×Rp1i)T Σi(Rp1i × p2i)
.

After the elimination the expression we have to minimize is

∑
i

ni
T Σi

+ni =
∑

i

(p2i
TEp1i)

2

(Ep1i)T ΣiEp1i

.

which is a much more difficult function to minimize than the simple sum of squared epipolars. One word of
caution here. The expression in the denominator is not a weight that increases the importance of the points
close to the focus of expansion (for these points the expression is close to zero). It contains the unknowns
so it cannot be factored out the same way as weights and has to remain part of the minimization. And of
course the minimization procedure is more complicated as a result.

As can be seen from the experimental data in [9] the error distribution does not look biased. The question
remains though. Is it biased? Just because it does not look biased it does not mean it is not. And in fact it
is not unbiased. The failure of such a bias to manifest itself in the experimental data indicates that this is
small and certainly it is smaller than the one we get from minimizing the squared sum of the residuals of
the epipolar.

4. Using Lines and Points

Straight line matching does not suffer from the aperture problem, where the one of the two components of
the flow field is impossible to estimate if one looks through a sufficiently small aperture. But the aperture
problem does not appear everywhere in the image. There are feature points in the image that do not suffer
from the aperture problem (e.g. corners and local maxima). If one wants to make use of these feature points
then information from the line matching and the point matching should be used at the same time. Such an
algorithm needs of course 3 frames, otherwise the lines do not offer any real constraint.

The idea of using 3 frames for points without lines has some other advantages of its own. First fewer
points are needed to obtain a finite number of solutions (four instead of five, but for linearized solution we
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need nine instead of eight). This is because there is the extra constraint that the structure obtained from the
first and second frame is the same as the one obtained from the first and third. Second the ambiguous con-
figurations are fewer. Configurations that are ambiguous in the first pair of frames are either unambiguous
in the second pair or the spurious solution is different [23].

Assume that a pont P in 3-D is projected to points p1, p2 and p3 on the three frames. The motion
between frame 1 and frame 2 is R1 and T 1 for rotation and translation respectively. The motion between
frame 1 and 3 is similarly R2 and T 2. The image points are related by

Z2p2 = Z1R1p1 + T 1

Z3p3 = Z1R2p1 + T 2

where Zi is the unknown depth of the points in the corresponding coordinate system of the frame. We
eliminate Z2 and Z3 by taking the cross product of the two equations by p2 and p3 respectively.

0 = Z1p2 × (R1p1) + p2 × T 1

0 = Z1p3 × (R2p1) + p3 × T 2

We can eliminate Z1 by rearranging the terms so that Z1 appears in the left hand side for the one equation
and the right hand side of the other equation

Z1[p2]×R1p1 = −[p2]×T 1

[p3]×T 2 = −Z1[p3]×R2p1

and then taking the outer product we get the following constraint

[p2]×(R1p1T
T
2 )[p3]× = [p2]×T 1(R2p1)

T p3

where

[p2]× =


 0 −z2 y2

z2 0 −x2

−y2 x2 0




with p2 = (x2, y2, z2)T . If we define

K = T 1(R2x̂)T − (R1x̂)T 2
T

L = T 1(R2ŷ)T − (R1ŷ)T 2
T

M = T 1(R2ẑ)T − (R1ẑ)T 2
T

where x̂, ŷ and ẑ are the unit vectors along the corresponding axes, then the constraint becomes

[p2]×(x1K + y1L+ z1M)[p3]× = [0]

where (x1, y1, z1) are the components of p1. This is a matrix equation that is equivalent to 9 scalar equations
but only three of them are independent.

The above equation provides a set of constraints for points. The known data are the points p1i and the
unknowns are the rotation and translation parameters which are hidden in the three matrices K , L and M .
The constraints for the lines is the vector equation

 ε2
TKε3

ε2
TLε3

ε2
TMε3


 × ε1 = ~0

where εi is the normal vector line representation in frame i. Such a vector passes through the origin and is
normal to the image line. Known are the normal line vectors and the unknowns are again the matrices K ,
L and M that contain the motion parameters. The constraints from both points and lines can be included
in the same least squares estimation to take advantage of all the information.

But this least squares problem corresponds to the direct least squares minimization for the epipolar
residual that was shown above to be the reason for the high bias. The question arises if we can follow the
same path and find the maximum likelihood estimator for the points and lines as well. It turns out that we
cannot do exactly the same because we need to solve a fourth degree polynomial equation that although it
has a closed form solution, it is no more useful than a numerical one due to its complexity.
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5. Statistically Correlated Noise

In the previous paragraphs we dealt mainly with data that were statistically independent. This is a con-
venient working assumption that is fairly accurate when we deal with point correspondences that are col-
lected either by hand or sparsely enough to make them independent. But a computer vision system should
not depend on data collected by hand and sparse data means that we leave large amount of information
unused.

Furthermore, it is possible to extract more information from data corrupted by correlated noise if we
know the correlation rather than assuming incorrectly that they are uncorrelated. One example is the mo-
tion of a textured patch. While any measurement of the motion of such a patch may be corrupted due to
aliasing, the second order components of the motion (dilation, shear, rotation) may be still recoverable, if
we can track the Fourier components in the frequency domain.

There are two distinct problems regarding correlated noise. One is the representation of the variance-
covariance matrix. Such a matrix should contain the covariance for every pair of points in the image, which
is very large for dense disparity data.

The other problem is that the equations cannot be solved or simplified analytically, because all the image
is involved in one set of equations. The equations have to be solved numerically.

The approach to these problems is to solve for the correspondence (or flow) and for the motion in one
step, by minimizing the match over a region of the intensity subject to the constraint that the correspon-
dences satisfy the epipolar constraint. The Lagrangian equation is

L =
∑
i0,j0

∑
i0−w≤i≤i0+w

j0−w≤j≤j0+w

(∇I(i, j)T u(i0, j0) + It(i, j)
)2

+

∑
i0,j0

λ(i0, j0)
(
p2(i0, j0)

TEp1(i0, j0)
)

where the summation for i, j is over the whole image, i0 and j0 is over a small window typically 5 by 5 or
7 by 7,

p2(i0, j0) = p1(i0, j0) + u(i0, j0)

u is the disparity with zero as the third element to match the size of p2, I is the intensity and It is the time
derivative of the intensity. The first component of L is the metric used by Lucas and Kanade [27] and seems
to produce reasonable accurate results even by itself [28]. Solving this Lagrangian equation for u and E
will give a disparity field that is constrained to be one of rigid motion. But the linear equations that come
out are hard to solve because the linearized system is non positive definite. Although iterative methods
exist for this type of equations they are slow and unstable. In general it is better to avoid such systems.
And although we are not interested in λ, we have to compute it in the process. Adding the constraint that
matrix E is decomposable to rotation and translation provides an extra difficulty.

Another formulation of the problem to use a trade off parameter λ which yields a positive definite
system

L =
∑

(∇I(i− i0, j − j0)T u(i0, j0) + It(i− i0, j − j0))2 +

λ
∑ (p2(i0, j0)TEp1(i0, j0))2

(Ep1(i0, j0))T ΣiEp1(i0, j0)

which is a form of regularization but instead of trading off the problem constraints against a smoothness
term, we do so against a rigidity term which in many cases offers more than stabilization: It can link the
disparity estimation to the motion estimation. Unfortunately if the disparity estimation is severely affected
by the aperture problem the whole process is rendered ineffective. Such methods work quite well [62] but
the problem of choosing the appropriate λ and Σi remains. In general the value of λ has to be as high
as possible since it will not have bad side effects like oversmoothing the solution, but too high can be
detrimental to the round off error.
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A third approach involves unconstrained minimization by changing unknowns. Instead of having the
components of the flow vector field and the motion parameters as unknowns we can use the depth and the
motion parameters

L =
∑

(∇I(i− i0, j − j0) · u(i0, j0) + It(i− i0, j − j0))2

where
u = p1 −

ZRp1 + T

ẑT (Zp1 + T )

where Z is the z component of the point before the motion. The flow vectors are simply intermediate
variables. A disadvantage of this approach is that it has more difficult nonlinearities to handle but this can
be weighted against the advantage of fewer unknowns and the ability to incorporate information about
the depth that comes from another source (previous frames, sonar, known models etc). The linearized
equations that have to be solved are also positive definite.

All these approaches share something with the ideas behind direct methods [17] and correspondenceless
methods [18, 63] for motion recovery that avoids the intermediate step of establishing correspondence or
any other kind of disparity field. What they share is the one step estimation of the motion. But they differ in
the kind of input they expect. Direct methods attempt to recover the motion using less information, either
constraints that only give the normal component of the motion or the distribution of points without one
to one correspondence established between them. Methods presented above assume that there is sufficient
information in the image to recover deformation. And while it is true that the constraints on the disparity
are weak in large areas on the image, using some of the best performing algorithms [28] both components
of flow can be recovered in significant portions of the image and these are enough to recover the motion.
The areas that simply do not have enough constraints for both components of flow, do not contribute to the
recovery of motion or even to the recovery of depth if no component of flow can be computed reliably.

6. The future

The application that has driven the research on structure from motion is the autonomous navigation where
scene reconstruction would make the problem simpler, although it has been argued that autonomous nav-
igation could be successful without it. Nevertheless an efficient structure from motion module would be
useful for the navigation itself or the other tasks of the autonomous robots. A parallel can be drawn from
marine navigation where an accurate map and the exact location of the vessel is not needed in safe waters
near the coast. But for offshore navigation or in unsafe waters not only the exact location on the map is
required but a radar as well.

But the recent demand for multimedia, high quality graphics and virtual reality, has opened new op-
portunities for applications of structure from motion. One problem that structure from motion can help
is viewpoint interpolation where given the image of a scene from a set of different viewpoints one wants
the image of the scene from a novel viewpoint. Although with today’s technology depth cannot be recov-
ered accurately, it is at least consistent with the gray scale (or color) structure of the scene, so if the novel
viewpoint is not very far from the already existing ones one can compute the image from that viewpoint.
Another application is interactive video editing where two or three dimensional tracking can help map
the editing of one frame to the next. There are numerous other applications for scene reconstruction tech-
niques that will emerge sooner or later. The point is that general purpose scene reconstruction has much
broader importance outside what has become tradition in vision research. The presented chapter not only
provides us with the reasons of sensitivity but gives us also a unifying way of its treatment by applying
solid statistical techniques.

On the other hand, if we follow the paradigm of active and/or purposive vision the noise sensitivity
treatment provides us with guidelines on how to design a purposive algorithm. Given a specific task like
the estimation of object translation and the pursuing of the object we may find out that an object centered
representation eliminates the translation-rotation confounding – in case of a small field of view of object
tracking – because the direction of least uncertainty in the space of unknowns is now the lateral translation
of the object. In the task of ego-translation estimation using fixation we can exploit the results on the
important line in the space of translation directions. In particular, it was proved that the use of the polar
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transformation [64] decouples the azimuth from the polar angle of the translation direction, the former
of which shown already to be insensitive to noise. We hope that this chapter will give further insight
towards designing not only computationally inexpensive but also robust general as well as special purpose
algorithms.
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